2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 23:54:19 +08:00
linux-next/fs/ocfs2/xattr.c
Linus Torvalds 1751e8a6cb Rename superblock flags (MS_xyz -> SB_xyz)
This is a pure automated search-and-replace of the internal kernel
superblock flags.

The s_flags are now called SB_*, with the names and the values for the
moment mirroring the MS_* flags that they're equivalent to.

Note how the MS_xyz flags are the ones passed to the mount system call,
while the SB_xyz flags are what we then use in sb->s_flags.

The script to do this was:

    # places to look in; re security/*: it generally should *not* be
    # touched (that stuff parses mount(2) arguments directly), but
    # there are two places where we really deal with superblock flags.
    FILES="drivers/mtd drivers/staging/lustre fs ipc mm \
            include/linux/fs.h include/uapi/linux/bfs_fs.h \
            security/apparmor/apparmorfs.c security/apparmor/include/lib.h"
    # the list of MS_... constants
    SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \
          DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \
          POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \
          I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \
          ACTIVE NOUSER"

    SED_PROG=
    for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done

    # we want files that contain at least one of MS_...,
    # with fs/namespace.c and fs/pnode.c excluded.
    L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c')

    for f in $L; do sed -i $f $SED_PROG; done

Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-27 13:05:09 -08:00

7380 lines
193 KiB
C

/* -*- mode: c; c-basic-offset: 8; -*-
* vim: noexpandtab sw=8 ts=8 sts=0:
*
* xattr.c
*
* Copyright (C) 2004, 2008 Oracle. All rights reserved.
*
* CREDITS:
* Lots of code in this file is copy from linux/fs/ext3/xattr.c.
* Copyright (C) 2001-2003 Andreas Gruenbacher, <agruen@suse.de>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/capability.h>
#include <linux/fs.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/uio.h>
#include <linux/sched.h>
#include <linux/splice.h>
#include <linux/mount.h>
#include <linux/writeback.h>
#include <linux/falloc.h>
#include <linux/sort.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/security.h>
#include <cluster/masklog.h>
#include "ocfs2.h"
#include "alloc.h"
#include "blockcheck.h"
#include "dlmglue.h"
#include "file.h"
#include "symlink.h"
#include "sysfile.h"
#include "inode.h"
#include "journal.h"
#include "ocfs2_fs.h"
#include "suballoc.h"
#include "uptodate.h"
#include "buffer_head_io.h"
#include "super.h"
#include "xattr.h"
#include "refcounttree.h"
#include "acl.h"
#include "ocfs2_trace.h"
struct ocfs2_xattr_def_value_root {
struct ocfs2_xattr_value_root xv;
struct ocfs2_extent_rec er;
};
struct ocfs2_xattr_bucket {
/* The inode these xattrs are associated with */
struct inode *bu_inode;
/* The actual buffers that make up the bucket */
struct buffer_head *bu_bhs[OCFS2_XATTR_MAX_BLOCKS_PER_BUCKET];
/* How many blocks make up one bucket for this filesystem */
int bu_blocks;
};
struct ocfs2_xattr_set_ctxt {
handle_t *handle;
struct ocfs2_alloc_context *meta_ac;
struct ocfs2_alloc_context *data_ac;
struct ocfs2_cached_dealloc_ctxt dealloc;
int set_abort;
};
#define OCFS2_XATTR_ROOT_SIZE (sizeof(struct ocfs2_xattr_def_value_root))
#define OCFS2_XATTR_INLINE_SIZE 80
#define OCFS2_XATTR_HEADER_GAP 4
#define OCFS2_XATTR_FREE_IN_IBODY (OCFS2_MIN_XATTR_INLINE_SIZE \
- sizeof(struct ocfs2_xattr_header) \
- OCFS2_XATTR_HEADER_GAP)
#define OCFS2_XATTR_FREE_IN_BLOCK(ptr) ((ptr)->i_sb->s_blocksize \
- sizeof(struct ocfs2_xattr_block) \
- sizeof(struct ocfs2_xattr_header) \
- OCFS2_XATTR_HEADER_GAP)
static struct ocfs2_xattr_def_value_root def_xv = {
.xv.xr_list.l_count = cpu_to_le16(1),
};
const struct xattr_handler *ocfs2_xattr_handlers[] = {
&ocfs2_xattr_user_handler,
&posix_acl_access_xattr_handler,
&posix_acl_default_xattr_handler,
&ocfs2_xattr_trusted_handler,
&ocfs2_xattr_security_handler,
NULL
};
static const struct xattr_handler *ocfs2_xattr_handler_map[OCFS2_XATTR_MAX] = {
[OCFS2_XATTR_INDEX_USER] = &ocfs2_xattr_user_handler,
[OCFS2_XATTR_INDEX_POSIX_ACL_ACCESS]
= &posix_acl_access_xattr_handler,
[OCFS2_XATTR_INDEX_POSIX_ACL_DEFAULT]
= &posix_acl_default_xattr_handler,
[OCFS2_XATTR_INDEX_TRUSTED] = &ocfs2_xattr_trusted_handler,
[OCFS2_XATTR_INDEX_SECURITY] = &ocfs2_xattr_security_handler,
};
struct ocfs2_xattr_info {
int xi_name_index;
const char *xi_name;
int xi_name_len;
const void *xi_value;
size_t xi_value_len;
};
struct ocfs2_xattr_search {
struct buffer_head *inode_bh;
/*
* xattr_bh point to the block buffer head which has extended attribute
* when extended attribute in inode, xattr_bh is equal to inode_bh.
*/
struct buffer_head *xattr_bh;
struct ocfs2_xattr_header *header;
struct ocfs2_xattr_bucket *bucket;
void *base;
void *end;
struct ocfs2_xattr_entry *here;
int not_found;
};
/* Operations on struct ocfs2_xa_entry */
struct ocfs2_xa_loc;
struct ocfs2_xa_loc_operations {
/*
* Journal functions
*/
int (*xlo_journal_access)(handle_t *handle, struct ocfs2_xa_loc *loc,
int type);
void (*xlo_journal_dirty)(handle_t *handle, struct ocfs2_xa_loc *loc);
/*
* Return a pointer to the appropriate buffer in loc->xl_storage
* at the given offset from loc->xl_header.
*/
void *(*xlo_offset_pointer)(struct ocfs2_xa_loc *loc, int offset);
/* Can we reuse the existing entry for the new value? */
int (*xlo_can_reuse)(struct ocfs2_xa_loc *loc,
struct ocfs2_xattr_info *xi);
/* How much space is needed for the new value? */
int (*xlo_check_space)(struct ocfs2_xa_loc *loc,
struct ocfs2_xattr_info *xi);
/*
* Return the offset of the first name+value pair. This is
* the start of our downward-filling free space.
*/
int (*xlo_get_free_start)(struct ocfs2_xa_loc *loc);
/*
* Remove the name+value at this location. Do whatever is
* appropriate with the remaining name+value pairs.
*/
void (*xlo_wipe_namevalue)(struct ocfs2_xa_loc *loc);
/* Fill xl_entry with a new entry */
void (*xlo_add_entry)(struct ocfs2_xa_loc *loc, u32 name_hash);
/* Add name+value storage to an entry */
void (*xlo_add_namevalue)(struct ocfs2_xa_loc *loc, int size);
/*
* Initialize the value buf's access and bh fields for this entry.
* ocfs2_xa_fill_value_buf() will handle the xv pointer.
*/
void (*xlo_fill_value_buf)(struct ocfs2_xa_loc *loc,
struct ocfs2_xattr_value_buf *vb);
};
/*
* Describes an xattr entry location. This is a memory structure
* tracking the on-disk structure.
*/
struct ocfs2_xa_loc {
/* This xattr belongs to this inode */
struct inode *xl_inode;
/* The ocfs2_xattr_header inside the on-disk storage. Not NULL. */
struct ocfs2_xattr_header *xl_header;
/* Bytes from xl_header to the end of the storage */
int xl_size;
/*
* The ocfs2_xattr_entry this location describes. If this is
* NULL, this location describes the on-disk structure where it
* would have been.
*/
struct ocfs2_xattr_entry *xl_entry;
/*
* Internal housekeeping
*/
/* Buffer(s) containing this entry */
void *xl_storage;
/* Operations on the storage backing this location */
const struct ocfs2_xa_loc_operations *xl_ops;
};
/*
* Convenience functions to calculate how much space is needed for a
* given name+value pair
*/
static int namevalue_size(int name_len, uint64_t value_len)
{
if (value_len > OCFS2_XATTR_INLINE_SIZE)
return OCFS2_XATTR_SIZE(name_len) + OCFS2_XATTR_ROOT_SIZE;
else
return OCFS2_XATTR_SIZE(name_len) + OCFS2_XATTR_SIZE(value_len);
}
static int namevalue_size_xi(struct ocfs2_xattr_info *xi)
{
return namevalue_size(xi->xi_name_len, xi->xi_value_len);
}
static int namevalue_size_xe(struct ocfs2_xattr_entry *xe)
{
u64 value_len = le64_to_cpu(xe->xe_value_size);
BUG_ON((value_len > OCFS2_XATTR_INLINE_SIZE) &&
ocfs2_xattr_is_local(xe));
return namevalue_size(xe->xe_name_len, value_len);
}
static int ocfs2_xattr_bucket_get_name_value(struct super_block *sb,
struct ocfs2_xattr_header *xh,
int index,
int *block_off,
int *new_offset);
static int ocfs2_xattr_block_find(struct inode *inode,
int name_index,
const char *name,
struct ocfs2_xattr_search *xs);
static int ocfs2_xattr_index_block_find(struct inode *inode,
struct buffer_head *root_bh,
int name_index,
const char *name,
struct ocfs2_xattr_search *xs);
static int ocfs2_xattr_tree_list_index_block(struct inode *inode,
struct buffer_head *blk_bh,
char *buffer,
size_t buffer_size);
static int ocfs2_xattr_create_index_block(struct inode *inode,
struct ocfs2_xattr_search *xs,
struct ocfs2_xattr_set_ctxt *ctxt);
static int ocfs2_xattr_set_entry_index_block(struct inode *inode,
struct ocfs2_xattr_info *xi,
struct ocfs2_xattr_search *xs,
struct ocfs2_xattr_set_ctxt *ctxt);
typedef int (xattr_tree_rec_func)(struct inode *inode,
struct buffer_head *root_bh,
u64 blkno, u32 cpos, u32 len, void *para);
static int ocfs2_iterate_xattr_index_block(struct inode *inode,
struct buffer_head *root_bh,
xattr_tree_rec_func *rec_func,
void *para);
static int ocfs2_delete_xattr_in_bucket(struct inode *inode,
struct ocfs2_xattr_bucket *bucket,
void *para);
static int ocfs2_rm_xattr_cluster(struct inode *inode,
struct buffer_head *root_bh,
u64 blkno,
u32 cpos,
u32 len,
void *para);
static int ocfs2_mv_xattr_buckets(struct inode *inode, handle_t *handle,
u64 src_blk, u64 last_blk, u64 to_blk,
unsigned int start_bucket,
u32 *first_hash);
static int ocfs2_prepare_refcount_xattr(struct inode *inode,
struct ocfs2_dinode *di,
struct ocfs2_xattr_info *xi,
struct ocfs2_xattr_search *xis,
struct ocfs2_xattr_search *xbs,
struct ocfs2_refcount_tree **ref_tree,
int *meta_need,
int *credits);
static int ocfs2_get_xattr_tree_value_root(struct super_block *sb,
struct ocfs2_xattr_bucket *bucket,
int offset,
struct ocfs2_xattr_value_root **xv,
struct buffer_head **bh);
static inline u16 ocfs2_xattr_buckets_per_cluster(struct ocfs2_super *osb)
{
return (1 << osb->s_clustersize_bits) / OCFS2_XATTR_BUCKET_SIZE;
}
static inline u16 ocfs2_blocks_per_xattr_bucket(struct super_block *sb)
{
return OCFS2_XATTR_BUCKET_SIZE / (1 << sb->s_blocksize_bits);
}
#define bucket_blkno(_b) ((_b)->bu_bhs[0]->b_blocknr)
#define bucket_block(_b, _n) ((_b)->bu_bhs[(_n)]->b_data)
#define bucket_xh(_b) ((struct ocfs2_xattr_header *)bucket_block((_b), 0))
static struct ocfs2_xattr_bucket *ocfs2_xattr_bucket_new(struct inode *inode)
{
struct ocfs2_xattr_bucket *bucket;
int blks = ocfs2_blocks_per_xattr_bucket(inode->i_sb);
BUG_ON(blks > OCFS2_XATTR_MAX_BLOCKS_PER_BUCKET);
bucket = kzalloc(sizeof(struct ocfs2_xattr_bucket), GFP_NOFS);
if (bucket) {
bucket->bu_inode = inode;
bucket->bu_blocks = blks;
}
return bucket;
}
static void ocfs2_xattr_bucket_relse(struct ocfs2_xattr_bucket *bucket)
{
int i;
for (i = 0; i < bucket->bu_blocks; i++) {
brelse(bucket->bu_bhs[i]);
bucket->bu_bhs[i] = NULL;
}
}
static void ocfs2_xattr_bucket_free(struct ocfs2_xattr_bucket *bucket)
{
if (bucket) {
ocfs2_xattr_bucket_relse(bucket);
bucket->bu_inode = NULL;
kfree(bucket);
}
}
/*
* A bucket that has never been written to disk doesn't need to be
* read. We just need the buffer_heads. Don't call this for
* buckets that are already on disk. ocfs2_read_xattr_bucket() initializes
* them fully.
*/
static int ocfs2_init_xattr_bucket(struct ocfs2_xattr_bucket *bucket,
u64 xb_blkno, int new)
{
int i, rc = 0;
for (i = 0; i < bucket->bu_blocks; i++) {
bucket->bu_bhs[i] = sb_getblk(bucket->bu_inode->i_sb,
xb_blkno + i);
if (!bucket->bu_bhs[i]) {
rc = -ENOMEM;
mlog_errno(rc);
break;
}
if (!ocfs2_buffer_uptodate(INODE_CACHE(bucket->bu_inode),
bucket->bu_bhs[i])) {
if (new)
ocfs2_set_new_buffer_uptodate(INODE_CACHE(bucket->bu_inode),
bucket->bu_bhs[i]);
else {
set_buffer_uptodate(bucket->bu_bhs[i]);
ocfs2_set_buffer_uptodate(INODE_CACHE(bucket->bu_inode),
bucket->bu_bhs[i]);
}
}
}
if (rc)
ocfs2_xattr_bucket_relse(bucket);
return rc;
}
/* Read the xattr bucket at xb_blkno */
static int ocfs2_read_xattr_bucket(struct ocfs2_xattr_bucket *bucket,
u64 xb_blkno)
{
int rc;
rc = ocfs2_read_blocks(INODE_CACHE(bucket->bu_inode), xb_blkno,
bucket->bu_blocks, bucket->bu_bhs, 0,
NULL);
if (!rc) {
spin_lock(&OCFS2_SB(bucket->bu_inode->i_sb)->osb_xattr_lock);
rc = ocfs2_validate_meta_ecc_bhs(bucket->bu_inode->i_sb,
bucket->bu_bhs,
bucket->bu_blocks,
&bucket_xh(bucket)->xh_check);
spin_unlock(&OCFS2_SB(bucket->bu_inode->i_sb)->osb_xattr_lock);
if (rc)
mlog_errno(rc);
}
if (rc)
ocfs2_xattr_bucket_relse(bucket);
return rc;
}
static int ocfs2_xattr_bucket_journal_access(handle_t *handle,
struct ocfs2_xattr_bucket *bucket,
int type)
{
int i, rc = 0;
for (i = 0; i < bucket->bu_blocks; i++) {
rc = ocfs2_journal_access(handle,
INODE_CACHE(bucket->bu_inode),
bucket->bu_bhs[i], type);
if (rc) {
mlog_errno(rc);
break;
}
}
return rc;
}
static void ocfs2_xattr_bucket_journal_dirty(handle_t *handle,
struct ocfs2_xattr_bucket *bucket)
{
int i;
spin_lock(&OCFS2_SB(bucket->bu_inode->i_sb)->osb_xattr_lock);
ocfs2_compute_meta_ecc_bhs(bucket->bu_inode->i_sb,
bucket->bu_bhs, bucket->bu_blocks,
&bucket_xh(bucket)->xh_check);
spin_unlock(&OCFS2_SB(bucket->bu_inode->i_sb)->osb_xattr_lock);
for (i = 0; i < bucket->bu_blocks; i++)
ocfs2_journal_dirty(handle, bucket->bu_bhs[i]);
}
static void ocfs2_xattr_bucket_copy_data(struct ocfs2_xattr_bucket *dest,
struct ocfs2_xattr_bucket *src)
{
int i;
int blocksize = src->bu_inode->i_sb->s_blocksize;
BUG_ON(dest->bu_blocks != src->bu_blocks);
BUG_ON(dest->bu_inode != src->bu_inode);
for (i = 0; i < src->bu_blocks; i++) {
memcpy(bucket_block(dest, i), bucket_block(src, i),
blocksize);
}
}
static int ocfs2_validate_xattr_block(struct super_block *sb,
struct buffer_head *bh)
{
int rc;
struct ocfs2_xattr_block *xb =
(struct ocfs2_xattr_block *)bh->b_data;
trace_ocfs2_validate_xattr_block((unsigned long long)bh->b_blocknr);
BUG_ON(!buffer_uptodate(bh));
/*
* If the ecc fails, we return the error but otherwise
* leave the filesystem running. We know any error is
* local to this block.
*/
rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &xb->xb_check);
if (rc)
return rc;
/*
* Errors after here are fatal
*/
if (!OCFS2_IS_VALID_XATTR_BLOCK(xb)) {
return ocfs2_error(sb,
"Extended attribute block #%llu has bad signature %.*s\n",
(unsigned long long)bh->b_blocknr, 7,
xb->xb_signature);
}
if (le64_to_cpu(xb->xb_blkno) != bh->b_blocknr) {
return ocfs2_error(sb,
"Extended attribute block #%llu has an invalid xb_blkno of %llu\n",
(unsigned long long)bh->b_blocknr,
(unsigned long long)le64_to_cpu(xb->xb_blkno));
}
if (le32_to_cpu(xb->xb_fs_generation) != OCFS2_SB(sb)->fs_generation) {
return ocfs2_error(sb,
"Extended attribute block #%llu has an invalid xb_fs_generation of #%u\n",
(unsigned long long)bh->b_blocknr,
le32_to_cpu(xb->xb_fs_generation));
}
return 0;
}
static int ocfs2_read_xattr_block(struct inode *inode, u64 xb_blkno,
struct buffer_head **bh)
{
int rc;
struct buffer_head *tmp = *bh;
rc = ocfs2_read_block(INODE_CACHE(inode), xb_blkno, &tmp,
ocfs2_validate_xattr_block);
/* If ocfs2_read_block() got us a new bh, pass it up. */
if (!rc && !*bh)
*bh = tmp;
return rc;
}
static inline const char *ocfs2_xattr_prefix(int name_index)
{
const struct xattr_handler *handler = NULL;
if (name_index > 0 && name_index < OCFS2_XATTR_MAX)
handler = ocfs2_xattr_handler_map[name_index];
return handler ? xattr_prefix(handler) : NULL;
}
static u32 ocfs2_xattr_name_hash(struct inode *inode,
const char *name,
int name_len)
{
/* Get hash value of uuid from super block */
u32 hash = OCFS2_SB(inode->i_sb)->uuid_hash;
int i;
/* hash extended attribute name */
for (i = 0; i < name_len; i++) {
hash = (hash << OCFS2_HASH_SHIFT) ^
(hash >> (8*sizeof(hash) - OCFS2_HASH_SHIFT)) ^
*name++;
}
return hash;
}
static int ocfs2_xattr_entry_real_size(int name_len, size_t value_len)
{
return namevalue_size(name_len, value_len) +
sizeof(struct ocfs2_xattr_entry);
}
static int ocfs2_xi_entry_usage(struct ocfs2_xattr_info *xi)
{
return namevalue_size_xi(xi) +
sizeof(struct ocfs2_xattr_entry);
}
static int ocfs2_xe_entry_usage(struct ocfs2_xattr_entry *xe)
{
return namevalue_size_xe(xe) +
sizeof(struct ocfs2_xattr_entry);
}
int ocfs2_calc_security_init(struct inode *dir,
struct ocfs2_security_xattr_info *si,
int *want_clusters,
int *xattr_credits,
struct ocfs2_alloc_context **xattr_ac)
{
int ret = 0;
struct ocfs2_super *osb = OCFS2_SB(dir->i_sb);
int s_size = ocfs2_xattr_entry_real_size(strlen(si->name),
si->value_len);
/*
* The max space of security xattr taken inline is
* 256(name) + 80(value) + 16(entry) = 352 bytes,
* So reserve one metadata block for it is ok.
*/
if (dir->i_sb->s_blocksize == OCFS2_MIN_BLOCKSIZE ||
s_size > OCFS2_XATTR_FREE_IN_IBODY) {
ret = ocfs2_reserve_new_metadata_blocks(osb, 1, xattr_ac);
if (ret) {
mlog_errno(ret);
return ret;
}
*xattr_credits += OCFS2_XATTR_BLOCK_CREATE_CREDITS;
}
/* reserve clusters for xattr value which will be set in B tree*/
if (si->value_len > OCFS2_XATTR_INLINE_SIZE) {
int new_clusters = ocfs2_clusters_for_bytes(dir->i_sb,
si->value_len);
*xattr_credits += ocfs2_clusters_to_blocks(dir->i_sb,
new_clusters);
*want_clusters += new_clusters;
}
return ret;
}
int ocfs2_calc_xattr_init(struct inode *dir,
struct buffer_head *dir_bh,
umode_t mode,
struct ocfs2_security_xattr_info *si,
int *want_clusters,
int *xattr_credits,
int *want_meta)
{
int ret = 0;
struct ocfs2_super *osb = OCFS2_SB(dir->i_sb);
int s_size = 0, a_size = 0, acl_len = 0, new_clusters;
if (si->enable)
s_size = ocfs2_xattr_entry_real_size(strlen(si->name),
si->value_len);
if (osb->s_mount_opt & OCFS2_MOUNT_POSIX_ACL) {
acl_len = ocfs2_xattr_get_nolock(dir, dir_bh,
OCFS2_XATTR_INDEX_POSIX_ACL_DEFAULT,
"", NULL, 0);
if (acl_len > 0) {
a_size = ocfs2_xattr_entry_real_size(0, acl_len);
if (S_ISDIR(mode))
a_size <<= 1;
} else if (acl_len != 0 && acl_len != -ENODATA) {
mlog_errno(ret);
return ret;
}
}
if (!(s_size + a_size))
return ret;
/*
* The max space of security xattr taken inline is
* 256(name) + 80(value) + 16(entry) = 352 bytes,
* The max space of acl xattr taken inline is
* 80(value) + 16(entry) * 2(if directory) = 192 bytes,
* when blocksize = 512, may reserve one more cluser for
* xattr bucket, otherwise reserve one metadata block
* for them is ok.
* If this is a new directory with inline data,
* we choose to reserve the entire inline area for
* directory contents and force an external xattr block.
*/
if (dir->i_sb->s_blocksize == OCFS2_MIN_BLOCKSIZE ||
(S_ISDIR(mode) && ocfs2_supports_inline_data(osb)) ||
(s_size + a_size) > OCFS2_XATTR_FREE_IN_IBODY) {
*want_meta = *want_meta + 1;
*xattr_credits += OCFS2_XATTR_BLOCK_CREATE_CREDITS;
}
if (dir->i_sb->s_blocksize == OCFS2_MIN_BLOCKSIZE &&
(s_size + a_size) > OCFS2_XATTR_FREE_IN_BLOCK(dir)) {
*want_clusters += 1;
*xattr_credits += ocfs2_blocks_per_xattr_bucket(dir->i_sb);
}
/*
* reserve credits and clusters for xattrs which has large value
* and have to be set outside
*/
if (si->enable && si->value_len > OCFS2_XATTR_INLINE_SIZE) {
new_clusters = ocfs2_clusters_for_bytes(dir->i_sb,
si->value_len);
*xattr_credits += ocfs2_clusters_to_blocks(dir->i_sb,
new_clusters);
*want_clusters += new_clusters;
}
if (osb->s_mount_opt & OCFS2_MOUNT_POSIX_ACL &&
acl_len > OCFS2_XATTR_INLINE_SIZE) {
/* for directory, it has DEFAULT and ACCESS two types of acls */
new_clusters = (S_ISDIR(mode) ? 2 : 1) *
ocfs2_clusters_for_bytes(dir->i_sb, acl_len);
*xattr_credits += ocfs2_clusters_to_blocks(dir->i_sb,
new_clusters);
*want_clusters += new_clusters;
}
return ret;
}
static int ocfs2_xattr_extend_allocation(struct inode *inode,
u32 clusters_to_add,
struct ocfs2_xattr_value_buf *vb,
struct ocfs2_xattr_set_ctxt *ctxt)
{
int status = 0, credits;
handle_t *handle = ctxt->handle;
enum ocfs2_alloc_restarted why;
u32 prev_clusters, logical_start = le32_to_cpu(vb->vb_xv->xr_clusters);
struct ocfs2_extent_tree et;
ocfs2_init_xattr_value_extent_tree(&et, INODE_CACHE(inode), vb);
while (clusters_to_add) {
trace_ocfs2_xattr_extend_allocation(clusters_to_add);
status = vb->vb_access(handle, INODE_CACHE(inode), vb->vb_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
break;
}
prev_clusters = le32_to_cpu(vb->vb_xv->xr_clusters);
status = ocfs2_add_clusters_in_btree(handle,
&et,
&logical_start,
clusters_to_add,
0,
ctxt->data_ac,
ctxt->meta_ac,
&why);
if ((status < 0) && (status != -EAGAIN)) {
if (status != -ENOSPC)
mlog_errno(status);
break;
}
ocfs2_journal_dirty(handle, vb->vb_bh);
clusters_to_add -= le32_to_cpu(vb->vb_xv->xr_clusters) -
prev_clusters;
if (why != RESTART_NONE && clusters_to_add) {
/*
* We can only fail in case the alloc file doesn't give
* up enough clusters.
*/
BUG_ON(why == RESTART_META);
credits = ocfs2_calc_extend_credits(inode->i_sb,
&vb->vb_xv->xr_list);
status = ocfs2_extend_trans(handle, credits);
if (status < 0) {
status = -ENOMEM;
mlog_errno(status);
break;
}
}
}
return status;
}
static int __ocfs2_remove_xattr_range(struct inode *inode,
struct ocfs2_xattr_value_buf *vb,
u32 cpos, u32 phys_cpos, u32 len,
unsigned int ext_flags,
struct ocfs2_xattr_set_ctxt *ctxt)
{
int ret;
u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
handle_t *handle = ctxt->handle;
struct ocfs2_extent_tree et;
ocfs2_init_xattr_value_extent_tree(&et, INODE_CACHE(inode), vb);
ret = vb->vb_access(handle, INODE_CACHE(inode), vb->vb_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_remove_extent(handle, &et, cpos, len, ctxt->meta_ac,
&ctxt->dealloc);
if (ret) {
mlog_errno(ret);
goto out;
}
le32_add_cpu(&vb->vb_xv->xr_clusters, -len);
ocfs2_journal_dirty(handle, vb->vb_bh);
if (ext_flags & OCFS2_EXT_REFCOUNTED)
ret = ocfs2_decrease_refcount(inode, handle,
ocfs2_blocks_to_clusters(inode->i_sb,
phys_blkno),
len, ctxt->meta_ac, &ctxt->dealloc, 1);
else
ret = ocfs2_cache_cluster_dealloc(&ctxt->dealloc,
phys_blkno, len);
if (ret)
mlog_errno(ret);
out:
return ret;
}
static int ocfs2_xattr_shrink_size(struct inode *inode,
u32 old_clusters,
u32 new_clusters,
struct ocfs2_xattr_value_buf *vb,
struct ocfs2_xattr_set_ctxt *ctxt)
{
int ret = 0;
unsigned int ext_flags;
u32 trunc_len, cpos, phys_cpos, alloc_size;
u64 block;
if (old_clusters <= new_clusters)
return 0;
cpos = new_clusters;
trunc_len = old_clusters - new_clusters;
while (trunc_len) {
ret = ocfs2_xattr_get_clusters(inode, cpos, &phys_cpos,
&alloc_size,
&vb->vb_xv->xr_list, &ext_flags);
if (ret) {
mlog_errno(ret);
goto out;
}
if (alloc_size > trunc_len)
alloc_size = trunc_len;
ret = __ocfs2_remove_xattr_range(inode, vb, cpos,
phys_cpos, alloc_size,
ext_flags, ctxt);
if (ret) {
mlog_errno(ret);
goto out;
}
block = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
ocfs2_remove_xattr_clusters_from_cache(INODE_CACHE(inode),
block, alloc_size);
cpos += alloc_size;
trunc_len -= alloc_size;
}
out:
return ret;
}
static int ocfs2_xattr_value_truncate(struct inode *inode,
struct ocfs2_xattr_value_buf *vb,
int len,
struct ocfs2_xattr_set_ctxt *ctxt)
{
int ret;
u32 new_clusters = ocfs2_clusters_for_bytes(inode->i_sb, len);
u32 old_clusters = le32_to_cpu(vb->vb_xv->xr_clusters);
if (new_clusters == old_clusters)
return 0;
if (new_clusters > old_clusters)
ret = ocfs2_xattr_extend_allocation(inode,
new_clusters - old_clusters,
vb, ctxt);
else
ret = ocfs2_xattr_shrink_size(inode,
old_clusters, new_clusters,
vb, ctxt);
return ret;
}
static int ocfs2_xattr_list_entry(struct super_block *sb,
char *buffer, size_t size,
size_t *result, int type,
const char *name, int name_len)
{
char *p = buffer + *result;
const char *prefix;
int prefix_len;
int total_len;
switch(type) {
case OCFS2_XATTR_INDEX_USER:
if (OCFS2_SB(sb)->s_mount_opt & OCFS2_MOUNT_NOUSERXATTR)
return 0;
break;
case OCFS2_XATTR_INDEX_POSIX_ACL_ACCESS:
case OCFS2_XATTR_INDEX_POSIX_ACL_DEFAULT:
if (!(sb->s_flags & SB_POSIXACL))
return 0;
break;
case OCFS2_XATTR_INDEX_TRUSTED:
if (!capable(CAP_SYS_ADMIN))
return 0;
break;
}
prefix = ocfs2_xattr_prefix(type);
if (!prefix)
return 0;
prefix_len = strlen(prefix);
total_len = prefix_len + name_len + 1;
*result += total_len;
/* we are just looking for how big our buffer needs to be */
if (!size)
return 0;
if (*result > size)
return -ERANGE;
memcpy(p, prefix, prefix_len);
memcpy(p + prefix_len, name, name_len);
p[prefix_len + name_len] = '\0';
return 0;
}
static int ocfs2_xattr_list_entries(struct inode *inode,
struct ocfs2_xattr_header *header,
char *buffer, size_t buffer_size)
{
size_t result = 0;
int i, type, ret;
const char *name;
for (i = 0 ; i < le16_to_cpu(header->xh_count); i++) {
struct ocfs2_xattr_entry *entry = &header->xh_entries[i];
type = ocfs2_xattr_get_type(entry);
name = (const char *)header +
le16_to_cpu(entry->xe_name_offset);
ret = ocfs2_xattr_list_entry(inode->i_sb,
buffer, buffer_size,
&result, type, name,
entry->xe_name_len);
if (ret)
return ret;
}
return result;
}
int ocfs2_has_inline_xattr_value_outside(struct inode *inode,
struct ocfs2_dinode *di)
{
struct ocfs2_xattr_header *xh;
int i;
xh = (struct ocfs2_xattr_header *)
((void *)di + inode->i_sb->s_blocksize -
le16_to_cpu(di->i_xattr_inline_size));
for (i = 0; i < le16_to_cpu(xh->xh_count); i++)
if (!ocfs2_xattr_is_local(&xh->xh_entries[i]))
return 1;
return 0;
}
static int ocfs2_xattr_ibody_list(struct inode *inode,
struct ocfs2_dinode *di,
char *buffer,
size_t buffer_size)
{
struct ocfs2_xattr_header *header = NULL;
struct ocfs2_inode_info *oi = OCFS2_I(inode);
int ret = 0;
if (!(oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL))
return ret;
header = (struct ocfs2_xattr_header *)
((void *)di + inode->i_sb->s_blocksize -
le16_to_cpu(di->i_xattr_inline_size));
ret = ocfs2_xattr_list_entries(inode, header, buffer, buffer_size);
return ret;
}
static int ocfs2_xattr_block_list(struct inode *inode,
struct ocfs2_dinode *di,
char *buffer,
size_t buffer_size)
{
struct buffer_head *blk_bh = NULL;
struct ocfs2_xattr_block *xb;
int ret = 0;
if (!di->i_xattr_loc)
return ret;
ret = ocfs2_read_xattr_block(inode, le64_to_cpu(di->i_xattr_loc),
&blk_bh);
if (ret < 0) {
mlog_errno(ret);
return ret;
}
xb = (struct ocfs2_xattr_block *)blk_bh->b_data;
if (!(le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED)) {
struct ocfs2_xattr_header *header = &xb->xb_attrs.xb_header;
ret = ocfs2_xattr_list_entries(inode, header,
buffer, buffer_size);
} else
ret = ocfs2_xattr_tree_list_index_block(inode, blk_bh,
buffer, buffer_size);
brelse(blk_bh);
return ret;
}
ssize_t ocfs2_listxattr(struct dentry *dentry,
char *buffer,
size_t size)
{
int ret = 0, i_ret = 0, b_ret = 0;
struct buffer_head *di_bh = NULL;
struct ocfs2_dinode *di = NULL;
struct ocfs2_inode_info *oi = OCFS2_I(d_inode(dentry));
if (!ocfs2_supports_xattr(OCFS2_SB(dentry->d_sb)))
return -EOPNOTSUPP;
if (!(oi->ip_dyn_features & OCFS2_HAS_XATTR_FL))
return ret;
ret = ocfs2_inode_lock(d_inode(dentry), &di_bh, 0);
if (ret < 0) {
mlog_errno(ret);
return ret;
}
di = (struct ocfs2_dinode *)di_bh->b_data;
down_read(&oi->ip_xattr_sem);
i_ret = ocfs2_xattr_ibody_list(d_inode(dentry), di, buffer, size);
if (i_ret < 0)
b_ret = 0;
else {
if (buffer) {
buffer += i_ret;
size -= i_ret;
}
b_ret = ocfs2_xattr_block_list(d_inode(dentry), di,
buffer, size);
if (b_ret < 0)
i_ret = 0;
}
up_read(&oi->ip_xattr_sem);
ocfs2_inode_unlock(d_inode(dentry), 0);
brelse(di_bh);
return i_ret + b_ret;
}
static int ocfs2_xattr_find_entry(int name_index,
const char *name,
struct ocfs2_xattr_search *xs)
{
struct ocfs2_xattr_entry *entry;
size_t name_len;
int i, cmp = 1;
if (name == NULL)
return -EINVAL;
name_len = strlen(name);
entry = xs->here;
for (i = 0; i < le16_to_cpu(xs->header->xh_count); i++) {
cmp = name_index - ocfs2_xattr_get_type(entry);
if (!cmp)
cmp = name_len - entry->xe_name_len;
if (!cmp)
cmp = memcmp(name, (xs->base +
le16_to_cpu(entry->xe_name_offset)),
name_len);
if (cmp == 0)
break;
entry += 1;
}
xs->here = entry;
return cmp ? -ENODATA : 0;
}
static int ocfs2_xattr_get_value_outside(struct inode *inode,
struct ocfs2_xattr_value_root *xv,
void *buffer,
size_t len)
{
u32 cpos, p_cluster, num_clusters, bpc, clusters;
u64 blkno;
int i, ret = 0;
size_t cplen, blocksize;
struct buffer_head *bh = NULL;
struct ocfs2_extent_list *el;
el = &xv->xr_list;
clusters = le32_to_cpu(xv->xr_clusters);
bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
blocksize = inode->i_sb->s_blocksize;
cpos = 0;
while (cpos < clusters) {
ret = ocfs2_xattr_get_clusters(inode, cpos, &p_cluster,
&num_clusters, el, NULL);
if (ret) {
mlog_errno(ret);
goto out;
}
blkno = ocfs2_clusters_to_blocks(inode->i_sb, p_cluster);
/* Copy ocfs2_xattr_value */
for (i = 0; i < num_clusters * bpc; i++, blkno++) {
ret = ocfs2_read_block(INODE_CACHE(inode), blkno,
&bh, NULL);
if (ret) {
mlog_errno(ret);
goto out;
}
cplen = len >= blocksize ? blocksize : len;
memcpy(buffer, bh->b_data, cplen);
len -= cplen;
buffer += cplen;
brelse(bh);
bh = NULL;
if (len == 0)
break;
}
cpos += num_clusters;
}
out:
return ret;
}
static int ocfs2_xattr_ibody_get(struct inode *inode,
int name_index,
const char *name,
void *buffer,
size_t buffer_size,
struct ocfs2_xattr_search *xs)
{
struct ocfs2_inode_info *oi = OCFS2_I(inode);
struct ocfs2_dinode *di = (struct ocfs2_dinode *)xs->inode_bh->b_data;
struct ocfs2_xattr_value_root *xv;
size_t size;
int ret = 0;
if (!(oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL))
return -ENODATA;
xs->end = (void *)di + inode->i_sb->s_blocksize;
xs->header = (struct ocfs2_xattr_header *)
(xs->end - le16_to_cpu(di->i_xattr_inline_size));
xs->base = (void *)xs->header;
xs->here = xs->header->xh_entries;
ret = ocfs2_xattr_find_entry(name_index, name, xs);
if (ret)
return ret;
size = le64_to_cpu(xs->here->xe_value_size);
if (buffer) {
if (size > buffer_size)
return -ERANGE;
if (ocfs2_xattr_is_local(xs->here)) {
memcpy(buffer, (void *)xs->base +
le16_to_cpu(xs->here->xe_name_offset) +
OCFS2_XATTR_SIZE(xs->here->xe_name_len), size);
} else {
xv = (struct ocfs2_xattr_value_root *)
(xs->base + le16_to_cpu(
xs->here->xe_name_offset) +
OCFS2_XATTR_SIZE(xs->here->xe_name_len));
ret = ocfs2_xattr_get_value_outside(inode, xv,
buffer, size);
if (ret < 0) {
mlog_errno(ret);
return ret;
}
}
}
return size;
}
static int ocfs2_xattr_block_get(struct inode *inode,
int name_index,
const char *name,
void *buffer,
size_t buffer_size,
struct ocfs2_xattr_search *xs)
{
struct ocfs2_xattr_block *xb;
struct ocfs2_xattr_value_root *xv;
size_t size;
int ret = -ENODATA, name_offset, name_len, i;
int uninitialized_var(block_off);
xs->bucket = ocfs2_xattr_bucket_new(inode);
if (!xs->bucket) {
ret = -ENOMEM;
mlog_errno(ret);
goto cleanup;
}
ret = ocfs2_xattr_block_find(inode, name_index, name, xs);
if (ret) {
mlog_errno(ret);
goto cleanup;
}
if (xs->not_found) {
ret = -ENODATA;
goto cleanup;
}
xb = (struct ocfs2_xattr_block *)xs->xattr_bh->b_data;
size = le64_to_cpu(xs->here->xe_value_size);
if (buffer) {
ret = -ERANGE;
if (size > buffer_size)
goto cleanup;
name_offset = le16_to_cpu(xs->here->xe_name_offset);
name_len = OCFS2_XATTR_SIZE(xs->here->xe_name_len);
i = xs->here - xs->header->xh_entries;
if (le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED) {
ret = ocfs2_xattr_bucket_get_name_value(inode->i_sb,
bucket_xh(xs->bucket),
i,
&block_off,
&name_offset);
if (ret) {
mlog_errno(ret);
goto cleanup;
}
xs->base = bucket_block(xs->bucket, block_off);
}
if (ocfs2_xattr_is_local(xs->here)) {
memcpy(buffer, (void *)xs->base +
name_offset + name_len, size);
} else {
xv = (struct ocfs2_xattr_value_root *)
(xs->base + name_offset + name_len);
ret = ocfs2_xattr_get_value_outside(inode, xv,
buffer, size);
if (ret < 0) {
mlog_errno(ret);
goto cleanup;
}
}
}
ret = size;
cleanup:
ocfs2_xattr_bucket_free(xs->bucket);
brelse(xs->xattr_bh);
xs->xattr_bh = NULL;
return ret;
}
int ocfs2_xattr_get_nolock(struct inode *inode,
struct buffer_head *di_bh,
int name_index,
const char *name,
void *buffer,
size_t buffer_size)
{
int ret;
struct ocfs2_dinode *di = NULL;
struct ocfs2_inode_info *oi = OCFS2_I(inode);
struct ocfs2_xattr_search xis = {
.not_found = -ENODATA,
};
struct ocfs2_xattr_search xbs = {
.not_found = -ENODATA,
};
if (!ocfs2_supports_xattr(OCFS2_SB(inode->i_sb)))
return -EOPNOTSUPP;
if (!(oi->ip_dyn_features & OCFS2_HAS_XATTR_FL))
return -ENODATA;
xis.inode_bh = xbs.inode_bh = di_bh;
di = (struct ocfs2_dinode *)di_bh->b_data;
ret = ocfs2_xattr_ibody_get(inode, name_index, name, buffer,
buffer_size, &xis);
if (ret == -ENODATA && di->i_xattr_loc)
ret = ocfs2_xattr_block_get(inode, name_index, name, buffer,
buffer_size, &xbs);
return ret;
}
/* ocfs2_xattr_get()
*
* Copy an extended attribute into the buffer provided.
* Buffer is NULL to compute the size of buffer required.
*/
static int ocfs2_xattr_get(struct inode *inode,
int name_index,
const char *name,
void *buffer,
size_t buffer_size)
{
int ret, had_lock;
struct buffer_head *di_bh = NULL;
struct ocfs2_lock_holder oh;
had_lock = ocfs2_inode_lock_tracker(inode, &di_bh, 0, &oh);
if (had_lock < 0) {
mlog_errno(had_lock);
return had_lock;
}
down_read(&OCFS2_I(inode)->ip_xattr_sem);
ret = ocfs2_xattr_get_nolock(inode, di_bh, name_index,
name, buffer, buffer_size);
up_read(&OCFS2_I(inode)->ip_xattr_sem);
ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
brelse(di_bh);
return ret;
}
static int __ocfs2_xattr_set_value_outside(struct inode *inode,
handle_t *handle,
struct ocfs2_xattr_value_buf *vb,
const void *value,
int value_len)
{
int ret = 0, i, cp_len;
u16 blocksize = inode->i_sb->s_blocksize;
u32 p_cluster, num_clusters;
u32 cpos = 0, bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
u32 clusters = ocfs2_clusters_for_bytes(inode->i_sb, value_len);
u64 blkno;
struct buffer_head *bh = NULL;
unsigned int ext_flags;
struct ocfs2_xattr_value_root *xv = vb->vb_xv;
BUG_ON(clusters > le32_to_cpu(xv->xr_clusters));
while (cpos < clusters) {
ret = ocfs2_xattr_get_clusters(inode, cpos, &p_cluster,
&num_clusters, &xv->xr_list,
&ext_flags);
if (ret) {
mlog_errno(ret);
goto out;
}
BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
blkno = ocfs2_clusters_to_blocks(inode->i_sb, p_cluster);
for (i = 0; i < num_clusters * bpc; i++, blkno++) {
ret = ocfs2_read_block(INODE_CACHE(inode), blkno,
&bh, NULL);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_journal_access(handle,
INODE_CACHE(inode),
bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
cp_len = value_len > blocksize ? blocksize : value_len;
memcpy(bh->b_data, value, cp_len);
value_len -= cp_len;
value += cp_len;
if (cp_len < blocksize)
memset(bh->b_data + cp_len, 0,
blocksize - cp_len);
ocfs2_journal_dirty(handle, bh);
brelse(bh);
bh = NULL;
/*
* XXX: do we need to empty all the following
* blocks in this cluster?
*/
if (!value_len)
break;
}
cpos += num_clusters;
}
out:
brelse(bh);
return ret;
}
static int ocfs2_xa_check_space_helper(int needed_space, int free_start,
int num_entries)
{
int free_space;
if (!needed_space)
return 0;
free_space = free_start -
sizeof(struct ocfs2_xattr_header) -
(num_entries * sizeof(struct ocfs2_xattr_entry)) -
OCFS2_XATTR_HEADER_GAP;
if (free_space < 0)
return -EIO;
if (free_space < needed_space)
return -ENOSPC;
return 0;
}
static int ocfs2_xa_journal_access(handle_t *handle, struct ocfs2_xa_loc *loc,
int type)
{
return loc->xl_ops->xlo_journal_access(handle, loc, type);
}
static void ocfs2_xa_journal_dirty(handle_t *handle, struct ocfs2_xa_loc *loc)
{
loc->xl_ops->xlo_journal_dirty(handle, loc);
}
/* Give a pointer into the storage for the given offset */
static void *ocfs2_xa_offset_pointer(struct ocfs2_xa_loc *loc, int offset)
{
BUG_ON(offset >= loc->xl_size);
return loc->xl_ops->xlo_offset_pointer(loc, offset);
}
/*
* Wipe the name+value pair and allow the storage to reclaim it. This
* must be followed by either removal of the entry or a call to
* ocfs2_xa_add_namevalue().
*/
static void ocfs2_xa_wipe_namevalue(struct ocfs2_xa_loc *loc)
{
loc->xl_ops->xlo_wipe_namevalue(loc);
}
/*
* Find lowest offset to a name+value pair. This is the start of our
* downward-growing free space.
*/
static int ocfs2_xa_get_free_start(struct ocfs2_xa_loc *loc)
{
return loc->xl_ops->xlo_get_free_start(loc);
}
/* Can we reuse loc->xl_entry for xi? */
static int ocfs2_xa_can_reuse_entry(struct ocfs2_xa_loc *loc,
struct ocfs2_xattr_info *xi)
{
return loc->xl_ops->xlo_can_reuse(loc, xi);
}
/* How much free space is needed to set the new value */
static int ocfs2_xa_check_space(struct ocfs2_xa_loc *loc,
struct ocfs2_xattr_info *xi)
{
return loc->xl_ops->xlo_check_space(loc, xi);
}
static void ocfs2_xa_add_entry(struct ocfs2_xa_loc *loc, u32 name_hash)
{
loc->xl_ops->xlo_add_entry(loc, name_hash);
loc->xl_entry->xe_name_hash = cpu_to_le32(name_hash);
/*
* We can't leave the new entry's xe_name_offset at zero or
* add_namevalue() will go nuts. We set it to the size of our
* storage so that it can never be less than any other entry.
*/
loc->xl_entry->xe_name_offset = cpu_to_le16(loc->xl_size);
}
static void ocfs2_xa_add_namevalue(struct ocfs2_xa_loc *loc,
struct ocfs2_xattr_info *xi)
{
int size = namevalue_size_xi(xi);
int nameval_offset;
char *nameval_buf;
loc->xl_ops->xlo_add_namevalue(loc, size);
loc->xl_entry->xe_value_size = cpu_to_le64(xi->xi_value_len);
loc->xl_entry->xe_name_len = xi->xi_name_len;
ocfs2_xattr_set_type(loc->xl_entry, xi->xi_name_index);
ocfs2_xattr_set_local(loc->xl_entry,
xi->xi_value_len <= OCFS2_XATTR_INLINE_SIZE);
nameval_offset = le16_to_cpu(loc->xl_entry->xe_name_offset);
nameval_buf = ocfs2_xa_offset_pointer(loc, nameval_offset);
memset(nameval_buf, 0, size);
memcpy(nameval_buf, xi->xi_name, xi->xi_name_len);
}
static void ocfs2_xa_fill_value_buf(struct ocfs2_xa_loc *loc,
struct ocfs2_xattr_value_buf *vb)
{
int nameval_offset = le16_to_cpu(loc->xl_entry->xe_name_offset);
int name_size = OCFS2_XATTR_SIZE(loc->xl_entry->xe_name_len);
/* Value bufs are for value trees */
BUG_ON(ocfs2_xattr_is_local(loc->xl_entry));
BUG_ON(namevalue_size_xe(loc->xl_entry) !=
(name_size + OCFS2_XATTR_ROOT_SIZE));
loc->xl_ops->xlo_fill_value_buf(loc, vb);
vb->vb_xv =
(struct ocfs2_xattr_value_root *)ocfs2_xa_offset_pointer(loc,
nameval_offset +
name_size);
}
static int ocfs2_xa_block_journal_access(handle_t *handle,
struct ocfs2_xa_loc *loc, int type)
{
struct buffer_head *bh = loc->xl_storage;
ocfs2_journal_access_func access;
if (loc->xl_size == (bh->b_size -
offsetof(struct ocfs2_xattr_block,
xb_attrs.xb_header)))
access = ocfs2_journal_access_xb;
else
access = ocfs2_journal_access_di;
return access(handle, INODE_CACHE(loc->xl_inode), bh, type);
}
static void ocfs2_xa_block_journal_dirty(handle_t *handle,
struct ocfs2_xa_loc *loc)
{
struct buffer_head *bh = loc->xl_storage;
ocfs2_journal_dirty(handle, bh);
}
static void *ocfs2_xa_block_offset_pointer(struct ocfs2_xa_loc *loc,
int offset)
{
return (char *)loc->xl_header + offset;
}
static int ocfs2_xa_block_can_reuse(struct ocfs2_xa_loc *loc,
struct ocfs2_xattr_info *xi)
{
/*
* Block storage is strict. If the sizes aren't exact, we will
* remove the old one and reinsert the new.
*/
return namevalue_size_xe(loc->xl_entry) ==
namevalue_size_xi(xi);
}
static int ocfs2_xa_block_get_free_start(struct ocfs2_xa_loc *loc)
{
struct ocfs2_xattr_header *xh = loc->xl_header;
int i, count = le16_to_cpu(xh->xh_count);
int offset, free_start = loc->xl_size;
for (i = 0; i < count; i++) {
offset = le16_to_cpu(xh->xh_entries[i].xe_name_offset);
if (offset < free_start)
free_start = offset;
}
return free_start;
}
static int ocfs2_xa_block_check_space(struct ocfs2_xa_loc *loc,
struct ocfs2_xattr_info *xi)
{
int count = le16_to_cpu(loc->xl_header->xh_count);
int free_start = ocfs2_xa_get_free_start(loc);
int needed_space = ocfs2_xi_entry_usage(xi);
/*
* Block storage will reclaim the original entry before inserting
* the new value, so we only need the difference. If the new
* entry is smaller than the old one, we don't need anything.
*/
if (loc->xl_entry) {
/* Don't need space if we're reusing! */
if (ocfs2_xa_can_reuse_entry(loc, xi))
needed_space = 0;
else
needed_space -= ocfs2_xe_entry_usage(loc->xl_entry);
}
if (needed_space < 0)
needed_space = 0;
return ocfs2_xa_check_space_helper(needed_space, free_start, count);
}
/*
* Block storage for xattrs keeps the name+value pairs compacted. When
* we remove one, we have to shift any that preceded it towards the end.
*/
static void ocfs2_xa_block_wipe_namevalue(struct ocfs2_xa_loc *loc)
{
int i, offset;
int namevalue_offset, first_namevalue_offset, namevalue_size;
struct ocfs2_xattr_entry *entry = loc->xl_entry;
struct ocfs2_xattr_header *xh = loc->xl_header;
int count = le16_to_cpu(xh->xh_count);
namevalue_offset = le16_to_cpu(entry->xe_name_offset);
namevalue_size = namevalue_size_xe(entry);
first_namevalue_offset = ocfs2_xa_get_free_start(loc);
/* Shift the name+value pairs */
memmove((char *)xh + first_namevalue_offset + namevalue_size,
(char *)xh + first_namevalue_offset,
namevalue_offset - first_namevalue_offset);
memset((char *)xh + first_namevalue_offset, 0, namevalue_size);
/* Now tell xh->xh_entries about it */
for (i = 0; i < count; i++) {
offset = le16_to_cpu(xh->xh_entries[i].xe_name_offset);
if (offset <= namevalue_offset)
le16_add_cpu(&xh->xh_entries[i].xe_name_offset,
namevalue_size);
}
/*
* Note that we don't update xh_free_start or xh_name_value_len
* because they're not used in block-stored xattrs.
*/
}
static void ocfs2_xa_block_add_entry(struct ocfs2_xa_loc *loc, u32 name_hash)
{
int count = le16_to_cpu(loc->xl_header->xh_count);
loc->xl_entry = &(loc->xl_header->xh_entries[count]);
le16_add_cpu(&loc->xl_header->xh_count, 1);
memset(loc->xl_entry, 0, sizeof(struct ocfs2_xattr_entry));
}
static void ocfs2_xa_block_add_namevalue(struct ocfs2_xa_loc *loc, int size)
{
int free_start = ocfs2_xa_get_free_start(loc);
loc->xl_entry->xe_name_offset = cpu_to_le16(free_start - size);
}
static void ocfs2_xa_block_fill_value_buf(struct ocfs2_xa_loc *loc,
struct ocfs2_xattr_value_buf *vb)
{
struct buffer_head *bh = loc->xl_storage;
if (loc->xl_size == (bh->b_size -
offsetof(struct ocfs2_xattr_block,
xb_attrs.xb_header)))
vb->vb_access = ocfs2_journal_access_xb;
else
vb->vb_access = ocfs2_journal_access_di;
vb->vb_bh = bh;
}
/*
* Operations for xattrs stored in blocks. This includes inline inode
* storage and unindexed ocfs2_xattr_blocks.
*/
static const struct ocfs2_xa_loc_operations ocfs2_xa_block_loc_ops = {
.xlo_journal_access = ocfs2_xa_block_journal_access,
.xlo_journal_dirty = ocfs2_xa_block_journal_dirty,
.xlo_offset_pointer = ocfs2_xa_block_offset_pointer,
.xlo_check_space = ocfs2_xa_block_check_space,
.xlo_can_reuse = ocfs2_xa_block_can_reuse,
.xlo_get_free_start = ocfs2_xa_block_get_free_start,
.xlo_wipe_namevalue = ocfs2_xa_block_wipe_namevalue,
.xlo_add_entry = ocfs2_xa_block_add_entry,
.xlo_add_namevalue = ocfs2_xa_block_add_namevalue,
.xlo_fill_value_buf = ocfs2_xa_block_fill_value_buf,
};
static int ocfs2_xa_bucket_journal_access(handle_t *handle,
struct ocfs2_xa_loc *loc, int type)
{
struct ocfs2_xattr_bucket *bucket = loc->xl_storage;
return ocfs2_xattr_bucket_journal_access(handle, bucket, type);
}
static void ocfs2_xa_bucket_journal_dirty(handle_t *handle,
struct ocfs2_xa_loc *loc)
{
struct ocfs2_xattr_bucket *bucket = loc->xl_storage;
ocfs2_xattr_bucket_journal_dirty(handle, bucket);
}
static void *ocfs2_xa_bucket_offset_pointer(struct ocfs2_xa_loc *loc,
int offset)
{
struct ocfs2_xattr_bucket *bucket = loc->xl_storage;
int block, block_offset;
/* The header is at the front of the bucket */
block = offset >> loc->xl_inode->i_sb->s_blocksize_bits;
block_offset = offset % loc->xl_inode->i_sb->s_blocksize;
return bucket_block(bucket, block) + block_offset;
}
static int ocfs2_xa_bucket_can_reuse(struct ocfs2_xa_loc *loc,
struct ocfs2_xattr_info *xi)
{
return namevalue_size_xe(loc->xl_entry) >=
namevalue_size_xi(xi);
}
static int ocfs2_xa_bucket_get_free_start(struct ocfs2_xa_loc *loc)
{
struct ocfs2_xattr_bucket *bucket = loc->xl_storage;
return le16_to_cpu(bucket_xh(bucket)->xh_free_start);
}
static int ocfs2_bucket_align_free_start(struct super_block *sb,
int free_start, int size)
{
/*
* We need to make sure that the name+value pair fits within
* one block.
*/
if (((free_start - size) >> sb->s_blocksize_bits) !=
((free_start - 1) >> sb->s_blocksize_bits))
free_start -= free_start % sb->s_blocksize;
return free_start;
}
static int ocfs2_xa_bucket_check_space(struct ocfs2_xa_loc *loc,
struct ocfs2_xattr_info *xi)
{
int rc;
int count = le16_to_cpu(loc->xl_header->xh_count);
int free_start = ocfs2_xa_get_free_start(loc);
int needed_space = ocfs2_xi_entry_usage(xi);
int size = namevalue_size_xi(xi);
struct super_block *sb = loc->xl_inode->i_sb;
/*
* Bucket storage does not reclaim name+value pairs it cannot
* reuse. They live as holes until the bucket fills, and then
* the bucket is defragmented. However, the bucket can reclaim
* the ocfs2_xattr_entry.
*/
if (loc->xl_entry) {
/* Don't need space if we're reusing! */
if (ocfs2_xa_can_reuse_entry(loc, xi))
needed_space = 0;
else
needed_space -= sizeof(struct ocfs2_xattr_entry);
}
BUG_ON(needed_space < 0);
if (free_start < size) {
if (needed_space)
return -ENOSPC;
} else {
/*
* First we check if it would fit in the first place.
* Below, we align the free start to a block. This may
* slide us below the minimum gap. By checking unaligned
* first, we avoid that error.
*/
rc = ocfs2_xa_check_space_helper(needed_space, free_start,
count);
if (rc)
return rc;
free_start = ocfs2_bucket_align_free_start(sb, free_start,
size);
}
return ocfs2_xa_check_space_helper(needed_space, free_start, count);
}
static void ocfs2_xa_bucket_wipe_namevalue(struct ocfs2_xa_loc *loc)
{
le16_add_cpu(&loc->xl_header->xh_name_value_len,
-namevalue_size_xe(loc->xl_entry));
}
static void ocfs2_xa_bucket_add_entry(struct ocfs2_xa_loc *loc, u32 name_hash)
{
struct ocfs2_xattr_header *xh = loc->xl_header;
int count = le16_to_cpu(xh->xh_count);
int low = 0, high = count - 1, tmp;
struct ocfs2_xattr_entry *tmp_xe;
/*
* We keep buckets sorted by name_hash, so we need to find
* our insert place.
*/
while (low <= high && count) {
tmp = (low + high) / 2;
tmp_xe = &xh->xh_entries[tmp];
if (name_hash > le32_to_cpu(tmp_xe->xe_name_hash))
low = tmp + 1;
else if (name_hash < le32_to_cpu(tmp_xe->xe_name_hash))
high = tmp - 1;
else {
low = tmp;
break;
}
}
if (low != count)
memmove(&xh->xh_entries[low + 1],
&xh->xh_entries[low],
((count - low) * sizeof(struct ocfs2_xattr_entry)));
le16_add_cpu(&xh->xh_count, 1);
loc->xl_entry = &xh->xh_entries[low];
memset(loc->xl_entry, 0, sizeof(struct ocfs2_xattr_entry));
}
static void ocfs2_xa_bucket_add_namevalue(struct ocfs2_xa_loc *loc, int size)
{
int free_start = ocfs2_xa_get_free_start(loc);
struct ocfs2_xattr_header *xh = loc->xl_header;
struct super_block *sb = loc->xl_inode->i_sb;
int nameval_offset;
free_start = ocfs2_bucket_align_free_start(sb, free_start, size);
nameval_offset = free_start - size;
loc->xl_entry->xe_name_offset = cpu_to_le16(nameval_offset);
xh->xh_free_start = cpu_to_le16(nameval_offset);
le16_add_cpu(&xh->xh_name_value_len, size);
}
static void ocfs2_xa_bucket_fill_value_buf(struct ocfs2_xa_loc *loc,
struct ocfs2_xattr_value_buf *vb)
{
struct ocfs2_xattr_bucket *bucket = loc->xl_storage;
struct super_block *sb = loc->xl_inode->i_sb;
int nameval_offset = le16_to_cpu(loc->xl_entry->xe_name_offset);
int size = namevalue_size_xe(loc->xl_entry);
int block_offset = nameval_offset >> sb->s_blocksize_bits;
/* Values are not allowed to straddle block boundaries */
BUG_ON(block_offset !=
((nameval_offset + size - 1) >> sb->s_blocksize_bits));
/* We expect the bucket to be filled in */
BUG_ON(!bucket->bu_bhs[block_offset]);
vb->vb_access = ocfs2_journal_access;
vb->vb_bh = bucket->bu_bhs[block_offset];
}
/* Operations for xattrs stored in buckets. */
static const struct ocfs2_xa_loc_operations ocfs2_xa_bucket_loc_ops = {
.xlo_journal_access = ocfs2_xa_bucket_journal_access,
.xlo_journal_dirty = ocfs2_xa_bucket_journal_dirty,
.xlo_offset_pointer = ocfs2_xa_bucket_offset_pointer,
.xlo_check_space = ocfs2_xa_bucket_check_space,
.xlo_can_reuse = ocfs2_xa_bucket_can_reuse,
.xlo_get_free_start = ocfs2_xa_bucket_get_free_start,
.xlo_wipe_namevalue = ocfs2_xa_bucket_wipe_namevalue,
.xlo_add_entry = ocfs2_xa_bucket_add_entry,
.xlo_add_namevalue = ocfs2_xa_bucket_add_namevalue,
.xlo_fill_value_buf = ocfs2_xa_bucket_fill_value_buf,
};
static unsigned int ocfs2_xa_value_clusters(struct ocfs2_xa_loc *loc)
{
struct ocfs2_xattr_value_buf vb;
if (ocfs2_xattr_is_local(loc->xl_entry))
return 0;
ocfs2_xa_fill_value_buf(loc, &vb);
return le32_to_cpu(vb.vb_xv->xr_clusters);
}
static int ocfs2_xa_value_truncate(struct ocfs2_xa_loc *loc, u64 bytes,
struct ocfs2_xattr_set_ctxt *ctxt)
{
int trunc_rc, access_rc;
struct ocfs2_xattr_value_buf vb;
ocfs2_xa_fill_value_buf(loc, &vb);
trunc_rc = ocfs2_xattr_value_truncate(loc->xl_inode, &vb, bytes,
ctxt);
/*
* The caller of ocfs2_xa_value_truncate() has already called
* ocfs2_xa_journal_access on the loc. However, The truncate code
* calls ocfs2_extend_trans(). This may commit the previous
* transaction and open a new one. If this is a bucket, truncate
* could leave only vb->vb_bh set up for journaling. Meanwhile,
* the caller is expecting to dirty the entire bucket. So we must
* reset the journal work. We do this even if truncate has failed,
* as it could have failed after committing the extend.
*/
access_rc = ocfs2_xa_journal_access(ctxt->handle, loc,
OCFS2_JOURNAL_ACCESS_WRITE);
/* Errors in truncate take precedence */
return trunc_rc ? trunc_rc : access_rc;
}
static void ocfs2_xa_remove_entry(struct ocfs2_xa_loc *loc)
{
int index, count;
struct ocfs2_xattr_header *xh = loc->xl_header;
struct ocfs2_xattr_entry *entry = loc->xl_entry;
ocfs2_xa_wipe_namevalue(loc);
loc->xl_entry = NULL;
le16_add_cpu(&xh->xh_count, -1);
count = le16_to_cpu(xh->xh_count);
/*
* Only zero out the entry if there are more remaining. This is
* important for an empty bucket, as it keeps track of the
* bucket's hash value. It doesn't hurt empty block storage.
*/
if (count) {
index = ((char *)entry - (char *)&xh->xh_entries) /
sizeof(struct ocfs2_xattr_entry);
memmove(&xh->xh_entries[index], &xh->xh_entries[index + 1],
(count - index) * sizeof(struct ocfs2_xattr_entry));
memset(&xh->xh_entries[count], 0,
sizeof(struct ocfs2_xattr_entry));
}
}
/*
* If we have a problem adjusting the size of an external value during
* ocfs2_xa_prepare_entry() or ocfs2_xa_remove(), we may have an xattr
* in an intermediate state. For example, the value may be partially
* truncated.
*
* If the value tree hasn't changed, the extend/truncate went nowhere.
* We have nothing to do. The caller can treat it as a straight error.
*
* If the value tree got partially truncated, we now have a corrupted
* extended attribute. We're going to wipe its entry and leak the
* clusters. Better to leak some storage than leave a corrupt entry.
*
* If the value tree grew, it obviously didn't grow enough for the
* new entry. We're not going to try and reclaim those clusters either.
* If there was already an external value there (orig_clusters != 0),
* the new clusters are attached safely and we can just leave the old
* value in place. If there was no external value there, we remove
* the entry.
*
* This way, the xattr block we store in the journal will be consistent.
* If the size change broke because of the journal, no changes will hit
* disk anyway.
*/
static void ocfs2_xa_cleanup_value_truncate(struct ocfs2_xa_loc *loc,
const char *what,
unsigned int orig_clusters)
{
unsigned int new_clusters = ocfs2_xa_value_clusters(loc);
char *nameval_buf = ocfs2_xa_offset_pointer(loc,
le16_to_cpu(loc->xl_entry->xe_name_offset));
if (new_clusters < orig_clusters) {
mlog(ML_ERROR,
"Partial truncate while %s xattr %.*s. Leaking "
"%u clusters and removing the entry\n",
what, loc->xl_entry->xe_name_len, nameval_buf,
orig_clusters - new_clusters);
ocfs2_xa_remove_entry(loc);
} else if (!orig_clusters) {
mlog(ML_ERROR,
"Unable to allocate an external value for xattr "
"%.*s safely. Leaking %u clusters and removing the "
"entry\n",
loc->xl_entry->xe_name_len, nameval_buf,
new_clusters - orig_clusters);
ocfs2_xa_remove_entry(loc);
} else if (new_clusters > orig_clusters)
mlog(ML_ERROR,
"Unable to grow xattr %.*s safely. %u new clusters "
"have been added, but the value will not be "
"modified\n",
loc->xl_entry->xe_name_len, nameval_buf,
new_clusters - orig_clusters);
}
static int ocfs2_xa_remove(struct ocfs2_xa_loc *loc,
struct ocfs2_xattr_set_ctxt *ctxt)
{
int rc = 0;
unsigned int orig_clusters;
if (!ocfs2_xattr_is_local(loc->xl_entry)) {
orig_clusters = ocfs2_xa_value_clusters(loc);
rc = ocfs2_xa_value_truncate(loc, 0, ctxt);
if (rc) {
mlog_errno(rc);
/*
* Since this is remove, we can return 0 if
* ocfs2_xa_cleanup_value_truncate() is going to
* wipe the entry anyway. So we check the
* cluster count as well.
*/
if (orig_clusters != ocfs2_xa_value_clusters(loc))
rc = 0;
ocfs2_xa_cleanup_value_truncate(loc, "removing",
orig_clusters);
if (rc)
goto out;
}
}
ocfs2_xa_remove_entry(loc);
out:
return rc;
}
static void ocfs2_xa_install_value_root(struct ocfs2_xa_loc *loc)
{
int name_size = OCFS2_XATTR_SIZE(loc->xl_entry->xe_name_len);
char *nameval_buf;
nameval_buf = ocfs2_xa_offset_pointer(loc,
le16_to_cpu(loc->xl_entry->xe_name_offset));
memcpy(nameval_buf + name_size, &def_xv, OCFS2_XATTR_ROOT_SIZE);
}
/*
* Take an existing entry and make it ready for the new value. This
* won't allocate space, but it may free space. It should be ready for
* ocfs2_xa_prepare_entry() to finish the work.
*/
static int ocfs2_xa_reuse_entry(struct ocfs2_xa_loc *loc,
struct ocfs2_xattr_info *xi,
struct ocfs2_xattr_set_ctxt *ctxt)
{
int rc = 0;
int name_size = OCFS2_XATTR_SIZE(xi->xi_name_len);
unsigned int orig_clusters;
char *nameval_buf;
int xe_local = ocfs2_xattr_is_local(loc->xl_entry);
int xi_local = xi->xi_value_len <= OCFS2_XATTR_INLINE_SIZE;
BUG_ON(OCFS2_XATTR_SIZE(loc->xl_entry->xe_name_len) !=
name_size);
nameval_buf = ocfs2_xa_offset_pointer(loc,
le16_to_cpu(loc->xl_entry->xe_name_offset));
if (xe_local) {
memset(nameval_buf + name_size, 0,
namevalue_size_xe(loc->xl_entry) - name_size);
if (!xi_local)
ocfs2_xa_install_value_root(loc);
} else {
orig_clusters = ocfs2_xa_value_clusters(loc);
if (xi_local) {
rc = ocfs2_xa_value_truncate(loc, 0, ctxt);
if (rc < 0)
mlog_errno(rc);
else
memset(nameval_buf + name_size, 0,
namevalue_size_xe(loc->xl_entry) -
name_size);
} else if (le64_to_cpu(loc->xl_entry->xe_value_size) >
xi->xi_value_len) {
rc = ocfs2_xa_value_truncate(loc, xi->xi_value_len,
ctxt);
if (rc < 0)
mlog_errno(rc);
}
if (rc) {
ocfs2_xa_cleanup_value_truncate(loc, "reusing",
orig_clusters);
goto out;
}
}
loc->xl_entry->xe_value_size = cpu_to_le64(xi->xi_value_len);
ocfs2_xattr_set_local(loc->xl_entry, xi_local);
out:
return rc;
}
/*
* Prepares loc->xl_entry to receive the new xattr. This includes
* properly setting up the name+value pair region. If loc->xl_entry
* already exists, it will take care of modifying it appropriately.
*
* Note that this modifies the data. You did journal_access already,
* right?
*/
static int ocfs2_xa_prepare_entry(struct ocfs2_xa_loc *loc,
struct ocfs2_xattr_info *xi,
u32 name_hash,
struct ocfs2_xattr_set_ctxt *ctxt)
{
int rc = 0;
unsigned int orig_clusters;
__le64 orig_value_size = 0;
rc = ocfs2_xa_check_space(loc, xi);
if (rc)
goto out;
if (loc->xl_entry) {
if (ocfs2_xa_can_reuse_entry(loc, xi)) {
orig_value_size = loc->xl_entry->xe_value_size;
rc = ocfs2_xa_reuse_entry(loc, xi, ctxt);
if (rc)
goto out;
goto alloc_value;
}
if (!ocfs2_xattr_is_local(loc->xl_entry)) {
orig_clusters = ocfs2_xa_value_clusters(loc);
rc = ocfs2_xa_value_truncate(loc, 0, ctxt);
if (rc) {
mlog_errno(rc);
ocfs2_xa_cleanup_value_truncate(loc,
"overwriting",
orig_clusters);
goto out;
}
}
ocfs2_xa_wipe_namevalue(loc);
} else
ocfs2_xa_add_entry(loc, name_hash);
/*
* If we get here, we have a blank entry. Fill it. We grow our
* name+value pair back from the end.
*/
ocfs2_xa_add_namevalue(loc, xi);
if (xi->xi_value_len > OCFS2_XATTR_INLINE_SIZE)
ocfs2_xa_install_value_root(loc);
alloc_value:
if (xi->xi_value_len > OCFS2_XATTR_INLINE_SIZE) {
orig_clusters = ocfs2_xa_value_clusters(loc);
rc = ocfs2_xa_value_truncate(loc, xi->xi_value_len, ctxt);
if (rc < 0) {
ctxt->set_abort = 1;
ocfs2_xa_cleanup_value_truncate(loc, "growing",
orig_clusters);
/*
* If we were growing an existing value,
* ocfs2_xa_cleanup_value_truncate() won't remove
* the entry. We need to restore the original value
* size.
*/
if (loc->xl_entry) {
BUG_ON(!orig_value_size);
loc->xl_entry->xe_value_size = orig_value_size;
}
mlog_errno(rc);
}
}
out:
return rc;
}
/*
* Store the value portion of the name+value pair. This will skip
* values that are stored externally. Their tree roots were set up
* by ocfs2_xa_prepare_entry().
*/
static int ocfs2_xa_store_value(struct ocfs2_xa_loc *loc,
struct ocfs2_xattr_info *xi,
struct ocfs2_xattr_set_ctxt *ctxt)
{
int rc = 0;
int nameval_offset = le16_to_cpu(loc->xl_entry->xe_name_offset);
int name_size = OCFS2_XATTR_SIZE(xi->xi_name_len);
char *nameval_buf;
struct ocfs2_xattr_value_buf vb;
nameval_buf = ocfs2_xa_offset_pointer(loc, nameval_offset);
if (xi->xi_value_len > OCFS2_XATTR_INLINE_SIZE) {
ocfs2_xa_fill_value_buf(loc, &vb);
rc = __ocfs2_xattr_set_value_outside(loc->xl_inode,
ctxt->handle, &vb,
xi->xi_value,
xi->xi_value_len);
} else
memcpy(nameval_buf + name_size, xi->xi_value, xi->xi_value_len);
return rc;
}
static int ocfs2_xa_set(struct ocfs2_xa_loc *loc,
struct ocfs2_xattr_info *xi,
struct ocfs2_xattr_set_ctxt *ctxt)
{
int ret;
u32 name_hash = ocfs2_xattr_name_hash(loc->xl_inode, xi->xi_name,
xi->xi_name_len);
ret = ocfs2_xa_journal_access(ctxt->handle, loc,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* From here on out, everything is going to modify the buffer a
* little. Errors are going to leave the xattr header in a
* sane state. Thus, even with errors we dirty the sucker.
*/
/* Don't worry, we are never called with !xi_value and !xl_entry */
if (!xi->xi_value) {
ret = ocfs2_xa_remove(loc, ctxt);
goto out_dirty;
}
ret = ocfs2_xa_prepare_entry(loc, xi, name_hash, ctxt);
if (ret) {
if (ret != -ENOSPC)
mlog_errno(ret);
goto out_dirty;
}
ret = ocfs2_xa_store_value(loc, xi, ctxt);
if (ret)
mlog_errno(ret);
out_dirty:
ocfs2_xa_journal_dirty(ctxt->handle, loc);
out:
return ret;
}
static void ocfs2_init_dinode_xa_loc(struct ocfs2_xa_loc *loc,
struct inode *inode,
struct buffer_head *bh,
struct ocfs2_xattr_entry *entry)
{
struct ocfs2_dinode *di = (struct ocfs2_dinode *)bh->b_data;
BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_XATTR_FL));
loc->xl_inode = inode;
loc->xl_ops = &ocfs2_xa_block_loc_ops;
loc->xl_storage = bh;
loc->xl_entry = entry;
loc->xl_size = le16_to_cpu(di->i_xattr_inline_size);
loc->xl_header =
(struct ocfs2_xattr_header *)(bh->b_data + bh->b_size -
loc->xl_size);
}
static void ocfs2_init_xattr_block_xa_loc(struct ocfs2_xa_loc *loc,
struct inode *inode,
struct buffer_head *bh,
struct ocfs2_xattr_entry *entry)
{
struct ocfs2_xattr_block *xb =
(struct ocfs2_xattr_block *)bh->b_data;
BUG_ON(le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED);
loc->xl_inode = inode;
loc->xl_ops = &ocfs2_xa_block_loc_ops;
loc->xl_storage = bh;
loc->xl_header = &(xb->xb_attrs.xb_header);
loc->xl_entry = entry;
loc->xl_size = bh->b_size - offsetof(struct ocfs2_xattr_block,
xb_attrs.xb_header);
}
static void ocfs2_init_xattr_bucket_xa_loc(struct ocfs2_xa_loc *loc,
struct ocfs2_xattr_bucket *bucket,
struct ocfs2_xattr_entry *entry)
{
loc->xl_inode = bucket->bu_inode;
loc->xl_ops = &ocfs2_xa_bucket_loc_ops;
loc->xl_storage = bucket;
loc->xl_header = bucket_xh(bucket);
loc->xl_entry = entry;
loc->xl_size = OCFS2_XATTR_BUCKET_SIZE;
}
/*
* In xattr remove, if it is stored outside and refcounted, we may have
* the chance to split the refcount tree. So need the allocators.
*/
static int ocfs2_lock_xattr_remove_allocators(struct inode *inode,
struct ocfs2_xattr_value_root *xv,
struct ocfs2_caching_info *ref_ci,
struct buffer_head *ref_root_bh,
struct ocfs2_alloc_context **meta_ac,
int *ref_credits)
{
int ret, meta_add = 0;
u32 p_cluster, num_clusters;
unsigned int ext_flags;
*ref_credits = 0;
ret = ocfs2_xattr_get_clusters(inode, 0, &p_cluster,
&num_clusters,
&xv->xr_list,
&ext_flags);
if (ret) {
mlog_errno(ret);
goto out;
}
if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
goto out;
ret = ocfs2_refcounted_xattr_delete_need(inode, ref_ci,
ref_root_bh, xv,
&meta_add, ref_credits);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_reserve_new_metadata_blocks(OCFS2_SB(inode->i_sb),
meta_add, meta_ac);
if (ret)
mlog_errno(ret);
out:
return ret;
}
static int ocfs2_remove_value_outside(struct inode*inode,
struct ocfs2_xattr_value_buf *vb,
struct ocfs2_xattr_header *header,
struct ocfs2_caching_info *ref_ci,
struct buffer_head *ref_root_bh)
{
int ret = 0, i, ref_credits;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct ocfs2_xattr_set_ctxt ctxt = { NULL, NULL, };
void *val;
ocfs2_init_dealloc_ctxt(&ctxt.dealloc);
for (i = 0; i < le16_to_cpu(header->xh_count); i++) {
struct ocfs2_xattr_entry *entry = &header->xh_entries[i];
if (ocfs2_xattr_is_local(entry))
continue;
val = (void *)header +
le16_to_cpu(entry->xe_name_offset);
vb->vb_xv = (struct ocfs2_xattr_value_root *)
(val + OCFS2_XATTR_SIZE(entry->xe_name_len));
ret = ocfs2_lock_xattr_remove_allocators(inode, vb->vb_xv,
ref_ci, ref_root_bh,
&ctxt.meta_ac,
&ref_credits);
ctxt.handle = ocfs2_start_trans(osb, ref_credits +
ocfs2_remove_extent_credits(osb->sb));
if (IS_ERR(ctxt.handle)) {
ret = PTR_ERR(ctxt.handle);
mlog_errno(ret);
break;
}
ret = ocfs2_xattr_value_truncate(inode, vb, 0, &ctxt);
ocfs2_commit_trans(osb, ctxt.handle);
if (ctxt.meta_ac) {
ocfs2_free_alloc_context(ctxt.meta_ac);
ctxt.meta_ac = NULL;
}
if (ret < 0) {
mlog_errno(ret);
break;
}
}
if (ctxt.meta_ac)
ocfs2_free_alloc_context(ctxt.meta_ac);
ocfs2_schedule_truncate_log_flush(osb, 1);
ocfs2_run_deallocs(osb, &ctxt.dealloc);
return ret;
}
static int ocfs2_xattr_ibody_remove(struct inode *inode,
struct buffer_head *di_bh,
struct ocfs2_caching_info *ref_ci,
struct buffer_head *ref_root_bh)
{
struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
struct ocfs2_xattr_header *header;
int ret;
struct ocfs2_xattr_value_buf vb = {
.vb_bh = di_bh,
.vb_access = ocfs2_journal_access_di,
};
header = (struct ocfs2_xattr_header *)
((void *)di + inode->i_sb->s_blocksize -
le16_to_cpu(di->i_xattr_inline_size));
ret = ocfs2_remove_value_outside(inode, &vb, header,
ref_ci, ref_root_bh);
return ret;
}
struct ocfs2_rm_xattr_bucket_para {
struct ocfs2_caching_info *ref_ci;
struct buffer_head *ref_root_bh;
};
static int ocfs2_xattr_block_remove(struct inode *inode,
struct buffer_head *blk_bh,
struct ocfs2_caching_info *ref_ci,
struct buffer_head *ref_root_bh)
{
struct ocfs2_xattr_block *xb;
int ret = 0;
struct ocfs2_xattr_value_buf vb = {
.vb_bh = blk_bh,
.vb_access = ocfs2_journal_access_xb,
};
struct ocfs2_rm_xattr_bucket_para args = {
.ref_ci = ref_ci,
.ref_root_bh = ref_root_bh,
};
xb = (struct ocfs2_xattr_block *)blk_bh->b_data;
if (!(le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED)) {
struct ocfs2_xattr_header *header = &(xb->xb_attrs.xb_header);
ret = ocfs2_remove_value_outside(inode, &vb, header,
ref_ci, ref_root_bh);
} else
ret = ocfs2_iterate_xattr_index_block(inode,
blk_bh,
ocfs2_rm_xattr_cluster,
&args);
return ret;
}
static int ocfs2_xattr_free_block(struct inode *inode,
u64 block,
struct ocfs2_caching_info *ref_ci,
struct buffer_head *ref_root_bh)
{
struct inode *xb_alloc_inode;
struct buffer_head *xb_alloc_bh = NULL;
struct buffer_head *blk_bh = NULL;
struct ocfs2_xattr_block *xb;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
handle_t *handle;
int ret = 0;
u64 blk, bg_blkno;
u16 bit;
ret = ocfs2_read_xattr_block(inode, block, &blk_bh);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_xattr_block_remove(inode, blk_bh, ref_ci, ref_root_bh);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
xb = (struct ocfs2_xattr_block *)blk_bh->b_data;
blk = le64_to_cpu(xb->xb_blkno);
bit = le16_to_cpu(xb->xb_suballoc_bit);
if (xb->xb_suballoc_loc)
bg_blkno = le64_to_cpu(xb->xb_suballoc_loc);
else
bg_blkno = ocfs2_which_suballoc_group(blk, bit);
xb_alloc_inode = ocfs2_get_system_file_inode(osb,
EXTENT_ALLOC_SYSTEM_INODE,
le16_to_cpu(xb->xb_suballoc_slot));
if (!xb_alloc_inode) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
inode_lock(xb_alloc_inode);
ret = ocfs2_inode_lock(xb_alloc_inode, &xb_alloc_bh, 1);
if (ret < 0) {
mlog_errno(ret);
goto out_mutex;
}
handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
mlog_errno(ret);
goto out_unlock;
}
ret = ocfs2_free_suballoc_bits(handle, xb_alloc_inode, xb_alloc_bh,
bit, bg_blkno, 1);
if (ret < 0)
mlog_errno(ret);
ocfs2_commit_trans(osb, handle);
out_unlock:
ocfs2_inode_unlock(xb_alloc_inode, 1);
brelse(xb_alloc_bh);
out_mutex:
inode_unlock(xb_alloc_inode);
iput(xb_alloc_inode);
out:
brelse(blk_bh);
return ret;
}
/*
* ocfs2_xattr_remove()
*
* Free extended attribute resources associated with this inode.
*/
int ocfs2_xattr_remove(struct inode *inode, struct buffer_head *di_bh)
{
struct ocfs2_inode_info *oi = OCFS2_I(inode);
struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
struct ocfs2_refcount_tree *ref_tree = NULL;
struct buffer_head *ref_root_bh = NULL;
struct ocfs2_caching_info *ref_ci = NULL;
handle_t *handle;
int ret;
if (!ocfs2_supports_xattr(OCFS2_SB(inode->i_sb)))
return 0;
if (!(oi->ip_dyn_features & OCFS2_HAS_XATTR_FL))
return 0;
if (ocfs2_is_refcount_inode(inode)) {
ret = ocfs2_lock_refcount_tree(OCFS2_SB(inode->i_sb),
le64_to_cpu(di->i_refcount_loc),
1, &ref_tree, &ref_root_bh);
if (ret) {
mlog_errno(ret);
goto out;
}
ref_ci = &ref_tree->rf_ci;
}
if (oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL) {
ret = ocfs2_xattr_ibody_remove(inode, di_bh,
ref_ci, ref_root_bh);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
}
if (di->i_xattr_loc) {
ret = ocfs2_xattr_free_block(inode,
le64_to_cpu(di->i_xattr_loc),
ref_ci, ref_root_bh);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
}
handle = ocfs2_start_trans((OCFS2_SB(inode->i_sb)),
OCFS2_INODE_UPDATE_CREDITS);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
mlog_errno(ret);
goto out;
}
ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out_commit;
}
di->i_xattr_loc = 0;
spin_lock(&oi->ip_lock);
oi->ip_dyn_features &= ~(OCFS2_INLINE_XATTR_FL | OCFS2_HAS_XATTR_FL);
di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
spin_unlock(&oi->ip_lock);
ocfs2_update_inode_fsync_trans(handle, inode, 0);
ocfs2_journal_dirty(handle, di_bh);
out_commit:
ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
out:
if (ref_tree)
ocfs2_unlock_refcount_tree(OCFS2_SB(inode->i_sb), ref_tree, 1);
brelse(ref_root_bh);
return ret;
}
static int ocfs2_xattr_has_space_inline(struct inode *inode,
struct ocfs2_dinode *di)
{
struct ocfs2_inode_info *oi = OCFS2_I(inode);
unsigned int xattrsize = OCFS2_SB(inode->i_sb)->s_xattr_inline_size;
int free;
if (xattrsize < OCFS2_MIN_XATTR_INLINE_SIZE)
return 0;
if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
struct ocfs2_inline_data *idata = &di->id2.i_data;
free = le16_to_cpu(idata->id_count) - le64_to_cpu(di->i_size);
} else if (ocfs2_inode_is_fast_symlink(inode)) {
free = ocfs2_fast_symlink_chars(inode->i_sb) -
le64_to_cpu(di->i_size);
} else {
struct ocfs2_extent_list *el = &di->id2.i_list;
free = (le16_to_cpu(el->l_count) -
le16_to_cpu(el->l_next_free_rec)) *
sizeof(struct ocfs2_extent_rec);
}
if (free >= xattrsize)
return 1;
return 0;
}
/*
* ocfs2_xattr_ibody_find()
*
* Find extended attribute in inode block and
* fill search info into struct ocfs2_xattr_search.
*/
static int ocfs2_xattr_ibody_find(struct inode *inode,
int name_index,
const char *name,
struct ocfs2_xattr_search *xs)
{
struct ocfs2_inode_info *oi = OCFS2_I(inode);
struct ocfs2_dinode *di = (struct ocfs2_dinode *)xs->inode_bh->b_data;
int ret;
int has_space = 0;
if (inode->i_sb->s_blocksize == OCFS2_MIN_BLOCKSIZE)
return 0;
if (!(oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL)) {
down_read(&oi->ip_alloc_sem);
has_space = ocfs2_xattr_has_space_inline(inode, di);
up_read(&oi->ip_alloc_sem);
if (!has_space)
return 0;
}
xs->xattr_bh = xs->inode_bh;
xs->end = (void *)di + inode->i_sb->s_blocksize;
if (oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL)
xs->header = (struct ocfs2_xattr_header *)
(xs->end - le16_to_cpu(di->i_xattr_inline_size));
else
xs->header = (struct ocfs2_xattr_header *)
(xs->end - OCFS2_SB(inode->i_sb)->s_xattr_inline_size);
xs->base = (void *)xs->header;
xs->here = xs->header->xh_entries;
/* Find the named attribute. */
if (oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL) {
ret = ocfs2_xattr_find_entry(name_index, name, xs);
if (ret && ret != -ENODATA)
return ret;
xs->not_found = ret;
}
return 0;
}
static int ocfs2_xattr_ibody_init(struct inode *inode,
struct buffer_head *di_bh,
struct ocfs2_xattr_set_ctxt *ctxt)
{
int ret;
struct ocfs2_inode_info *oi = OCFS2_I(inode);
struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
unsigned int xattrsize = osb->s_xattr_inline_size;
if (!ocfs2_xattr_has_space_inline(inode, di)) {
ret = -ENOSPC;
goto out;
}
ret = ocfs2_journal_access_di(ctxt->handle, INODE_CACHE(inode), di_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* Adjust extent record count or inline data size
* to reserve space for extended attribute.
*/
if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
struct ocfs2_inline_data *idata = &di->id2.i_data;
le16_add_cpu(&idata->id_count, -xattrsize);
} else if (!(ocfs2_inode_is_fast_symlink(inode))) {
struct ocfs2_extent_list *el = &di->id2.i_list;
le16_add_cpu(&el->l_count, -(xattrsize /
sizeof(struct ocfs2_extent_rec)));
}
di->i_xattr_inline_size = cpu_to_le16(xattrsize);
spin_lock(&oi->ip_lock);
oi->ip_dyn_features |= OCFS2_INLINE_XATTR_FL|OCFS2_HAS_XATTR_FL;
di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
spin_unlock(&oi->ip_lock);
ocfs2_journal_dirty(ctxt->handle, di_bh);
out:
return ret;
}
/*
* ocfs2_xattr_ibody_set()
*
* Set, replace or remove an extended attribute into inode block.
*
*/
static int ocfs2_xattr_ibody_set(struct inode *inode,
struct ocfs2_xattr_info *xi,
struct ocfs2_xattr_search *xs,
struct ocfs2_xattr_set_ctxt *ctxt)
{
int ret;
struct ocfs2_inode_info *oi = OCFS2_I(inode);
struct ocfs2_xa_loc loc;
if (inode->i_sb->s_blocksize == OCFS2_MIN_BLOCKSIZE)
return -ENOSPC;
down_write(&oi->ip_alloc_sem);
if (!(oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL)) {
ret = ocfs2_xattr_ibody_init(inode, xs->inode_bh, ctxt);
if (ret) {
if (ret != -ENOSPC)
mlog_errno(ret);
goto out;
}
}
ocfs2_init_dinode_xa_loc(&loc, inode, xs->inode_bh,
xs->not_found ? NULL : xs->here);
ret = ocfs2_xa_set(&loc, xi, ctxt);
if (ret) {
if (ret != -ENOSPC)
mlog_errno(ret);
goto out;
}
xs->here = loc.xl_entry;
out:
up_write(&oi->ip_alloc_sem);
return ret;
}
/*
* ocfs2_xattr_block_find()
*
* Find extended attribute in external block and
* fill search info into struct ocfs2_xattr_search.
*/
static int ocfs2_xattr_block_find(struct inode *inode,
int name_index,
const char *name,
struct ocfs2_xattr_search *xs)
{
struct ocfs2_dinode *di = (struct ocfs2_dinode *)xs->inode_bh->b_data;
struct buffer_head *blk_bh = NULL;
struct ocfs2_xattr_block *xb;
int ret = 0;
if (!di->i_xattr_loc)
return ret;
ret = ocfs2_read_xattr_block(inode, le64_to_cpu(di->i_xattr_loc),
&blk_bh);
if (ret < 0) {
mlog_errno(ret);
return ret;
}
xs->xattr_bh = blk_bh;
xb = (struct ocfs2_xattr_block *)blk_bh->b_data;
if (!(le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED)) {
xs->header = &xb->xb_attrs.xb_header;
xs->base = (void *)xs->header;
xs->end = (void *)(blk_bh->b_data) + blk_bh->b_size;
xs->here = xs->header->xh_entries;
ret = ocfs2_xattr_find_entry(name_index, name, xs);
} else
ret = ocfs2_xattr_index_block_find(inode, blk_bh,
name_index,
name, xs);
if (ret && ret != -ENODATA) {
xs->xattr_bh = NULL;
goto cleanup;
}
xs->not_found = ret;
return 0;
cleanup:
brelse(blk_bh);
return ret;
}
static int ocfs2_create_xattr_block(struct inode *inode,
struct buffer_head *inode_bh,
struct ocfs2_xattr_set_ctxt *ctxt,
int indexed,
struct buffer_head **ret_bh)
{
int ret;
u16 suballoc_bit_start;
u32 num_got;
u64 suballoc_loc, first_blkno;
struct ocfs2_dinode *di = (struct ocfs2_dinode *)inode_bh->b_data;
struct buffer_head *new_bh = NULL;
struct ocfs2_xattr_block *xblk;
ret = ocfs2_journal_access_di(ctxt->handle, INODE_CACHE(inode),
inode_bh, OCFS2_JOURNAL_ACCESS_CREATE);
if (ret < 0) {
mlog_errno(ret);
goto end;
}
ret = ocfs2_claim_metadata(ctxt->handle, ctxt->meta_ac, 1,
&suballoc_loc, &suballoc_bit_start,
&num_got, &first_blkno);
if (ret < 0) {
mlog_errno(ret);
goto end;
}
new_bh = sb_getblk(inode->i_sb, first_blkno);
if (!new_bh) {
ret = -ENOMEM;
mlog_errno(ret);
goto end;
}
ocfs2_set_new_buffer_uptodate(INODE_CACHE(inode), new_bh);
ret = ocfs2_journal_access_xb(ctxt->handle, INODE_CACHE(inode),
new_bh,
OCFS2_JOURNAL_ACCESS_CREATE);
if (ret < 0) {
mlog_errno(ret);
goto end;
}
/* Initialize ocfs2_xattr_block */
xblk = (struct ocfs2_xattr_block *)new_bh->b_data;
memset(xblk, 0, inode->i_sb->s_blocksize);
strcpy((void *)xblk, OCFS2_XATTR_BLOCK_SIGNATURE);
xblk->xb_suballoc_slot = cpu_to_le16(ctxt->meta_ac->ac_alloc_slot);
xblk->xb_suballoc_loc = cpu_to_le64(suballoc_loc);
xblk->xb_suballoc_bit = cpu_to_le16(suballoc_bit_start);
xblk->xb_fs_generation =
cpu_to_le32(OCFS2_SB(inode->i_sb)->fs_generation);
xblk->xb_blkno = cpu_to_le64(first_blkno);
if (indexed) {
struct ocfs2_xattr_tree_root *xr = &xblk->xb_attrs.xb_root;
xr->xt_clusters = cpu_to_le32(1);
xr->xt_last_eb_blk = 0;
xr->xt_list.l_tree_depth = 0;
xr->xt_list.l_count = cpu_to_le16(
ocfs2_xattr_recs_per_xb(inode->i_sb));
xr->xt_list.l_next_free_rec = cpu_to_le16(1);
xblk->xb_flags = cpu_to_le16(OCFS2_XATTR_INDEXED);
}
ocfs2_journal_dirty(ctxt->handle, new_bh);
/* Add it to the inode */
di->i_xattr_loc = cpu_to_le64(first_blkno);
spin_lock(&OCFS2_I(inode)->ip_lock);
OCFS2_I(inode)->ip_dyn_features |= OCFS2_HAS_XATTR_FL;
di->i_dyn_features = cpu_to_le16(OCFS2_I(inode)->ip_dyn_features);
spin_unlock(&OCFS2_I(inode)->ip_lock);
ocfs2_journal_dirty(ctxt->handle, inode_bh);
*ret_bh = new_bh;
new_bh = NULL;
end:
brelse(new_bh);
return ret;
}
/*
* ocfs2_xattr_block_set()
*
* Set, replace or remove an extended attribute into external block.
*
*/
static int ocfs2_xattr_block_set(struct inode *inode,
struct ocfs2_xattr_info *xi,
struct ocfs2_xattr_search *xs,
struct ocfs2_xattr_set_ctxt *ctxt)
{
struct buffer_head *new_bh = NULL;
struct ocfs2_xattr_block *xblk = NULL;
int ret;
struct ocfs2_xa_loc loc;
if (!xs->xattr_bh) {
ret = ocfs2_create_xattr_block(inode, xs->inode_bh, ctxt,
0, &new_bh);
if (ret) {
mlog_errno(ret);
goto end;
}
xs->xattr_bh = new_bh;
xblk = (struct ocfs2_xattr_block *)xs->xattr_bh->b_data;
xs->header = &xblk->xb_attrs.xb_header;
xs->base = (void *)xs->header;
xs->end = (void *)xblk + inode->i_sb->s_blocksize;
xs->here = xs->header->xh_entries;
} else
xblk = (struct ocfs2_xattr_block *)xs->xattr_bh->b_data;
if (!(le16_to_cpu(xblk->xb_flags) & OCFS2_XATTR_INDEXED)) {
ocfs2_init_xattr_block_xa_loc(&loc, inode, xs->xattr_bh,
xs->not_found ? NULL : xs->here);
ret = ocfs2_xa_set(&loc, xi, ctxt);
if (!ret)
xs->here = loc.xl_entry;
else if ((ret != -ENOSPC) || ctxt->set_abort)
goto end;
else {
ret = ocfs2_xattr_create_index_block(inode, xs, ctxt);
if (ret)
goto end;
}
}
if (le16_to_cpu(xblk->xb_flags) & OCFS2_XATTR_INDEXED)
ret = ocfs2_xattr_set_entry_index_block(inode, xi, xs, ctxt);
end:
return ret;
}
/* Check whether the new xattr can be inserted into the inode. */
static int ocfs2_xattr_can_be_in_inode(struct inode *inode,
struct ocfs2_xattr_info *xi,
struct ocfs2_xattr_search *xs)
{
struct ocfs2_xattr_entry *last;
int free, i;
size_t min_offs = xs->end - xs->base;
if (!xs->header)
return 0;
last = xs->header->xh_entries;
for (i = 0; i < le16_to_cpu(xs->header->xh_count); i++) {
size_t offs = le16_to_cpu(last->xe_name_offset);
if (offs < min_offs)
min_offs = offs;
last += 1;
}
free = min_offs - ((void *)last - xs->base) - OCFS2_XATTR_HEADER_GAP;
if (free < 0)
return 0;
BUG_ON(!xs->not_found);
if (free >= (sizeof(struct ocfs2_xattr_entry) + namevalue_size_xi(xi)))
return 1;
return 0;
}
static int ocfs2_calc_xattr_set_need(struct inode *inode,
struct ocfs2_dinode *di,
struct ocfs2_xattr_info *xi,
struct ocfs2_xattr_search *xis,
struct ocfs2_xattr_search *xbs,
int *clusters_need,
int *meta_need,
int *credits_need)
{
int ret = 0, old_in_xb = 0;
int clusters_add = 0, meta_add = 0, credits = 0;
struct buffer_head *bh = NULL;
struct ocfs2_xattr_block *xb = NULL;
struct ocfs2_xattr_entry *xe = NULL;
struct ocfs2_xattr_value_root *xv = NULL;
char *base = NULL;
int name_offset, name_len = 0;
u32 new_clusters = ocfs2_clusters_for_bytes(inode->i_sb,
xi->xi_value_len);
u64 value_size;
/*
* Calculate the clusters we need to write.
* No matter whether we replace an old one or add a new one,
* we need this for writing.
*/
if (xi->xi_value_len > OCFS2_XATTR_INLINE_SIZE)
credits += new_clusters *
ocfs2_clusters_to_blocks(inode->i_sb, 1);
if (xis->not_found && xbs->not_found) {
credits += ocfs2_blocks_per_xattr_bucket(inode->i_sb);
if (xi->xi_value_len > OCFS2_XATTR_INLINE_SIZE) {
clusters_add += new_clusters;
credits += ocfs2_calc_extend_credits(inode->i_sb,
&def_xv.xv.xr_list);
}
goto meta_guess;
}
if (!xis->not_found) {
xe = xis->here;
name_offset = le16_to_cpu(xe->xe_name_offset);
name_len = OCFS2_XATTR_SIZE(xe->xe_name_len);
base = xis->base;
credits += OCFS2_INODE_UPDATE_CREDITS;
} else {
int i, block_off = 0;
xb = (struct ocfs2_xattr_block *)xbs->xattr_bh->b_data;
xe = xbs->here;
name_offset = le16_to_cpu(xe->xe_name_offset);
name_len = OCFS2_XATTR_SIZE(xe->xe_name_len);
i = xbs->here - xbs->header->xh_entries;
old_in_xb = 1;
if (le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED) {
ret = ocfs2_xattr_bucket_get_name_value(inode->i_sb,
bucket_xh(xbs->bucket),
i, &block_off,
&name_offset);
base = bucket_block(xbs->bucket, block_off);
credits += ocfs2_blocks_per_xattr_bucket(inode->i_sb);
} else {
base = xbs->base;
credits += OCFS2_XATTR_BLOCK_UPDATE_CREDITS;
}
}
/*
* delete a xattr doesn't need metadata and cluster allocation.
* so just calculate the credits and return.
*
* The credits for removing the value tree will be extended
* by ocfs2_remove_extent itself.
*/
if (!xi->xi_value) {
if (!ocfs2_xattr_is_local(xe))
credits += ocfs2_remove_extent_credits(inode->i_sb);
goto out;
}
/* do cluster allocation guess first. */
value_size = le64_to_cpu(xe->xe_value_size);
if (old_in_xb) {
/*
* In xattr set, we always try to set the xe in inode first,
* so if it can be inserted into inode successfully, the old
* one will be removed from the xattr block, and this xattr
* will be inserted into inode as a new xattr in inode.
*/
if (ocfs2_xattr_can_be_in_inode(inode, xi, xis)) {
clusters_add += new_clusters;
credits += ocfs2_remove_extent_credits(inode->i_sb) +
OCFS2_INODE_UPDATE_CREDITS;
if (!ocfs2_xattr_is_local(xe))
credits += ocfs2_calc_extend_credits(
inode->i_sb,
&def_xv.xv.xr_list);
goto out;
}
}
if (xi->xi_value_len > OCFS2_XATTR_INLINE_SIZE) {
/* the new values will be stored outside. */
u32 old_clusters = 0;
if (!ocfs2_xattr_is_local(xe)) {
old_clusters = ocfs2_clusters_for_bytes(inode->i_sb,
value_size);
xv = (struct ocfs2_xattr_value_root *)
(base + name_offset + name_len);
value_size = OCFS2_XATTR_ROOT_SIZE;
} else
xv = &def_xv.xv;
if (old_clusters >= new_clusters) {
credits += ocfs2_remove_extent_credits(inode->i_sb);
goto out;
} else {
meta_add += ocfs2_extend_meta_needed(&xv->xr_list);
clusters_add += new_clusters - old_clusters;
credits += ocfs2_calc_extend_credits(inode->i_sb,
&xv->xr_list);
if (value_size >= OCFS2_XATTR_ROOT_SIZE)
goto out;
}
} else {
/*
* Now the new value will be stored inside. So if the new
* value is smaller than the size of value root or the old
* value, we don't need any allocation, otherwise we have
* to guess metadata allocation.
*/
if ((ocfs2_xattr_is_local(xe) &&
(value_size >= xi->xi_value_len)) ||
(!ocfs2_xattr_is_local(xe) &&
OCFS2_XATTR_ROOT_SIZE >= xi->xi_value_len))
goto out;
}
meta_guess:
/* calculate metadata allocation. */
if (di->i_xattr_loc) {
if (!xbs->xattr_bh) {
ret = ocfs2_read_xattr_block(inode,
le64_to_cpu(di->i_xattr_loc),
&bh);
if (ret) {
mlog_errno(ret);
goto out;
}
xb = (struct ocfs2_xattr_block *)bh->b_data;
} else
xb = (struct ocfs2_xattr_block *)xbs->xattr_bh->b_data;
/*
* If there is already an xattr tree, good, we can calculate
* like other b-trees. Otherwise we may have the chance of
* create a tree, the credit calculation is borrowed from
* ocfs2_calc_extend_credits with root_el = NULL. And the
* new tree will be cluster based, so no meta is needed.
*/
if (le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED) {
struct ocfs2_extent_list *el =
&xb->xb_attrs.xb_root.xt_list;
meta_add += ocfs2_extend_meta_needed(el);
credits += ocfs2_calc_extend_credits(inode->i_sb,
el);
} else
credits += OCFS2_SUBALLOC_ALLOC + 1;
/*
* This cluster will be used either for new bucket or for
* new xattr block.
* If the cluster size is the same as the bucket size, one
* more is needed since we may need to extend the bucket
* also.
*/
clusters_add += 1;
credits += ocfs2_blocks_per_xattr_bucket(inode->i_sb);
if (OCFS2_XATTR_BUCKET_SIZE ==
OCFS2_SB(inode->i_sb)->s_clustersize) {
credits += ocfs2_blocks_per_xattr_bucket(inode->i_sb);
clusters_add += 1;
}
} else {
credits += OCFS2_XATTR_BLOCK_CREATE_CREDITS;
if (xi->xi_value_len > OCFS2_XATTR_INLINE_SIZE) {
struct ocfs2_extent_list *el = &def_xv.xv.xr_list;
meta_add += ocfs2_extend_meta_needed(el);
credits += ocfs2_calc_extend_credits(inode->i_sb,
el);
} else {
meta_add += 1;
}
}
out:
if (clusters_need)
*clusters_need = clusters_add;
if (meta_need)
*meta_need = meta_add;
if (credits_need)
*credits_need = credits;
brelse(bh);
return ret;
}
static int ocfs2_init_xattr_set_ctxt(struct inode *inode,
struct ocfs2_dinode *di,
struct ocfs2_xattr_info *xi,
struct ocfs2_xattr_search *xis,
struct ocfs2_xattr_search *xbs,
struct ocfs2_xattr_set_ctxt *ctxt,
int extra_meta,
int *credits)
{
int clusters_add, meta_add, ret;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
memset(ctxt, 0, sizeof(struct ocfs2_xattr_set_ctxt));
ocfs2_init_dealloc_ctxt(&ctxt->dealloc);
ret = ocfs2_calc_xattr_set_need(inode, di, xi, xis, xbs,
&clusters_add, &meta_add, credits);
if (ret) {
mlog_errno(ret);
return ret;
}
meta_add += extra_meta;
trace_ocfs2_init_xattr_set_ctxt(xi->xi_name, meta_add,
clusters_add, *credits);
if (meta_add) {
ret = ocfs2_reserve_new_metadata_blocks(osb, meta_add,
&ctxt->meta_ac);
if (ret) {
mlog_errno(ret);
goto out;
}
}
if (clusters_add) {
ret = ocfs2_reserve_clusters(osb, clusters_add, &ctxt->data_ac);
if (ret)
mlog_errno(ret);
}
out:
if (ret) {
if (ctxt->meta_ac) {
ocfs2_free_alloc_context(ctxt->meta_ac);
ctxt->meta_ac = NULL;
}
/*
* We cannot have an error and a non null ctxt->data_ac.
*/
}
return ret;
}
static int __ocfs2_xattr_set_handle(struct inode *inode,
struct ocfs2_dinode *di,
struct ocfs2_xattr_info *xi,
struct ocfs2_xattr_search *xis,
struct ocfs2_xattr_search *xbs,
struct ocfs2_xattr_set_ctxt *ctxt)
{
int ret = 0, credits, old_found;
if (!xi->xi_value) {
/* Remove existing extended attribute */
if (!xis->not_found)
ret = ocfs2_xattr_ibody_set(inode, xi, xis, ctxt);
else if (!xbs->not_found)
ret = ocfs2_xattr_block_set(inode, xi, xbs, ctxt);
} else {
/* We always try to set extended attribute into inode first*/
ret = ocfs2_xattr_ibody_set(inode, xi, xis, ctxt);
if (!ret && !xbs->not_found) {
/*
* If succeed and that extended attribute existing in
* external block, then we will remove it.
*/
xi->xi_value = NULL;
xi->xi_value_len = 0;
old_found = xis->not_found;
xis->not_found = -ENODATA;
ret = ocfs2_calc_xattr_set_need(inode,
di,
xi,
xis,
xbs,
NULL,
NULL,
&credits);
xis->not_found = old_found;
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_extend_trans(ctxt->handle, credits);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_xattr_block_set(inode, xi, xbs, ctxt);
} else if ((ret == -ENOSPC) && !ctxt->set_abort) {
if (di->i_xattr_loc && !xbs->xattr_bh) {
ret = ocfs2_xattr_block_find(inode,
xi->xi_name_index,
xi->xi_name, xbs);
if (ret)
goto out;
old_found = xis->not_found;
xis->not_found = -ENODATA;
ret = ocfs2_calc_xattr_set_need(inode,
di,
xi,
xis,
xbs,
NULL,
NULL,
&credits);
xis->not_found = old_found;
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_extend_trans(ctxt->handle, credits);
if (ret) {
mlog_errno(ret);
goto out;
}
}
/*
* If no space in inode, we will set extended attribute
* into external block.
*/
ret = ocfs2_xattr_block_set(inode, xi, xbs, ctxt);
if (ret)
goto out;
if (!xis->not_found) {
/*
* If succeed and that extended attribute
* existing in inode, we will remove it.
*/
xi->xi_value = NULL;
xi->xi_value_len = 0;
xbs->not_found = -ENODATA;
ret = ocfs2_calc_xattr_set_need(inode,
di,
xi,
xis,
xbs,
NULL,
NULL,
&credits);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_extend_trans(ctxt->handle, credits);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_xattr_ibody_set(inode, xi,
xis, ctxt);
}
}
}
if (!ret) {
/* Update inode ctime. */
ret = ocfs2_journal_access_di(ctxt->handle, INODE_CACHE(inode),
xis->inode_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
inode->i_ctime = current_time(inode);
di->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
di->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
ocfs2_journal_dirty(ctxt->handle, xis->inode_bh);
}
out:
return ret;
}
/*
* This function only called duing creating inode
* for init security/acl xattrs of the new inode.
* All transanction credits have been reserved in mknod.
*/
int ocfs2_xattr_set_handle(handle_t *handle,
struct inode *inode,
struct buffer_head *di_bh,
int name_index,
const char *name,
const void *value,
size_t value_len,
int flags,
struct ocfs2_alloc_context *meta_ac,
struct ocfs2_alloc_context *data_ac)
{
struct ocfs2_dinode *di;
int ret;
struct ocfs2_xattr_info xi = {
.xi_name_index = name_index,
.xi_name = name,
.xi_name_len = strlen(name),
.xi_value = value,
.xi_value_len = value_len,
};
struct ocfs2_xattr_search xis = {
.not_found = -ENODATA,
};
struct ocfs2_xattr_search xbs = {
.not_found = -ENODATA,
};
struct ocfs2_xattr_set_ctxt ctxt = {
.handle = handle,
.meta_ac = meta_ac,
.data_ac = data_ac,
};
if (!ocfs2_supports_xattr(OCFS2_SB(inode->i_sb)))
return -EOPNOTSUPP;
/*
* In extreme situation, may need xattr bucket when
* block size is too small. And we have already reserved
* the credits for bucket in mknod.
*/
if (inode->i_sb->s_blocksize == OCFS2_MIN_BLOCKSIZE) {
xbs.bucket = ocfs2_xattr_bucket_new(inode);
if (!xbs.bucket) {
mlog_errno(-ENOMEM);
return -ENOMEM;
}
}
xis.inode_bh = xbs.inode_bh = di_bh;
di = (struct ocfs2_dinode *)di_bh->b_data;
down_write(&OCFS2_I(inode)->ip_xattr_sem);
ret = ocfs2_xattr_ibody_find(inode, name_index, name, &xis);
if (ret)
goto cleanup;
if (xis.not_found) {
ret = ocfs2_xattr_block_find(inode, name_index, name, &xbs);
if (ret)
goto cleanup;
}
ret = __ocfs2_xattr_set_handle(inode, di, &xi, &xis, &xbs, &ctxt);
cleanup:
up_write(&OCFS2_I(inode)->ip_xattr_sem);
brelse(xbs.xattr_bh);
ocfs2_xattr_bucket_free(xbs.bucket);
return ret;
}
/*
* ocfs2_xattr_set()
*
* Set, replace or remove an extended attribute for this inode.
* value is NULL to remove an existing extended attribute, else either
* create or replace an extended attribute.
*/
int ocfs2_xattr_set(struct inode *inode,
int name_index,
const char *name,
const void *value,
size_t value_len,
int flags)
{
struct buffer_head *di_bh = NULL;
struct ocfs2_dinode *di;
int ret, credits, had_lock, ref_meta = 0, ref_credits = 0;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct inode *tl_inode = osb->osb_tl_inode;
struct ocfs2_xattr_set_ctxt ctxt = { NULL, NULL, NULL, };
struct ocfs2_refcount_tree *ref_tree = NULL;
struct ocfs2_lock_holder oh;
struct ocfs2_xattr_info xi = {
.xi_name_index = name_index,
.xi_name = name,
.xi_name_len = strlen(name),
.xi_value = value,
.xi_value_len = value_len,
};
struct ocfs2_xattr_search xis = {
.not_found = -ENODATA,
};
struct ocfs2_xattr_search xbs = {
.not_found = -ENODATA,
};
if (!ocfs2_supports_xattr(OCFS2_SB(inode->i_sb)))
return -EOPNOTSUPP;
/*
* Only xbs will be used on indexed trees. xis doesn't need a
* bucket.
*/
xbs.bucket = ocfs2_xattr_bucket_new(inode);
if (!xbs.bucket) {
mlog_errno(-ENOMEM);
return -ENOMEM;
}
had_lock = ocfs2_inode_lock_tracker(inode, &di_bh, 1, &oh);
if (had_lock < 0) {
ret = had_lock;
mlog_errno(ret);
goto cleanup_nolock;
}
xis.inode_bh = xbs.inode_bh = di_bh;
di = (struct ocfs2_dinode *)di_bh->b_data;
down_write(&OCFS2_I(inode)->ip_xattr_sem);
/*
* Scan inode and external block to find the same name
* extended attribute and collect search information.
*/
ret = ocfs2_xattr_ibody_find(inode, name_index, name, &xis);
if (ret)
goto cleanup;
if (xis.not_found) {
ret = ocfs2_xattr_block_find(inode, name_index, name, &xbs);
if (ret)
goto cleanup;
}
if (xis.not_found && xbs.not_found) {
ret = -ENODATA;
if (flags & XATTR_REPLACE)
goto cleanup;
ret = 0;
if (!value)
goto cleanup;
} else {
ret = -EEXIST;
if (flags & XATTR_CREATE)
goto cleanup;
}
/* Check whether the value is refcounted and do some preparation. */
if (ocfs2_is_refcount_inode(inode) &&
(!xis.not_found || !xbs.not_found)) {
ret = ocfs2_prepare_refcount_xattr(inode, di, &xi,
&xis, &xbs, &ref_tree,
&ref_meta, &ref_credits);
if (ret) {
mlog_errno(ret);
goto cleanup;
}
}
inode_lock(tl_inode);
if (ocfs2_truncate_log_needs_flush(osb)) {
ret = __ocfs2_flush_truncate_log(osb);
if (ret < 0) {
inode_unlock(tl_inode);
mlog_errno(ret);
goto cleanup;
}
}
inode_unlock(tl_inode);
ret = ocfs2_init_xattr_set_ctxt(inode, di, &xi, &xis,
&xbs, &ctxt, ref_meta, &credits);
if (ret) {
mlog_errno(ret);
goto cleanup;
}
/* we need to update inode's ctime field, so add credit for it. */
credits += OCFS2_INODE_UPDATE_CREDITS;
ctxt.handle = ocfs2_start_trans(osb, credits + ref_credits);
if (IS_ERR(ctxt.handle)) {
ret = PTR_ERR(ctxt.handle);
mlog_errno(ret);
goto out_free_ac;
}
ret = __ocfs2_xattr_set_handle(inode, di, &xi, &xis, &xbs, &ctxt);
ocfs2_update_inode_fsync_trans(ctxt.handle, inode, 0);
ocfs2_commit_trans(osb, ctxt.handle);
out_free_ac:
if (ctxt.data_ac)
ocfs2_free_alloc_context(ctxt.data_ac);
if (ctxt.meta_ac)
ocfs2_free_alloc_context(ctxt.meta_ac);
if (ocfs2_dealloc_has_cluster(&ctxt.dealloc))
ocfs2_schedule_truncate_log_flush(osb, 1);
ocfs2_run_deallocs(osb, &ctxt.dealloc);
cleanup:
if (ref_tree)
ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
up_write(&OCFS2_I(inode)->ip_xattr_sem);
if (!value && !ret) {
ret = ocfs2_try_remove_refcount_tree(inode, di_bh);
if (ret)
mlog_errno(ret);
}
ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
cleanup_nolock:
brelse(di_bh);
brelse(xbs.xattr_bh);
ocfs2_xattr_bucket_free(xbs.bucket);
return ret;
}
/*
* Find the xattr extent rec which may contains name_hash.
* e_cpos will be the first name hash of the xattr rec.
* el must be the ocfs2_xattr_header.xb_attrs.xb_root.xt_list.
*/
static int ocfs2_xattr_get_rec(struct inode *inode,
u32 name_hash,
u64 *p_blkno,
u32 *e_cpos,
u32 *num_clusters,
struct ocfs2_extent_list *el)
{
int ret = 0, i;
struct buffer_head *eb_bh = NULL;
struct ocfs2_extent_block *eb;
struct ocfs2_extent_rec *rec = NULL;
u64 e_blkno = 0;
if (el->l_tree_depth) {
ret = ocfs2_find_leaf(INODE_CACHE(inode), el, name_hash,
&eb_bh);
if (ret) {
mlog_errno(ret);
goto out;
}
eb = (struct ocfs2_extent_block *) eb_bh->b_data;
el = &eb->h_list;
if (el->l_tree_depth) {
ret = ocfs2_error(inode->i_sb,
"Inode %lu has non zero tree depth in xattr tree block %llu\n",
inode->i_ino,
(unsigned long long)eb_bh->b_blocknr);
goto out;
}
}
for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
rec = &el->l_recs[i];
if (le32_to_cpu(rec->e_cpos) <= name_hash) {
e_blkno = le64_to_cpu(rec->e_blkno);
break;
}
}
if (!e_blkno) {
ret = ocfs2_error(inode->i_sb, "Inode %lu has bad extent record (%u, %u, 0) in xattr\n",
inode->i_ino,
le32_to_cpu(rec->e_cpos),
ocfs2_rec_clusters(el, rec));
goto out;
}
*p_blkno = le64_to_cpu(rec->e_blkno);
*num_clusters = le16_to_cpu(rec->e_leaf_clusters);
if (e_cpos)
*e_cpos = le32_to_cpu(rec->e_cpos);
out:
brelse(eb_bh);
return ret;
}
typedef int (xattr_bucket_func)(struct inode *inode,
struct ocfs2_xattr_bucket *bucket,
void *para);
static int ocfs2_find_xe_in_bucket(struct inode *inode,
struct ocfs2_xattr_bucket *bucket,
int name_index,
const char *name,
u32 name_hash,
u16 *xe_index,
int *found)
{
int i, ret = 0, cmp = 1, block_off, new_offset;
struct ocfs2_xattr_header *xh = bucket_xh(bucket);
size_t name_len = strlen(name);
struct ocfs2_xattr_entry *xe = NULL;
char *xe_name;
/*
* We don't use binary search in the bucket because there
* may be multiple entries with the same name hash.
*/
for (i = 0; i < le16_to_cpu(xh->xh_count); i++) {
xe = &xh->xh_entries[i];
if (name_hash > le32_to_cpu(xe->xe_name_hash))
continue;
else if (name_hash < le32_to_cpu(xe->xe_name_hash))
break;
cmp = name_index - ocfs2_xattr_get_type(xe);
if (!cmp)
cmp = name_len - xe->xe_name_len;
if (cmp)
continue;
ret = ocfs2_xattr_bucket_get_name_value(inode->i_sb,
xh,
i,
&block_off,
&new_offset);
if (ret) {
mlog_errno(ret);
break;
}
xe_name = bucket_block(bucket, block_off) + new_offset;
if (!memcmp(name, xe_name, name_len)) {
*xe_index = i;
*found = 1;
ret = 0;
break;
}
}
return ret;
}
/*
* Find the specified xattr entry in a series of buckets.
* This series start from p_blkno and last for num_clusters.
* The ocfs2_xattr_header.xh_num_buckets of the first bucket contains
* the num of the valid buckets.
*
* Return the buffer_head this xattr should reside in. And if the xattr's
* hash is in the gap of 2 buckets, return the lower bucket.
*/
static int ocfs2_xattr_bucket_find(struct inode *inode,
int name_index,
const char *name,
u32 name_hash,
u64 p_blkno,
u32 first_hash,
u32 num_clusters,
struct ocfs2_xattr_search *xs)
{
int ret, found = 0;
struct ocfs2_xattr_header *xh = NULL;
struct ocfs2_xattr_entry *xe = NULL;
u16 index = 0;
u16 blk_per_bucket = ocfs2_blocks_per_xattr_bucket(inode->i_sb);
int low_bucket = 0, bucket, high_bucket;
struct ocfs2_xattr_bucket *search;
u32 last_hash;
u64 blkno, lower_blkno = 0;
search = ocfs2_xattr_bucket_new(inode);
if (!search) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
ret = ocfs2_read_xattr_bucket(search, p_blkno);
if (ret) {
mlog_errno(ret);
goto out;
}
xh = bucket_xh(search);
high_bucket = le16_to_cpu(xh->xh_num_buckets) - 1;
while (low_bucket <= high_bucket) {
ocfs2_xattr_bucket_relse(search);
bucket = (low_bucket + high_bucket) / 2;
blkno = p_blkno + bucket * blk_per_bucket;
ret = ocfs2_read_xattr_bucket(search, blkno);
if (ret) {
mlog_errno(ret);
goto out;
}
xh = bucket_xh(search);
xe = &xh->xh_entries[0];
if (name_hash < le32_to_cpu(xe->xe_name_hash)) {
high_bucket = bucket - 1;
continue;
}
/*
* Check whether the hash of the last entry in our
* bucket is larger than the search one. for an empty
* bucket, the last one is also the first one.
*/
if (xh->xh_count)
xe = &xh->xh_entries[le16_to_cpu(xh->xh_count) - 1];
last_hash = le32_to_cpu(xe->xe_name_hash);
/* record lower_blkno which may be the insert place. */
lower_blkno = blkno;
if (name_hash > le32_to_cpu(xe->xe_name_hash)) {
low_bucket = bucket + 1;
continue;
}
/* the searched xattr should reside in this bucket if exists. */
ret = ocfs2_find_xe_in_bucket(inode, search,
name_index, name, name_hash,
&index, &found);
if (ret) {
mlog_errno(ret);
goto out;
}
break;
}
/*
* Record the bucket we have found.
* When the xattr's hash value is in the gap of 2 buckets, we will
* always set it to the previous bucket.
*/
if (!lower_blkno)
lower_blkno = p_blkno;
/* This should be in cache - we just read it during the search */
ret = ocfs2_read_xattr_bucket(xs->bucket, lower_blkno);
if (ret) {
mlog_errno(ret);
goto out;
}
xs->header = bucket_xh(xs->bucket);
xs->base = bucket_block(xs->bucket, 0);
xs->end = xs->base + inode->i_sb->s_blocksize;
if (found) {
xs->here = &xs->header->xh_entries[index];
trace_ocfs2_xattr_bucket_find(OCFS2_I(inode)->ip_blkno,
name, name_index, name_hash,
(unsigned long long)bucket_blkno(xs->bucket),
index);
} else
ret = -ENODATA;
out:
ocfs2_xattr_bucket_free(search);
return ret;
}
static int ocfs2_xattr_index_block_find(struct inode *inode,
struct buffer_head *root_bh,
int name_index,
const char *name,
struct ocfs2_xattr_search *xs)
{
int ret;
struct ocfs2_xattr_block *xb =
(struct ocfs2_xattr_block *)root_bh->b_data;
struct ocfs2_xattr_tree_root *xb_root = &xb->xb_attrs.xb_root;
struct ocfs2_extent_list *el = &xb_root->xt_list;
u64 p_blkno = 0;
u32 first_hash, num_clusters = 0;
u32 name_hash = ocfs2_xattr_name_hash(inode, name, strlen(name));
if (le16_to_cpu(el->l_next_free_rec) == 0)
return -ENODATA;
trace_ocfs2_xattr_index_block_find(OCFS2_I(inode)->ip_blkno,
name, name_index, name_hash,
(unsigned long long)root_bh->b_blocknr,
-1);
ret = ocfs2_xattr_get_rec(inode, name_hash, &p_blkno, &first_hash,
&num_clusters, el);
if (ret) {
mlog_errno(ret);
goto out;
}
BUG_ON(p_blkno == 0 || num_clusters == 0 || first_hash > name_hash);
trace_ocfs2_xattr_index_block_find_rec(OCFS2_I(inode)->ip_blkno,
name, name_index, first_hash,
(unsigned long long)p_blkno,
num_clusters);
ret = ocfs2_xattr_bucket_find(inode, name_index, name, name_hash,
p_blkno, first_hash, num_clusters, xs);
out:
return ret;
}
static int ocfs2_iterate_xattr_buckets(struct inode *inode,
u64 blkno,
u32 clusters,
xattr_bucket_func *func,
void *para)
{
int i, ret = 0;
u32 bpc = ocfs2_xattr_buckets_per_cluster(OCFS2_SB(inode->i_sb));
u32 num_buckets = clusters * bpc;
struct ocfs2_xattr_bucket *bucket;
bucket = ocfs2_xattr_bucket_new(inode);
if (!bucket) {
mlog_errno(-ENOMEM);
return -ENOMEM;
}
trace_ocfs2_iterate_xattr_buckets(
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)blkno, clusters);
for (i = 0; i < num_buckets; i++, blkno += bucket->bu_blocks) {
ret = ocfs2_read_xattr_bucket(bucket, blkno);
if (ret) {
mlog_errno(ret);
break;
}
/*
* The real bucket num in this series of blocks is stored
* in the 1st bucket.
*/
if (i == 0)
num_buckets = le16_to_cpu(bucket_xh(bucket)->xh_num_buckets);
trace_ocfs2_iterate_xattr_bucket((unsigned long long)blkno,
le32_to_cpu(bucket_xh(bucket)->xh_entries[0].xe_name_hash));
if (func) {
ret = func(inode, bucket, para);
if (ret && ret != -ERANGE)
mlog_errno(ret);
/* Fall through to bucket_relse() */
}
ocfs2_xattr_bucket_relse(bucket);
if (ret)
break;
}
ocfs2_xattr_bucket_free(bucket);
return ret;
}
struct ocfs2_xattr_tree_list {
char *buffer;
size_t buffer_size;
size_t result;
};
static int ocfs2_xattr_bucket_get_name_value(struct super_block *sb,
struct ocfs2_xattr_header *xh,
int index,
int *block_off,
int *new_offset)
{
u16 name_offset;
if (index < 0 || index >= le16_to_cpu(xh->xh_count))
return -EINVAL;
name_offset = le16_to_cpu(xh->xh_entries[index].xe_name_offset);
*block_off = name_offset >> sb->s_blocksize_bits;
*new_offset = name_offset % sb->s_blocksize;
return 0;
}
static int ocfs2_list_xattr_bucket(struct inode *inode,
struct ocfs2_xattr_bucket *bucket,
void *para)
{
int ret = 0, type;
struct ocfs2_xattr_tree_list *xl = (struct ocfs2_xattr_tree_list *)para;
int i, block_off, new_offset;
const char *name;
for (i = 0 ; i < le16_to_cpu(bucket_xh(bucket)->xh_count); i++) {
struct ocfs2_xattr_entry *entry = &bucket_xh(bucket)->xh_entries[i];
type = ocfs2_xattr_get_type(entry);
ret = ocfs2_xattr_bucket_get_name_value(inode->i_sb,
bucket_xh(bucket),
i,
&block_off,
&new_offset);
if (ret)
break;
name = (const char *)bucket_block(bucket, block_off) +
new_offset;
ret = ocfs2_xattr_list_entry(inode->i_sb,
xl->buffer,
xl->buffer_size,
&xl->result,
type, name,
entry->xe_name_len);
if (ret)
break;
}
return ret;
}
static int ocfs2_iterate_xattr_index_block(struct inode *inode,
struct buffer_head *blk_bh,
xattr_tree_rec_func *rec_func,
void *para)
{
struct ocfs2_xattr_block *xb =
(struct ocfs2_xattr_block *)blk_bh->b_data;
struct ocfs2_extent_list *el = &xb->xb_attrs.xb_root.xt_list;
int ret = 0;
u32 name_hash = UINT_MAX, e_cpos = 0, num_clusters = 0;
u64 p_blkno = 0;
if (!el->l_next_free_rec || !rec_func)
return 0;
while (name_hash > 0) {
ret = ocfs2_xattr_get_rec(inode, name_hash, &p_blkno,
&e_cpos, &num_clusters, el);
if (ret) {
mlog_errno(ret);
break;
}
ret = rec_func(inode, blk_bh, p_blkno, e_cpos,
num_clusters, para);
if (ret) {
if (ret != -ERANGE)
mlog_errno(ret);
break;
}
if (e_cpos == 0)
break;
name_hash = e_cpos - 1;
}
return ret;
}
static int ocfs2_list_xattr_tree_rec(struct inode *inode,
struct buffer_head *root_bh,
u64 blkno, u32 cpos, u32 len, void *para)
{
return ocfs2_iterate_xattr_buckets(inode, blkno, len,
ocfs2_list_xattr_bucket, para);
}
static int ocfs2_xattr_tree_list_index_block(struct inode *inode,
struct buffer_head *blk_bh,
char *buffer,
size_t buffer_size)
{
int ret;
struct ocfs2_xattr_tree_list xl = {
.buffer = buffer,
.buffer_size = buffer_size,
.result = 0,
};
ret = ocfs2_iterate_xattr_index_block(inode, blk_bh,
ocfs2_list_xattr_tree_rec, &xl);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = xl.result;
out:
return ret;
}
static int cmp_xe(const void *a, const void *b)
{
const struct ocfs2_xattr_entry *l = a, *r = b;
u32 l_hash = le32_to_cpu(l->xe_name_hash);
u32 r_hash = le32_to_cpu(r->xe_name_hash);
if (l_hash > r_hash)
return 1;
if (l_hash < r_hash)
return -1;
return 0;
}
static void swap_xe(void *a, void *b, int size)
{
struct ocfs2_xattr_entry *l = a, *r = b, tmp;
tmp = *l;
memcpy(l, r, sizeof(struct ocfs2_xattr_entry));
memcpy(r, &tmp, sizeof(struct ocfs2_xattr_entry));
}
/*
* When the ocfs2_xattr_block is filled up, new bucket will be created
* and all the xattr entries will be moved to the new bucket.
* The header goes at the start of the bucket, and the names+values are
* filled from the end. This is why *target starts as the last buffer.
* Note: we need to sort the entries since they are not saved in order
* in the ocfs2_xattr_block.
*/
static void ocfs2_cp_xattr_block_to_bucket(struct inode *inode,
struct buffer_head *xb_bh,
struct ocfs2_xattr_bucket *bucket)
{
int i, blocksize = inode->i_sb->s_blocksize;
int blks = ocfs2_blocks_per_xattr_bucket(inode->i_sb);
u16 offset, size, off_change;
struct ocfs2_xattr_entry *xe;
struct ocfs2_xattr_block *xb =
(struct ocfs2_xattr_block *)xb_bh->b_data;
struct ocfs2_xattr_header *xb_xh = &xb->xb_attrs.xb_header;
struct ocfs2_xattr_header *xh = bucket_xh(bucket);
u16 count = le16_to_cpu(xb_xh->xh_count);
char *src = xb_bh->b_data;
char *target = bucket_block(bucket, blks - 1);
trace_ocfs2_cp_xattr_block_to_bucket_begin(
(unsigned long long)xb_bh->b_blocknr,
(unsigned long long)bucket_blkno(bucket));
for (i = 0; i < blks; i++)
memset(bucket_block(bucket, i), 0, blocksize);
/*
* Since the xe_name_offset is based on ocfs2_xattr_header,
* there is a offset change corresponding to the change of
* ocfs2_xattr_header's position.
*/
off_change = offsetof(struct ocfs2_xattr_block, xb_attrs.xb_header);
xe = &xb_xh->xh_entries[count - 1];
offset = le16_to_cpu(xe->xe_name_offset) + off_change;
size = blocksize - offset;
/* copy all the names and values. */
memcpy(target + offset, src + offset, size);
/* Init new header now. */
xh->xh_count = xb_xh->xh_count;
xh->xh_num_buckets = cpu_to_le16(1);
xh->xh_name_value_len = cpu_to_le16(size);
xh->xh_free_start = cpu_to_le16(OCFS2_XATTR_BUCKET_SIZE - size);
/* copy all the entries. */
target = bucket_block(bucket, 0);
offset = offsetof(struct ocfs2_xattr_header, xh_entries);
size = count * sizeof(struct ocfs2_xattr_entry);
memcpy(target + offset, (char *)xb_xh + offset, size);
/* Change the xe offset for all the xe because of the move. */
off_change = OCFS2_XATTR_BUCKET_SIZE - blocksize +
offsetof(struct ocfs2_xattr_block, xb_attrs.xb_header);
for (i = 0; i < count; i++)
le16_add_cpu(&xh->xh_entries[i].xe_name_offset, off_change);
trace_ocfs2_cp_xattr_block_to_bucket_end(offset, size, off_change);
sort(target + offset, count, sizeof(struct ocfs2_xattr_entry),
cmp_xe, swap_xe);
}
/*
* After we move xattr from block to index btree, we have to
* update ocfs2_xattr_search to the new xe and base.
*
* When the entry is in xattr block, xattr_bh indicates the storage place.
* While if the entry is in index b-tree, "bucket" indicates the
* real place of the xattr.
*/
static void ocfs2_xattr_update_xattr_search(struct inode *inode,
struct ocfs2_xattr_search *xs,
struct buffer_head *old_bh)
{
char *buf = old_bh->b_data;
struct ocfs2_xattr_block *old_xb = (struct ocfs2_xattr_block *)buf;
struct ocfs2_xattr_header *old_xh = &old_xb->xb_attrs.xb_header;
int i;
xs->header = bucket_xh(xs->bucket);
xs->base = bucket_block(xs->bucket, 0);
xs->end = xs->base + inode->i_sb->s_blocksize;
if (xs->not_found)
return;
i = xs->here - old_xh->xh_entries;
xs->here = &xs->header->xh_entries[i];
}
static int ocfs2_xattr_create_index_block(struct inode *inode,
struct ocfs2_xattr_search *xs,
struct ocfs2_xattr_set_ctxt *ctxt)
{
int ret;
u32 bit_off, len;
u64 blkno;
handle_t *handle = ctxt->handle;
struct ocfs2_inode_info *oi = OCFS2_I(inode);
struct buffer_head *xb_bh = xs->xattr_bh;
struct ocfs2_xattr_block *xb =
(struct ocfs2_xattr_block *)xb_bh->b_data;
struct ocfs2_xattr_tree_root *xr;
u16 xb_flags = le16_to_cpu(xb->xb_flags);
trace_ocfs2_xattr_create_index_block_begin(
(unsigned long long)xb_bh->b_blocknr);
BUG_ON(xb_flags & OCFS2_XATTR_INDEXED);
BUG_ON(!xs->bucket);
/*
* XXX:
* We can use this lock for now, and maybe move to a dedicated mutex
* if performance becomes a problem later.
*/
down_write(&oi->ip_alloc_sem);
ret = ocfs2_journal_access_xb(handle, INODE_CACHE(inode), xb_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = __ocfs2_claim_clusters(handle, ctxt->data_ac,
1, 1, &bit_off, &len);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* The bucket may spread in many blocks, and
* we will only touch the 1st block and the last block
* in the whole bucket(one for entry and one for data).
*/
blkno = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
trace_ocfs2_xattr_create_index_block((unsigned long long)blkno);
ret = ocfs2_init_xattr_bucket(xs->bucket, blkno, 1);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_xattr_bucket_journal_access(handle, xs->bucket,
OCFS2_JOURNAL_ACCESS_CREATE);
if (ret) {
mlog_errno(ret);
goto out;
}
ocfs2_cp_xattr_block_to_bucket(inode, xb_bh, xs->bucket);
ocfs2_xattr_bucket_journal_dirty(handle, xs->bucket);
ocfs2_xattr_update_xattr_search(inode, xs, xb_bh);
/* Change from ocfs2_xattr_header to ocfs2_xattr_tree_root */
memset(&xb->xb_attrs, 0, inode->i_sb->s_blocksize -
offsetof(struct ocfs2_xattr_block, xb_attrs));
xr = &xb->xb_attrs.xb_root;
xr->xt_clusters = cpu_to_le32(1);
xr->xt_last_eb_blk = 0;
xr->xt_list.l_tree_depth = 0;
xr->xt_list.l_count = cpu_to_le16(ocfs2_xattr_recs_per_xb(inode->i_sb));
xr->xt_list.l_next_free_rec = cpu_to_le16(1);
xr->xt_list.l_recs[0].e_cpos = 0;
xr->xt_list.l_recs[0].e_blkno = cpu_to_le64(blkno);
xr->xt_list.l_recs[0].e_leaf_clusters = cpu_to_le16(1);
xb->xb_flags = cpu_to_le16(xb_flags | OCFS2_XATTR_INDEXED);
ocfs2_journal_dirty(handle, xb_bh);
out:
up_write(&oi->ip_alloc_sem);
return ret;
}
static int cmp_xe_offset(const void *a, const void *b)
{
const struct ocfs2_xattr_entry *l = a, *r = b;
u32 l_name_offset = le16_to_cpu(l->xe_name_offset);
u32 r_name_offset = le16_to_cpu(r->xe_name_offset);
if (l_name_offset < r_name_offset)
return 1;
if (l_name_offset > r_name_offset)
return -1;
return 0;
}
/*
* defrag a xattr bucket if we find that the bucket has some
* holes beteen name/value pairs.
* We will move all the name/value pairs to the end of the bucket
* so that we can spare some space for insertion.
*/
static int ocfs2_defrag_xattr_bucket(struct inode *inode,
handle_t *handle,
struct ocfs2_xattr_bucket *bucket)
{
int ret, i;
size_t end, offset, len;
struct ocfs2_xattr_header *xh;
char *entries, *buf, *bucket_buf = NULL;
u64 blkno = bucket_blkno(bucket);
u16 xh_free_start;
size_t blocksize = inode->i_sb->s_blocksize;
struct ocfs2_xattr_entry *xe;
/*
* In order to make the operation more efficient and generic,
* we copy all the blocks into a contiguous memory and do the
* defragment there, so if anything is error, we will not touch
* the real block.
*/
bucket_buf = kmalloc(OCFS2_XATTR_BUCKET_SIZE, GFP_NOFS);
if (!bucket_buf) {
ret = -EIO;
goto out;
}
buf = bucket_buf;
for (i = 0; i < bucket->bu_blocks; i++, buf += blocksize)
memcpy(buf, bucket_block(bucket, i), blocksize);
ret = ocfs2_xattr_bucket_journal_access(handle, bucket,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
xh = (struct ocfs2_xattr_header *)bucket_buf;
entries = (char *)xh->xh_entries;
xh_free_start = le16_to_cpu(xh->xh_free_start);
trace_ocfs2_defrag_xattr_bucket(
(unsigned long long)blkno, le16_to_cpu(xh->xh_count),
xh_free_start, le16_to_cpu(xh->xh_name_value_len));
/*
* sort all the entries by their offset.
* the largest will be the first, so that we can
* move them to the end one by one.
*/
sort(entries, le16_to_cpu(xh->xh_count),
sizeof(struct ocfs2_xattr_entry),
cmp_xe_offset, swap_xe);
/* Move all name/values to the end of the bucket. */
xe = xh->xh_entries;
end = OCFS2_XATTR_BUCKET_SIZE;
for (i = 0; i < le16_to_cpu(xh->xh_count); i++, xe++) {
offset = le16_to_cpu(xe->xe_name_offset);
len = namevalue_size_xe(xe);
/*
* We must make sure that the name/value pair
* exist in the same block. So adjust end to
* the previous block end if needed.
*/
if (((end - len) / blocksize !=
(end - 1) / blocksize))
end = end - end % blocksize;
if (end > offset + len) {
memmove(bucket_buf + end - len,
bucket_buf + offset, len);
xe->xe_name_offset = cpu_to_le16(end - len);
}
mlog_bug_on_msg(end < offset + len, "Defrag check failed for "
"bucket %llu\n", (unsigned long long)blkno);
end -= len;
}
mlog_bug_on_msg(xh_free_start > end, "Defrag check failed for "
"bucket %llu\n", (unsigned long long)blkno);
if (xh_free_start == end)
goto out;
memset(bucket_buf + xh_free_start, 0, end - xh_free_start);
xh->xh_free_start = cpu_to_le16(end);
/* sort the entries by their name_hash. */
sort(entries, le16_to_cpu(xh->xh_count),
sizeof(struct ocfs2_xattr_entry),
cmp_xe, swap_xe);
buf = bucket_buf;
for (i = 0; i < bucket->bu_blocks; i++, buf += blocksize)
memcpy(bucket_block(bucket, i), buf, blocksize);
ocfs2_xattr_bucket_journal_dirty(handle, bucket);
out:
kfree(bucket_buf);
return ret;
}
/*
* prev_blkno points to the start of an existing extent. new_blkno
* points to a newly allocated extent. Because we know each of our
* clusters contains more than bucket, we can easily split one cluster
* at a bucket boundary. So we take the last cluster of the existing
* extent and split it down the middle. We move the last half of the
* buckets in the last cluster of the existing extent over to the new
* extent.
*
* first_bh is the buffer at prev_blkno so we can update the existing
* extent's bucket count. header_bh is the bucket were we were hoping
* to insert our xattr. If the bucket move places the target in the new
* extent, we'll update first_bh and header_bh after modifying the old
* extent.
*
* first_hash will be set as the 1st xe's name_hash in the new extent.
*/
static int ocfs2_mv_xattr_bucket_cross_cluster(struct inode *inode,
handle_t *handle,
struct ocfs2_xattr_bucket *first,
struct ocfs2_xattr_bucket *target,
u64 new_blkno,
u32 num_clusters,
u32 *first_hash)
{
int ret;
struct super_block *sb = inode->i_sb;
int blks_per_bucket = ocfs2_blocks_per_xattr_bucket(sb);
int num_buckets = ocfs2_xattr_buckets_per_cluster(OCFS2_SB(sb));
int to_move = num_buckets / 2;
u64 src_blkno;
u64 last_cluster_blkno = bucket_blkno(first) +
((num_clusters - 1) * ocfs2_clusters_to_blocks(sb, 1));
BUG_ON(le16_to_cpu(bucket_xh(first)->xh_num_buckets) < num_buckets);
BUG_ON(OCFS2_XATTR_BUCKET_SIZE == OCFS2_SB(sb)->s_clustersize);
trace_ocfs2_mv_xattr_bucket_cross_cluster(
(unsigned long long)last_cluster_blkno,
(unsigned long long)new_blkno);
ret = ocfs2_mv_xattr_buckets(inode, handle, bucket_blkno(first),
last_cluster_blkno, new_blkno,
to_move, first_hash);
if (ret) {
mlog_errno(ret);
goto out;
}
/* This is the first bucket that got moved */
src_blkno = last_cluster_blkno + (to_move * blks_per_bucket);
/*
* If the target bucket was part of the moved buckets, we need to
* update first and target.
*/
if (bucket_blkno(target) >= src_blkno) {
/* Find the block for the new target bucket */
src_blkno = new_blkno +
(bucket_blkno(target) - src_blkno);
ocfs2_xattr_bucket_relse(first);
ocfs2_xattr_bucket_relse(target);
/*
* These shouldn't fail - the buffers are in the
* journal from ocfs2_cp_xattr_bucket().
*/
ret = ocfs2_read_xattr_bucket(first, new_blkno);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_read_xattr_bucket(target, src_blkno);
if (ret)
mlog_errno(ret);
}
out:
return ret;
}
/*
* Find the suitable pos when we divide a bucket into 2.
* We have to make sure the xattrs with the same hash value exist
* in the same bucket.
*
* If this ocfs2_xattr_header covers more than one hash value, find a
* place where the hash value changes. Try to find the most even split.
* The most common case is that all entries have different hash values,
* and the first check we make will find a place to split.
*/
static int ocfs2_xattr_find_divide_pos(struct ocfs2_xattr_header *xh)
{
struct ocfs2_xattr_entry *entries = xh->xh_entries;
int count = le16_to_cpu(xh->xh_count);
int delta, middle = count / 2;
/*
* We start at the middle. Each step gets farther away in both
* directions. We therefore hit the change in hash value
* nearest to the middle. Note that this loop does not execute for
* count < 2.
*/
for (delta = 0; delta < middle; delta++) {
/* Let's check delta earlier than middle */
if (cmp_xe(&entries[middle - delta - 1],
&entries[middle - delta]))
return middle - delta;
/* For even counts, don't walk off the end */
if ((middle + delta + 1) == count)
continue;
/* Now try delta past middle */
if (cmp_xe(&entries[middle + delta],
&entries[middle + delta + 1]))
return middle + delta + 1;
}
/* Every entry had the same hash */
return count;
}
/*
* Move some xattrs in old bucket(blk) to new bucket(new_blk).
* first_hash will record the 1st hash of the new bucket.
*
* Normally half of the xattrs will be moved. But we have to make
* sure that the xattrs with the same hash value are stored in the
* same bucket. If all the xattrs in this bucket have the same hash
* value, the new bucket will be initialized as an empty one and the
* first_hash will be initialized as (hash_value+1).
*/
static int ocfs2_divide_xattr_bucket(struct inode *inode,
handle_t *handle,
u64 blk,
u64 new_blk,
u32 *first_hash,
int new_bucket_head)
{
int ret, i;
int count, start, len, name_value_len = 0, name_offset = 0;
struct ocfs2_xattr_bucket *s_bucket = NULL, *t_bucket = NULL;
struct ocfs2_xattr_header *xh;
struct ocfs2_xattr_entry *xe;
int blocksize = inode->i_sb->s_blocksize;
trace_ocfs2_divide_xattr_bucket_begin((unsigned long long)blk,
(unsigned long long)new_blk);
s_bucket = ocfs2_xattr_bucket_new(inode);
t_bucket = ocfs2_xattr_bucket_new(inode);
if (!s_bucket || !t_bucket) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
ret = ocfs2_read_xattr_bucket(s_bucket, blk);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_xattr_bucket_journal_access(handle, s_bucket,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* Even if !new_bucket_head, we're overwriting t_bucket. Thus,
* there's no need to read it.
*/
ret = ocfs2_init_xattr_bucket(t_bucket, new_blk, new_bucket_head);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* Hey, if we're overwriting t_bucket, what difference does
* ACCESS_CREATE vs ACCESS_WRITE make? See the comment in the
* same part of ocfs2_cp_xattr_bucket().
*/
ret = ocfs2_xattr_bucket_journal_access(handle, t_bucket,
new_bucket_head ?
OCFS2_JOURNAL_ACCESS_CREATE :
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
xh = bucket_xh(s_bucket);
count = le16_to_cpu(xh->xh_count);
start = ocfs2_xattr_find_divide_pos(xh);
if (start == count) {
xe = &xh->xh_entries[start-1];
/*
* initialized a new empty bucket here.
* The hash value is set as one larger than
* that of the last entry in the previous bucket.
*/
for (i = 0; i < t_bucket->bu_blocks; i++)
memset(bucket_block(t_bucket, i), 0, blocksize);
xh = bucket_xh(t_bucket);
xh->xh_free_start = cpu_to_le16(blocksize);
xh->xh_entries[0].xe_name_hash = xe->xe_name_hash;
le32_add_cpu(&xh->xh_entries[0].xe_name_hash, 1);
goto set_num_buckets;
}
/* copy the whole bucket to the new first. */
ocfs2_xattr_bucket_copy_data(t_bucket, s_bucket);
/* update the new bucket. */
xh = bucket_xh(t_bucket);
/*
* Calculate the total name/value len and xh_free_start for
* the old bucket first.
*/
name_offset = OCFS2_XATTR_BUCKET_SIZE;
name_value_len = 0;
for (i = 0; i < start; i++) {
xe = &xh->xh_entries[i];
name_value_len += namevalue_size_xe(xe);
if (le16_to_cpu(xe->xe_name_offset) < name_offset)
name_offset = le16_to_cpu(xe->xe_name_offset);
}
/*
* Now begin the modification to the new bucket.
*
* In the new bucket, We just move the xattr entry to the beginning
* and don't touch the name/value. So there will be some holes in the
* bucket, and they will be removed when ocfs2_defrag_xattr_bucket is
* called.
*/
xe = &xh->xh_entries[start];
len = sizeof(struct ocfs2_xattr_entry) * (count - start);
trace_ocfs2_divide_xattr_bucket_move(len,
(int)((char *)xe - (char *)xh),
(int)((char *)xh->xh_entries - (char *)xh));
memmove((char *)xh->xh_entries, (char *)xe, len);
xe = &xh->xh_entries[count - start];
len = sizeof(struct ocfs2_xattr_entry) * start;
memset((char *)xe, 0, len);
le16_add_cpu(&xh->xh_count, -start);
le16_add_cpu(&xh->xh_name_value_len, -name_value_len);
/* Calculate xh_free_start for the new bucket. */
xh->xh_free_start = cpu_to_le16(OCFS2_XATTR_BUCKET_SIZE);
for (i = 0; i < le16_to_cpu(xh->xh_count); i++) {
xe = &xh->xh_entries[i];
if (le16_to_cpu(xe->xe_name_offset) <
le16_to_cpu(xh->xh_free_start))
xh->xh_free_start = xe->xe_name_offset;
}
set_num_buckets:
/* set xh->xh_num_buckets for the new xh. */
if (new_bucket_head)
xh->xh_num_buckets = cpu_to_le16(1);
else
xh->xh_num_buckets = 0;
ocfs2_xattr_bucket_journal_dirty(handle, t_bucket);
/* store the first_hash of the new bucket. */
if (first_hash)
*first_hash = le32_to_cpu(xh->xh_entries[0].xe_name_hash);
/*
* Now only update the 1st block of the old bucket. If we
* just added a new empty bucket, there is no need to modify
* it.
*/
if (start == count)
goto out;
xh = bucket_xh(s_bucket);
memset(&xh->xh_entries[start], 0,
sizeof(struct ocfs2_xattr_entry) * (count - start));
xh->xh_count = cpu_to_le16(start);
xh->xh_free_start = cpu_to_le16(name_offset);
xh->xh_name_value_len = cpu_to_le16(name_value_len);
ocfs2_xattr_bucket_journal_dirty(handle, s_bucket);
out:
ocfs2_xattr_bucket_free(s_bucket);
ocfs2_xattr_bucket_free(t_bucket);
return ret;
}
/*
* Copy xattr from one bucket to another bucket.
*
* The caller must make sure that the journal transaction
* has enough space for journaling.
*/
static int ocfs2_cp_xattr_bucket(struct inode *inode,
handle_t *handle,
u64 s_blkno,
u64 t_blkno,
int t_is_new)
{
int ret;
struct ocfs2_xattr_bucket *s_bucket = NULL, *t_bucket = NULL;
BUG_ON(s_blkno == t_blkno);
trace_ocfs2_cp_xattr_bucket((unsigned long long)s_blkno,
(unsigned long long)t_blkno,
t_is_new);
s_bucket = ocfs2_xattr_bucket_new(inode);
t_bucket = ocfs2_xattr_bucket_new(inode);
if (!s_bucket || !t_bucket) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
ret = ocfs2_read_xattr_bucket(s_bucket, s_blkno);
if (ret)
goto out;
/*
* Even if !t_is_new, we're overwriting t_bucket. Thus,
* there's no need to read it.
*/
ret = ocfs2_init_xattr_bucket(t_bucket, t_blkno, t_is_new);
if (ret)
goto out;
/*
* Hey, if we're overwriting t_bucket, what difference does
* ACCESS_CREATE vs ACCESS_WRITE make? Well, if we allocated a new
* cluster to fill, we came here from
* ocfs2_mv_xattr_buckets(), and it is really new -
* ACCESS_CREATE is required. But we also might have moved data
* out of t_bucket before extending back into it.
* ocfs2_add_new_xattr_bucket() can do this - its call to
* ocfs2_add_new_xattr_cluster() may have created a new extent
* and copied out the end of the old extent. Then it re-extends
* the old extent back to create space for new xattrs. That's
* how we get here, and the bucket isn't really new.
*/
ret = ocfs2_xattr_bucket_journal_access(handle, t_bucket,
t_is_new ?
OCFS2_JOURNAL_ACCESS_CREATE :
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret)
goto out;
ocfs2_xattr_bucket_copy_data(t_bucket, s_bucket);
ocfs2_xattr_bucket_journal_dirty(handle, t_bucket);
out:
ocfs2_xattr_bucket_free(t_bucket);
ocfs2_xattr_bucket_free(s_bucket);
return ret;
}
/*
* src_blk points to the start of an existing extent. last_blk points to
* last cluster in that extent. to_blk points to a newly allocated
* extent. We copy the buckets from the cluster at last_blk to the new
* extent. If start_bucket is non-zero, we skip that many buckets before
* we start copying. The new extent's xh_num_buckets gets set to the
* number of buckets we copied. The old extent's xh_num_buckets shrinks
* by the same amount.
*/
static int ocfs2_mv_xattr_buckets(struct inode *inode, handle_t *handle,
u64 src_blk, u64 last_blk, u64 to_blk,
unsigned int start_bucket,
u32 *first_hash)
{
int i, ret, credits;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
int blks_per_bucket = ocfs2_blocks_per_xattr_bucket(inode->i_sb);
int num_buckets = ocfs2_xattr_buckets_per_cluster(osb);
struct ocfs2_xattr_bucket *old_first, *new_first;
trace_ocfs2_mv_xattr_buckets((unsigned long long)last_blk,
(unsigned long long)to_blk);
BUG_ON(start_bucket >= num_buckets);
if (start_bucket) {
num_buckets -= start_bucket;
last_blk += (start_bucket * blks_per_bucket);
}
/* The first bucket of the original extent */
old_first = ocfs2_xattr_bucket_new(inode);
/* The first bucket of the new extent */
new_first = ocfs2_xattr_bucket_new(inode);
if (!old_first || !new_first) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
ret = ocfs2_read_xattr_bucket(old_first, src_blk);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* We need to update the first bucket of the old extent and all
* the buckets going to the new extent.
*/
credits = ((num_buckets + 1) * blks_per_bucket);
ret = ocfs2_extend_trans(handle, credits);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_xattr_bucket_journal_access(handle, old_first,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
for (i = 0; i < num_buckets; i++) {
ret = ocfs2_cp_xattr_bucket(inode, handle,
last_blk + (i * blks_per_bucket),
to_blk + (i * blks_per_bucket),
1);
if (ret) {
mlog_errno(ret);
goto out;
}
}
/*
* Get the new bucket ready before we dirty anything
* (This actually shouldn't fail, because we already dirtied
* it once in ocfs2_cp_xattr_bucket()).
*/
ret = ocfs2_read_xattr_bucket(new_first, to_blk);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_xattr_bucket_journal_access(handle, new_first,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
/* Now update the headers */
le16_add_cpu(&bucket_xh(old_first)->xh_num_buckets, -num_buckets);
ocfs2_xattr_bucket_journal_dirty(handle, old_first);
bucket_xh(new_first)->xh_num_buckets = cpu_to_le16(num_buckets);
ocfs2_xattr_bucket_journal_dirty(handle, new_first);
if (first_hash)
*first_hash = le32_to_cpu(bucket_xh(new_first)->xh_entries[0].xe_name_hash);
out:
ocfs2_xattr_bucket_free(new_first);
ocfs2_xattr_bucket_free(old_first);
return ret;
}
/*
* Move some xattrs in this cluster to the new cluster.
* This function should only be called when bucket size == cluster size.
* Otherwise ocfs2_mv_xattr_bucket_cross_cluster should be used instead.
*/
static int ocfs2_divide_xattr_cluster(struct inode *inode,
handle_t *handle,
u64 prev_blk,
u64 new_blk,
u32 *first_hash)
{
u16 blk_per_bucket = ocfs2_blocks_per_xattr_bucket(inode->i_sb);
int ret, credits = 2 * blk_per_bucket;
BUG_ON(OCFS2_XATTR_BUCKET_SIZE < OCFS2_SB(inode->i_sb)->s_clustersize);
ret = ocfs2_extend_trans(handle, credits);
if (ret) {
mlog_errno(ret);
return ret;
}
/* Move half of the xattr in start_blk to the next bucket. */
return ocfs2_divide_xattr_bucket(inode, handle, prev_blk,
new_blk, first_hash, 1);
}
/*
* Move some xattrs from the old cluster to the new one since they are not
* contiguous in ocfs2 xattr tree.
*
* new_blk starts a new separate cluster, and we will move some xattrs from
* prev_blk to it. v_start will be set as the first name hash value in this
* new cluster so that it can be used as e_cpos during tree insertion and
* don't collide with our original b-tree operations. first_bh and header_bh
* will also be updated since they will be used in ocfs2_extend_xattr_bucket
* to extend the insert bucket.
*
* The problem is how much xattr should we move to the new one and when should
* we update first_bh and header_bh?
* 1. If cluster size > bucket size, that means the previous cluster has more
* than 1 bucket, so just move half nums of bucket into the new cluster and
* update the first_bh and header_bh if the insert bucket has been moved
* to the new cluster.
* 2. If cluster_size == bucket_size:
* a) If the previous extent rec has more than one cluster and the insert
* place isn't in the last cluster, copy the entire last cluster to the
* new one. This time, we don't need to upate the first_bh and header_bh
* since they will not be moved into the new cluster.
* b) Otherwise, move the bottom half of the xattrs in the last cluster into
* the new one. And we set the extend flag to zero if the insert place is
* moved into the new allocated cluster since no extend is needed.
*/
static int ocfs2_adjust_xattr_cross_cluster(struct inode *inode,
handle_t *handle,
struct ocfs2_xattr_bucket *first,
struct ocfs2_xattr_bucket *target,
u64 new_blk,
u32 prev_clusters,
u32 *v_start,
int *extend)
{
int ret;
trace_ocfs2_adjust_xattr_cross_cluster(
(unsigned long long)bucket_blkno(first),
(unsigned long long)new_blk, prev_clusters);
if (ocfs2_xattr_buckets_per_cluster(OCFS2_SB(inode->i_sb)) > 1) {
ret = ocfs2_mv_xattr_bucket_cross_cluster(inode,
handle,
first, target,
new_blk,
prev_clusters,
v_start);
if (ret)
mlog_errno(ret);
} else {
/* The start of the last cluster in the first extent */
u64 last_blk = bucket_blkno(first) +
((prev_clusters - 1) *
ocfs2_clusters_to_blocks(inode->i_sb, 1));
if (prev_clusters > 1 && bucket_blkno(target) != last_blk) {
ret = ocfs2_mv_xattr_buckets(inode, handle,
bucket_blkno(first),
last_blk, new_blk, 0,
v_start);
if (ret)
mlog_errno(ret);
} else {
ret = ocfs2_divide_xattr_cluster(inode, handle,
last_blk, new_blk,
v_start);
if (ret)
mlog_errno(ret);
if ((bucket_blkno(target) == last_blk) && extend)
*extend = 0;
}
}
return ret;
}
/*
* Add a new cluster for xattr storage.
*
* If the new cluster is contiguous with the previous one, it will be
* appended to the same extent record, and num_clusters will be updated.
* If not, we will insert a new extent for it and move some xattrs in
* the last cluster into the new allocated one.
* We also need to limit the maximum size of a btree leaf, otherwise we'll
* lose the benefits of hashing because we'll have to search large leaves.
* So now the maximum size is OCFS2_MAX_XATTR_TREE_LEAF_SIZE(or clustersize,
* if it's bigger).
*
* first_bh is the first block of the previous extent rec and header_bh
* indicates the bucket we will insert the new xattrs. They will be updated
* when the header_bh is moved into the new cluster.
*/
static int ocfs2_add_new_xattr_cluster(struct inode *inode,
struct buffer_head *root_bh,
struct ocfs2_xattr_bucket *first,
struct ocfs2_xattr_bucket *target,
u32 *num_clusters,
u32 prev_cpos,
int *extend,
struct ocfs2_xattr_set_ctxt *ctxt)
{
int ret;
u16 bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
u32 prev_clusters = *num_clusters;
u32 clusters_to_add = 1, bit_off, num_bits, v_start = 0;
u64 block;
handle_t *handle = ctxt->handle;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct ocfs2_extent_tree et;
trace_ocfs2_add_new_xattr_cluster_begin(
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)bucket_blkno(first),
prev_cpos, prev_clusters);
ocfs2_init_xattr_tree_extent_tree(&et, INODE_CACHE(inode), root_bh);
ret = ocfs2_journal_access_xb(handle, INODE_CACHE(inode), root_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret < 0) {
mlog_errno(ret);
goto leave;
}
ret = __ocfs2_claim_clusters(handle, ctxt->data_ac, 1,
clusters_to_add, &bit_off, &num_bits);
if (ret < 0) {
if (ret != -ENOSPC)
mlog_errno(ret);
goto leave;
}
BUG_ON(num_bits > clusters_to_add);
block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
trace_ocfs2_add_new_xattr_cluster((unsigned long long)block, num_bits);
if (bucket_blkno(first) + (prev_clusters * bpc) == block &&
(prev_clusters + num_bits) << osb->s_clustersize_bits <=
OCFS2_MAX_XATTR_TREE_LEAF_SIZE) {
/*
* If this cluster is contiguous with the old one and
* adding this new cluster, we don't surpass the limit of
* OCFS2_MAX_XATTR_TREE_LEAF_SIZE, cool. We will let it be
* initialized and used like other buckets in the previous
* cluster.
* So add it as a contiguous one. The caller will handle
* its init process.
*/
v_start = prev_cpos + prev_clusters;
*num_clusters = prev_clusters + num_bits;
} else {
ret = ocfs2_adjust_xattr_cross_cluster(inode,
handle,
first,
target,
block,
prev_clusters,
&v_start,
extend);
if (ret) {
mlog_errno(ret);
goto leave;
}
}
trace_ocfs2_add_new_xattr_cluster_insert((unsigned long long)block,
v_start, num_bits);
ret = ocfs2_insert_extent(handle, &et, v_start, block,
num_bits, 0, ctxt->meta_ac);
if (ret < 0) {
mlog_errno(ret);
goto leave;
}
ocfs2_journal_dirty(handle, root_bh);
leave:
return ret;
}
/*
* We are given an extent. 'first' is the bucket at the very front of
* the extent. The extent has space for an additional bucket past
* bucket_xh(first)->xh_num_buckets. 'target_blkno' is the block number
* of the target bucket. We wish to shift every bucket past the target
* down one, filling in that additional space. When we get back to the
* target, we split the target between itself and the now-empty bucket
* at target+1 (aka, target_blkno + blks_per_bucket).
*/
static int ocfs2_extend_xattr_bucket(struct inode *inode,
handle_t *handle,
struct ocfs2_xattr_bucket *first,
u64 target_blk,
u32 num_clusters)
{
int ret, credits;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
u16 blk_per_bucket = ocfs2_blocks_per_xattr_bucket(inode->i_sb);
u64 end_blk;
u16 new_bucket = le16_to_cpu(bucket_xh(first)->xh_num_buckets);
trace_ocfs2_extend_xattr_bucket((unsigned long long)target_blk,
(unsigned long long)bucket_blkno(first),
num_clusters, new_bucket);
/* The extent must have room for an additional bucket */
BUG_ON(new_bucket >=
(num_clusters * ocfs2_xattr_buckets_per_cluster(osb)));
/* end_blk points to the last existing bucket */
end_blk = bucket_blkno(first) + ((new_bucket - 1) * blk_per_bucket);
/*
* end_blk is the start of the last existing bucket.
* Thus, (end_blk - target_blk) covers the target bucket and
* every bucket after it up to, but not including, the last
* existing bucket. Then we add the last existing bucket, the
* new bucket, and the first bucket (3 * blk_per_bucket).
*/
credits = (end_blk - target_blk) + (3 * blk_per_bucket);
ret = ocfs2_extend_trans(handle, credits);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_xattr_bucket_journal_access(handle, first,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
while (end_blk != target_blk) {
ret = ocfs2_cp_xattr_bucket(inode, handle, end_blk,
end_blk + blk_per_bucket, 0);
if (ret)
goto out;
end_blk -= blk_per_bucket;
}
/* Move half of the xattr in target_blkno to the next bucket. */
ret = ocfs2_divide_xattr_bucket(inode, handle, target_blk,
target_blk + blk_per_bucket, NULL, 0);
le16_add_cpu(&bucket_xh(first)->xh_num_buckets, 1);
ocfs2_xattr_bucket_journal_dirty(handle, first);
out:
return ret;
}
/*
* Add new xattr bucket in an extent record and adjust the buckets
* accordingly. xb_bh is the ocfs2_xattr_block, and target is the
* bucket we want to insert into.
*
* In the easy case, we will move all the buckets after target down by
* one. Half of target's xattrs will be moved to the next bucket.
*
* If current cluster is full, we'll allocate a new one. This may not
* be contiguous. The underlying calls will make sure that there is
* space for the insert, shifting buckets around if necessary.
* 'target' may be moved by those calls.
*/
static int ocfs2_add_new_xattr_bucket(struct inode *inode,
struct buffer_head *xb_bh,
struct ocfs2_xattr_bucket *target,
struct ocfs2_xattr_set_ctxt *ctxt)
{
struct ocfs2_xattr_block *xb =
(struct ocfs2_xattr_block *)xb_bh->b_data;
struct ocfs2_xattr_tree_root *xb_root = &xb->xb_attrs.xb_root;
struct ocfs2_extent_list *el = &xb_root->xt_list;
u32 name_hash =
le32_to_cpu(bucket_xh(target)->xh_entries[0].xe_name_hash);
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
int ret, num_buckets, extend = 1;
u64 p_blkno;
u32 e_cpos, num_clusters;
/* The bucket at the front of the extent */
struct ocfs2_xattr_bucket *first;
trace_ocfs2_add_new_xattr_bucket(
(unsigned long long)bucket_blkno(target));
/* The first bucket of the original extent */
first = ocfs2_xattr_bucket_new(inode);
if (!first) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
ret = ocfs2_xattr_get_rec(inode, name_hash, &p_blkno, &e_cpos,
&num_clusters, el);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_read_xattr_bucket(first, p_blkno);
if (ret) {
mlog_errno(ret);
goto out;
}
num_buckets = ocfs2_xattr_buckets_per_cluster(osb) * num_clusters;
if (num_buckets == le16_to_cpu(bucket_xh(first)->xh_num_buckets)) {
/*
* This can move first+target if the target bucket moves
* to the new extent.
*/
ret = ocfs2_add_new_xattr_cluster(inode,
xb_bh,
first,
target,
&num_clusters,
e_cpos,
&extend,
ctxt);
if (ret) {
mlog_errno(ret);
goto out;
}
}
if (extend) {
ret = ocfs2_extend_xattr_bucket(inode,
ctxt->handle,
first,
bucket_blkno(target),
num_clusters);
if (ret)
mlog_errno(ret);
}
out:
ocfs2_xattr_bucket_free(first);
return ret;
}
/*
* Truncate the specified xe_off entry in xattr bucket.
* bucket is indicated by header_bh and len is the new length.
* Both the ocfs2_xattr_value_root and the entry will be updated here.
*
* Copy the new updated xe and xe_value_root to new_xe and new_xv if needed.
*/
static int ocfs2_xattr_bucket_value_truncate(struct inode *inode,
struct ocfs2_xattr_bucket *bucket,
int xe_off,
int len,
struct ocfs2_xattr_set_ctxt *ctxt)
{
int ret, offset;
u64 value_blk;
struct ocfs2_xattr_entry *xe;
struct ocfs2_xattr_header *xh = bucket_xh(bucket);
size_t blocksize = inode->i_sb->s_blocksize;
struct ocfs2_xattr_value_buf vb = {
.vb_access = ocfs2_journal_access,
};
xe = &xh->xh_entries[xe_off];
BUG_ON(!xe || ocfs2_xattr_is_local(xe));
offset = le16_to_cpu(xe->xe_name_offset) +
OCFS2_XATTR_SIZE(xe->xe_name_len);
value_blk = offset / blocksize;
/* We don't allow ocfs2_xattr_value to be stored in different block. */
BUG_ON(value_blk != (offset + OCFS2_XATTR_ROOT_SIZE - 1) / blocksize);
vb.vb_bh = bucket->bu_bhs[value_blk];
BUG_ON(!vb.vb_bh);
vb.vb_xv = (struct ocfs2_xattr_value_root *)
(vb.vb_bh->b_data + offset % blocksize);
/*
* From here on out we have to dirty the bucket. The generic
* value calls only modify one of the bucket's bhs, but we need
* to send the bucket at once. So if they error, they *could* have
* modified something. We have to assume they did, and dirty
* the whole bucket. This leaves us in a consistent state.
*/
trace_ocfs2_xattr_bucket_value_truncate(
(unsigned long long)bucket_blkno(bucket), xe_off, len);
ret = ocfs2_xattr_value_truncate(inode, &vb, len, ctxt);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_xattr_bucket_journal_access(ctxt->handle, bucket,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
xe->xe_value_size = cpu_to_le64(len);
ocfs2_xattr_bucket_journal_dirty(ctxt->handle, bucket);
out:
return ret;
}
static int ocfs2_rm_xattr_cluster(struct inode *inode,
struct buffer_head *root_bh,
u64 blkno,
u32 cpos,
u32 len,
void *para)
{
int ret;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct inode *tl_inode = osb->osb_tl_inode;
handle_t *handle;
struct ocfs2_xattr_block *xb =
(struct ocfs2_xattr_block *)root_bh->b_data;
struct ocfs2_alloc_context *meta_ac = NULL;
struct ocfs2_cached_dealloc_ctxt dealloc;
struct ocfs2_extent_tree et;
ret = ocfs2_iterate_xattr_buckets(inode, blkno, len,
ocfs2_delete_xattr_in_bucket, para);
if (ret) {
mlog_errno(ret);
return ret;
}
ocfs2_init_xattr_tree_extent_tree(&et, INODE_CACHE(inode), root_bh);
ocfs2_init_dealloc_ctxt(&dealloc);
trace_ocfs2_rm_xattr_cluster(
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)blkno, cpos, len);
ocfs2_remove_xattr_clusters_from_cache(INODE_CACHE(inode), blkno,
len);
ret = ocfs2_lock_allocators(inode, &et, 0, 1, NULL, &meta_ac);
if (ret) {
mlog_errno(ret);
return ret;
}
inode_lock(tl_inode);
if (ocfs2_truncate_log_needs_flush(osb)) {
ret = __ocfs2_flush_truncate_log(osb);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
}
handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
if (IS_ERR(handle)) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
ret = ocfs2_journal_access_xb(handle, INODE_CACHE(inode), root_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out_commit;
}
ret = ocfs2_remove_extent(handle, &et, cpos, len, meta_ac,
&dealloc);
if (ret) {
mlog_errno(ret);
goto out_commit;
}
le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, -len);
ocfs2_journal_dirty(handle, root_bh);
ret = ocfs2_truncate_log_append(osb, handle, blkno, len);
if (ret)
mlog_errno(ret);
ocfs2_update_inode_fsync_trans(handle, inode, 0);
out_commit:
ocfs2_commit_trans(osb, handle);
out:
ocfs2_schedule_truncate_log_flush(osb, 1);
inode_unlock(tl_inode);
if (meta_ac)
ocfs2_free_alloc_context(meta_ac);
ocfs2_run_deallocs(osb, &dealloc);
return ret;
}
/*
* check whether the xattr bucket is filled up with the same hash value.
* If we want to insert the xattr with the same hash, return -ENOSPC.
* If we want to insert a xattr with different hash value, go ahead
* and ocfs2_divide_xattr_bucket will handle this.
*/
static int ocfs2_check_xattr_bucket_collision(struct inode *inode,
struct ocfs2_xattr_bucket *bucket,
const char *name)
{
struct ocfs2_xattr_header *xh = bucket_xh(bucket);
u32 name_hash = ocfs2_xattr_name_hash(inode, name, strlen(name));
if (name_hash != le32_to_cpu(xh->xh_entries[0].xe_name_hash))
return 0;
if (xh->xh_entries[le16_to_cpu(xh->xh_count) - 1].xe_name_hash ==
xh->xh_entries[0].xe_name_hash) {
mlog(ML_ERROR, "Too much hash collision in xattr bucket %llu, "
"hash = %u\n",
(unsigned long long)bucket_blkno(bucket),
le32_to_cpu(xh->xh_entries[0].xe_name_hash));
return -ENOSPC;
}
return 0;
}
/*
* Try to set the entry in the current bucket. If we fail, the caller
* will handle getting us another bucket.
*/
static int ocfs2_xattr_set_entry_bucket(struct inode *inode,
struct ocfs2_xattr_info *xi,
struct ocfs2_xattr_search *xs,
struct ocfs2_xattr_set_ctxt *ctxt)
{
int ret;
struct ocfs2_xa_loc loc;
trace_ocfs2_xattr_set_entry_bucket(xi->xi_name);
ocfs2_init_xattr_bucket_xa_loc(&loc, xs->bucket,
xs->not_found ? NULL : xs->here);
ret = ocfs2_xa_set(&loc, xi, ctxt);
if (!ret) {
xs->here = loc.xl_entry;
goto out;
}
if (ret != -ENOSPC) {
mlog_errno(ret);
goto out;
}
/* Ok, we need space. Let's try defragmenting the bucket. */
ret = ocfs2_defrag_xattr_bucket(inode, ctxt->handle,
xs->bucket);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_xa_set(&loc, xi, ctxt);
if (!ret) {
xs->here = loc.xl_entry;
goto out;
}
if (ret != -ENOSPC)
mlog_errno(ret);
out:
return ret;
}
static int ocfs2_xattr_set_entry_index_block(struct inode *inode,
struct ocfs2_xattr_info *xi,
struct ocfs2_xattr_search *xs,
struct ocfs2_xattr_set_ctxt *ctxt)
{
int ret;
trace_ocfs2_xattr_set_entry_index_block(xi->xi_name);
ret = ocfs2_xattr_set_entry_bucket(inode, xi, xs, ctxt);
if (!ret)
goto out;
if (ret != -ENOSPC) {
mlog_errno(ret);
goto out;
}
/* Ack, need more space. Let's try to get another bucket! */
/*
* We do not allow for overlapping ranges between buckets. And
* the maximum number of collisions we will allow for then is
* one bucket's worth, so check it here whether we need to
* add a new bucket for the insert.
*/
ret = ocfs2_check_xattr_bucket_collision(inode,
xs->bucket,
xi->xi_name);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_add_new_xattr_bucket(inode,
xs->xattr_bh,
xs->bucket,
ctxt);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* ocfs2_add_new_xattr_bucket() will have updated
* xs->bucket if it moved, but it will not have updated
* any of the other search fields. Thus, we drop it and
* re-search. Everything should be cached, so it'll be
* quick.
*/
ocfs2_xattr_bucket_relse(xs->bucket);
ret = ocfs2_xattr_index_block_find(inode, xs->xattr_bh,
xi->xi_name_index,
xi->xi_name, xs);
if (ret && ret != -ENODATA)
goto out;
xs->not_found = ret;
/* Ok, we have a new bucket, let's try again */
ret = ocfs2_xattr_set_entry_bucket(inode, xi, xs, ctxt);
if (ret && (ret != -ENOSPC))
mlog_errno(ret);
out:
return ret;
}
static int ocfs2_delete_xattr_in_bucket(struct inode *inode,
struct ocfs2_xattr_bucket *bucket,
void *para)
{
int ret = 0, ref_credits;
struct ocfs2_xattr_header *xh = bucket_xh(bucket);
u16 i;
struct ocfs2_xattr_entry *xe;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct ocfs2_xattr_set_ctxt ctxt = {NULL, NULL,};
int credits = ocfs2_remove_extent_credits(osb->sb) +
ocfs2_blocks_per_xattr_bucket(inode->i_sb);
struct ocfs2_xattr_value_root *xv;
struct ocfs2_rm_xattr_bucket_para *args =
(struct ocfs2_rm_xattr_bucket_para *)para;
ocfs2_init_dealloc_ctxt(&ctxt.dealloc);
for (i = 0; i < le16_to_cpu(xh->xh_count); i++) {
xe = &xh->xh_entries[i];
if (ocfs2_xattr_is_local(xe))
continue;
ret = ocfs2_get_xattr_tree_value_root(inode->i_sb, bucket,
i, &xv, NULL);
if (ret) {
mlog_errno(ret);
break;
}
ret = ocfs2_lock_xattr_remove_allocators(inode, xv,
args->ref_ci,
args->ref_root_bh,
&ctxt.meta_ac,
&ref_credits);
ctxt.handle = ocfs2_start_trans(osb, credits + ref_credits);
if (IS_ERR(ctxt.handle)) {
ret = PTR_ERR(ctxt.handle);
mlog_errno(ret);
break;
}
ret = ocfs2_xattr_bucket_value_truncate(inode, bucket,
i, 0, &ctxt);
ocfs2_commit_trans(osb, ctxt.handle);
if (ctxt.meta_ac) {
ocfs2_free_alloc_context(ctxt.meta_ac);
ctxt.meta_ac = NULL;
}
if (ret) {
mlog_errno(ret);
break;
}
}
if (ctxt.meta_ac)
ocfs2_free_alloc_context(ctxt.meta_ac);
ocfs2_schedule_truncate_log_flush(osb, 1);
ocfs2_run_deallocs(osb, &ctxt.dealloc);
return ret;
}
/*
* Whenever we modify a xattr value root in the bucket(e.g, CoW
* or change the extent record flag), we need to recalculate
* the metaecc for the whole bucket. So it is done here.
*
* Note:
* We have to give the extra credits for the caller.
*/
static int ocfs2_xattr_bucket_post_refcount(struct inode *inode,
handle_t *handle,
void *para)
{
int ret;
struct ocfs2_xattr_bucket *bucket =
(struct ocfs2_xattr_bucket *)para;
ret = ocfs2_xattr_bucket_journal_access(handle, bucket,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
return ret;
}
ocfs2_xattr_bucket_journal_dirty(handle, bucket);
return 0;
}
/*
* Special action we need if the xattr value is refcounted.
*
* 1. If the xattr is refcounted, lock the tree.
* 2. CoW the xattr if we are setting the new value and the value
* will be stored outside.
* 3. In other case, decrease_refcount will work for us, so just
* lock the refcount tree, calculate the meta and credits is OK.
*
* We have to do CoW before ocfs2_init_xattr_set_ctxt since
* currently CoW is a completed transaction, while this function
* will also lock the allocators and let us deadlock. So we will
* CoW the whole xattr value.
*/
static int ocfs2_prepare_refcount_xattr(struct inode *inode,
struct ocfs2_dinode *di,
struct ocfs2_xattr_info *xi,
struct ocfs2_xattr_search *xis,
struct ocfs2_xattr_search *xbs,
struct ocfs2_refcount_tree **ref_tree,
int *meta_add,
int *credits)
{
int ret = 0;
struct ocfs2_xattr_block *xb;
struct ocfs2_xattr_entry *xe;
char *base;
u32 p_cluster, num_clusters;
unsigned int ext_flags;
int name_offset, name_len;
struct ocfs2_xattr_value_buf vb;
struct ocfs2_xattr_bucket *bucket = NULL;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct ocfs2_post_refcount refcount;
struct ocfs2_post_refcount *p = NULL;
struct buffer_head *ref_root_bh = NULL;
if (!xis->not_found) {
xe = xis->here;
name_offset = le16_to_cpu(xe->xe_name_offset);
name_len = OCFS2_XATTR_SIZE(xe->xe_name_len);
base = xis->base;
vb.vb_bh = xis->inode_bh;
vb.vb_access = ocfs2_journal_access_di;
} else {
int i, block_off = 0;
xb = (struct ocfs2_xattr_block *)xbs->xattr_bh->b_data;
xe = xbs->here;
name_offset = le16_to_cpu(xe->xe_name_offset);
name_len = OCFS2_XATTR_SIZE(xe->xe_name_len);
i = xbs->here - xbs->header->xh_entries;
if (le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED) {
ret = ocfs2_xattr_bucket_get_name_value(inode->i_sb,
bucket_xh(xbs->bucket),
i, &block_off,
&name_offset);
if (ret) {
mlog_errno(ret);
goto out;
}
base = bucket_block(xbs->bucket, block_off);
vb.vb_bh = xbs->bucket->bu_bhs[block_off];
vb.vb_access = ocfs2_journal_access;
if (ocfs2_meta_ecc(osb)) {
/*create parameters for ocfs2_post_refcount. */
bucket = xbs->bucket;
refcount.credits = bucket->bu_blocks;
refcount.para = bucket;
refcount.func =
ocfs2_xattr_bucket_post_refcount;
p = &refcount;
}
} else {
base = xbs->base;
vb.vb_bh = xbs->xattr_bh;
vb.vb_access = ocfs2_journal_access_xb;
}
}
if (ocfs2_xattr_is_local(xe))
goto out;
vb.vb_xv = (struct ocfs2_xattr_value_root *)
(base + name_offset + name_len);
ret = ocfs2_xattr_get_clusters(inode, 0, &p_cluster,
&num_clusters, &vb.vb_xv->xr_list,
&ext_flags);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* We just need to check the 1st extent record, since we always
* CoW the whole xattr. So there shouldn't be a xattr with
* some REFCOUNT extent recs after the 1st one.
*/
if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
goto out;
ret = ocfs2_lock_refcount_tree(osb, le64_to_cpu(di->i_refcount_loc),
1, ref_tree, &ref_root_bh);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* If we are deleting the xattr or the new size will be stored inside,
* cool, leave it there, the xattr truncate process will remove them
* for us(it still needs the refcount tree lock and the meta, credits).
* And the worse case is that every cluster truncate will split the
* refcount tree, and make the original extent become 3. So we will need
* 2 * cluster more extent recs at most.
*/
if (!xi->xi_value || xi->xi_value_len <= OCFS2_XATTR_INLINE_SIZE) {
ret = ocfs2_refcounted_xattr_delete_need(inode,
&(*ref_tree)->rf_ci,
ref_root_bh, vb.vb_xv,
meta_add, credits);
if (ret)
mlog_errno(ret);
goto out;
}
ret = ocfs2_refcount_cow_xattr(inode, di, &vb,
*ref_tree, ref_root_bh, 0,
le32_to_cpu(vb.vb_xv->xr_clusters), p);
if (ret)
mlog_errno(ret);
out:
brelse(ref_root_bh);
return ret;
}
/*
* Add the REFCOUNTED flags for all the extent rec in ocfs2_xattr_value_root.
* The physical clusters will be added to refcount tree.
*/
static int ocfs2_xattr_value_attach_refcount(struct inode *inode,
struct ocfs2_xattr_value_root *xv,
struct ocfs2_extent_tree *value_et,
struct ocfs2_caching_info *ref_ci,
struct buffer_head *ref_root_bh,
struct ocfs2_cached_dealloc_ctxt *dealloc,
struct ocfs2_post_refcount *refcount)
{
int ret = 0;
u32 clusters = le32_to_cpu(xv->xr_clusters);
u32 cpos, p_cluster, num_clusters;
struct ocfs2_extent_list *el = &xv->xr_list;
unsigned int ext_flags;
cpos = 0;
while (cpos < clusters) {
ret = ocfs2_xattr_get_clusters(inode, cpos, &p_cluster,
&num_clusters, el, &ext_flags);
if (ret) {
mlog_errno(ret);
break;
}
cpos += num_clusters;
if ((ext_flags & OCFS2_EXT_REFCOUNTED))
continue;
BUG_ON(!p_cluster);
ret = ocfs2_add_refcount_flag(inode, value_et,
ref_ci, ref_root_bh,
cpos - num_clusters,
p_cluster, num_clusters,
dealloc, refcount);
if (ret) {
mlog_errno(ret);
break;
}
}
return ret;
}
/*
* Given a normal ocfs2_xattr_header, refcount all the entries which
* have value stored outside.
* Used for xattrs stored in inode and ocfs2_xattr_block.
*/
static int ocfs2_xattr_attach_refcount_normal(struct inode *inode,
struct ocfs2_xattr_value_buf *vb,
struct ocfs2_xattr_header *header,
struct ocfs2_caching_info *ref_ci,
struct buffer_head *ref_root_bh,
struct ocfs2_cached_dealloc_ctxt *dealloc)
{
struct ocfs2_xattr_entry *xe;
struct ocfs2_xattr_value_root *xv;
struct ocfs2_extent_tree et;
int i, ret = 0;
for (i = 0; i < le16_to_cpu(header->xh_count); i++) {
xe = &header->xh_entries[i];
if (ocfs2_xattr_is_local(xe))
continue;
xv = (struct ocfs2_xattr_value_root *)((void *)header +
le16_to_cpu(xe->xe_name_offset) +
OCFS2_XATTR_SIZE(xe->xe_name_len));
vb->vb_xv = xv;
ocfs2_init_xattr_value_extent_tree(&et, INODE_CACHE(inode), vb);
ret = ocfs2_xattr_value_attach_refcount(inode, xv, &et,
ref_ci, ref_root_bh,
dealloc, NULL);
if (ret) {
mlog_errno(ret);
break;
}
}
return ret;
}
static int ocfs2_xattr_inline_attach_refcount(struct inode *inode,
struct buffer_head *fe_bh,
struct ocfs2_caching_info *ref_ci,
struct buffer_head *ref_root_bh,
struct ocfs2_cached_dealloc_ctxt *dealloc)
{
struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
struct ocfs2_xattr_header *header = (struct ocfs2_xattr_header *)
(fe_bh->b_data + inode->i_sb->s_blocksize -
le16_to_cpu(di->i_xattr_inline_size));
struct ocfs2_xattr_value_buf vb = {
.vb_bh = fe_bh,
.vb_access = ocfs2_journal_access_di,
};
return ocfs2_xattr_attach_refcount_normal(inode, &vb, header,
ref_ci, ref_root_bh, dealloc);
}
struct ocfs2_xattr_tree_value_refcount_para {
struct ocfs2_caching_info *ref_ci;
struct buffer_head *ref_root_bh;
struct ocfs2_cached_dealloc_ctxt *dealloc;
};
static int ocfs2_get_xattr_tree_value_root(struct super_block *sb,
struct ocfs2_xattr_bucket *bucket,
int offset,
struct ocfs2_xattr_value_root **xv,
struct buffer_head **bh)
{
int ret, block_off, name_offset;
struct ocfs2_xattr_header *xh = bucket_xh(bucket);
struct ocfs2_xattr_entry *xe = &xh->xh_entries[offset];
void *base;
ret = ocfs2_xattr_bucket_get_name_value(sb,
bucket_xh(bucket),
offset,
&block_off,
&name_offset);
if (ret) {
mlog_errno(ret);
goto out;
}
base = bucket_block(bucket, block_off);
*xv = (struct ocfs2_xattr_value_root *)(base + name_offset +
OCFS2_XATTR_SIZE(xe->xe_name_len));
if (bh)
*bh = bucket->bu_bhs[block_off];
out:
return ret;
}
/*
* For a given xattr bucket, refcount all the entries which
* have value stored outside.
*/
static int ocfs2_xattr_bucket_value_refcount(struct inode *inode,
struct ocfs2_xattr_bucket *bucket,
void *para)
{
int i, ret = 0;
struct ocfs2_extent_tree et;
struct ocfs2_xattr_tree_value_refcount_para *ref =
(struct ocfs2_xattr_tree_value_refcount_para *)para;
struct ocfs2_xattr_header *xh =
(struct ocfs2_xattr_header *)bucket->bu_bhs[0]->b_data;
struct ocfs2_xattr_entry *xe;
struct ocfs2_xattr_value_buf vb = {
.vb_access = ocfs2_journal_access,
};
struct ocfs2_post_refcount refcount = {
.credits = bucket->bu_blocks,
.para = bucket,
.func = ocfs2_xattr_bucket_post_refcount,
};
struct ocfs2_post_refcount *p = NULL;
/* We only need post_refcount if we support metaecc. */
if (ocfs2_meta_ecc(OCFS2_SB(inode->i_sb)))
p = &refcount;
trace_ocfs2_xattr_bucket_value_refcount(
(unsigned long long)bucket_blkno(bucket),
le16_to_cpu(xh->xh_count));
for (i = 0; i < le16_to_cpu(xh->xh_count); i++) {
xe = &xh->xh_entries[i];
if (ocfs2_xattr_is_local(xe))
continue;
ret = ocfs2_get_xattr_tree_value_root(inode->i_sb, bucket, i,
&vb.vb_xv, &vb.vb_bh);
if (ret) {
mlog_errno(ret);
break;
}
ocfs2_init_xattr_value_extent_tree(&et,
INODE_CACHE(inode), &vb);
ret = ocfs2_xattr_value_attach_refcount(inode, vb.vb_xv,
&et, ref->ref_ci,
ref->ref_root_bh,
ref->dealloc, p);
if (ret) {
mlog_errno(ret);
break;
}
}
return ret;
}
static int ocfs2_refcount_xattr_tree_rec(struct inode *inode,
struct buffer_head *root_bh,
u64 blkno, u32 cpos, u32 len, void *para)
{
return ocfs2_iterate_xattr_buckets(inode, blkno, len,
ocfs2_xattr_bucket_value_refcount,
para);
}
static int ocfs2_xattr_block_attach_refcount(struct inode *inode,
struct buffer_head *blk_bh,
struct ocfs2_caching_info *ref_ci,
struct buffer_head *ref_root_bh,
struct ocfs2_cached_dealloc_ctxt *dealloc)
{
int ret = 0;
struct ocfs2_xattr_block *xb =
(struct ocfs2_xattr_block *)blk_bh->b_data;
if (!(le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED)) {
struct ocfs2_xattr_header *header = &xb->xb_attrs.xb_header;
struct ocfs2_xattr_value_buf vb = {
.vb_bh = blk_bh,
.vb_access = ocfs2_journal_access_xb,
};
ret = ocfs2_xattr_attach_refcount_normal(inode, &vb, header,
ref_ci, ref_root_bh,
dealloc);
} else {
struct ocfs2_xattr_tree_value_refcount_para para = {
.ref_ci = ref_ci,
.ref_root_bh = ref_root_bh,
.dealloc = dealloc,
};
ret = ocfs2_iterate_xattr_index_block(inode, blk_bh,
ocfs2_refcount_xattr_tree_rec,
&para);
}
return ret;
}
int ocfs2_xattr_attach_refcount_tree(struct inode *inode,
struct buffer_head *fe_bh,
struct ocfs2_caching_info *ref_ci,
struct buffer_head *ref_root_bh,
struct ocfs2_cached_dealloc_ctxt *dealloc)
{
int ret = 0;
struct ocfs2_inode_info *oi = OCFS2_I(inode);
struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
struct buffer_head *blk_bh = NULL;
if (oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL) {
ret = ocfs2_xattr_inline_attach_refcount(inode, fe_bh,
ref_ci, ref_root_bh,
dealloc);
if (ret) {
mlog_errno(ret);
goto out;
}
}
if (!di->i_xattr_loc)
goto out;
ret = ocfs2_read_xattr_block(inode, le64_to_cpu(di->i_xattr_loc),
&blk_bh);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_xattr_block_attach_refcount(inode, blk_bh, ref_ci,
ref_root_bh, dealloc);
if (ret)
mlog_errno(ret);
brelse(blk_bh);
out:
return ret;
}
typedef int (should_xattr_reflinked)(struct ocfs2_xattr_entry *xe);
/*
* Store the information we need in xattr reflink.
* old_bh and new_bh are inode bh for the old and new inode.
*/
struct ocfs2_xattr_reflink {
struct inode *old_inode;
struct inode *new_inode;
struct buffer_head *old_bh;
struct buffer_head *new_bh;
struct ocfs2_caching_info *ref_ci;
struct buffer_head *ref_root_bh;
struct ocfs2_cached_dealloc_ctxt *dealloc;
should_xattr_reflinked *xattr_reflinked;
};
/*
* Given a xattr header and xe offset,
* return the proper xv and the corresponding bh.
* xattr in inode, block and xattr tree have different implementaions.
*/
typedef int (get_xattr_value_root)(struct super_block *sb,
struct buffer_head *bh,
struct ocfs2_xattr_header *xh,
int offset,
struct ocfs2_xattr_value_root **xv,
struct buffer_head **ret_bh,
void *para);
/*
* Calculate all the xattr value root metadata stored in this xattr header and
* credits we need if we create them from the scratch.
* We use get_xattr_value_root so that all types of xattr container can use it.
*/
static int ocfs2_value_metas_in_xattr_header(struct super_block *sb,
struct buffer_head *bh,
struct ocfs2_xattr_header *xh,
int *metas, int *credits,
int *num_recs,
get_xattr_value_root *func,
void *para)
{
int i, ret = 0;
struct ocfs2_xattr_value_root *xv;
struct ocfs2_xattr_entry *xe;
for (i = 0; i < le16_to_cpu(xh->xh_count); i++) {
xe = &xh->xh_entries[i];
if (ocfs2_xattr_is_local(xe))
continue;
ret = func(sb, bh, xh, i, &xv, NULL, para);
if (ret) {
mlog_errno(ret);
break;
}
*metas += le16_to_cpu(xv->xr_list.l_tree_depth) *
le16_to_cpu(xv->xr_list.l_next_free_rec);
*credits += ocfs2_calc_extend_credits(sb,
&def_xv.xv.xr_list);
/*
* If the value is a tree with depth > 1, We don't go deep
* to the extent block, so just calculate a maximum record num.
*/
if (!xv->xr_list.l_tree_depth)
*num_recs += le16_to_cpu(xv->xr_list.l_next_free_rec);
else
*num_recs += ocfs2_clusters_for_bytes(sb,
XATTR_SIZE_MAX);
}
return ret;
}
/* Used by xattr inode and block to return the right xv and buffer_head. */
static int ocfs2_get_xattr_value_root(struct super_block *sb,
struct buffer_head *bh,
struct ocfs2_xattr_header *xh,
int offset,
struct ocfs2_xattr_value_root **xv,
struct buffer_head **ret_bh,
void *para)
{
struct ocfs2_xattr_entry *xe = &xh->xh_entries[offset];
*xv = (struct ocfs2_xattr_value_root *)((void *)xh +
le16_to_cpu(xe->xe_name_offset) +
OCFS2_XATTR_SIZE(xe->xe_name_len));
if (ret_bh)
*ret_bh = bh;
return 0;
}
/*
* Lock the meta_ac and caculate how much credits we need for reflink xattrs.
* It is only used for inline xattr and xattr block.
*/
static int ocfs2_reflink_lock_xattr_allocators(struct ocfs2_super *osb,
struct ocfs2_xattr_header *xh,
struct buffer_head *ref_root_bh,
int *credits,
struct ocfs2_alloc_context **meta_ac)
{
int ret, meta_add = 0, num_recs = 0;
struct ocfs2_refcount_block *rb =
(struct ocfs2_refcount_block *)ref_root_bh->b_data;
*credits = 0;
ret = ocfs2_value_metas_in_xattr_header(osb->sb, NULL, xh,
&meta_add, credits, &num_recs,
ocfs2_get_xattr_value_root,
NULL);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* We need to add/modify num_recs in refcount tree, so just calculate
* an approximate number we need for refcount tree change.
* Sometimes we need to split the tree, and after split, half recs
* will be moved to the new block, and a new block can only provide
* half number of recs. So we multiple new blocks by 2.
*/
num_recs = num_recs / ocfs2_refcount_recs_per_rb(osb->sb) * 2;
meta_add += num_recs;
*credits += num_recs + num_recs * OCFS2_EXPAND_REFCOUNT_TREE_CREDITS;
if (le32_to_cpu(rb->rf_flags) & OCFS2_REFCOUNT_TREE_FL)
*credits += le16_to_cpu(rb->rf_list.l_tree_depth) *
le16_to_cpu(rb->rf_list.l_next_free_rec) + 1;
else
*credits += 1;
ret = ocfs2_reserve_new_metadata_blocks(osb, meta_add, meta_ac);
if (ret)
mlog_errno(ret);
out:
return ret;
}
/*
* Given a xattr header, reflink all the xattrs in this container.
* It can be used for inode, block and bucket.
*
* NOTE:
* Before we call this function, the caller has memcpy the xattr in
* old_xh to the new_xh.
*
* If args.xattr_reflinked is set, call it to decide whether the xe should
* be reflinked or not. If not, remove it from the new xattr header.
*/
static int ocfs2_reflink_xattr_header(handle_t *handle,
struct ocfs2_xattr_reflink *args,
struct buffer_head *old_bh,
struct ocfs2_xattr_header *xh,
struct buffer_head *new_bh,
struct ocfs2_xattr_header *new_xh,
struct ocfs2_xattr_value_buf *vb,
struct ocfs2_alloc_context *meta_ac,
get_xattr_value_root *func,
void *para)
{
int ret = 0, i, j;
struct super_block *sb = args->old_inode->i_sb;
struct buffer_head *value_bh;
struct ocfs2_xattr_entry *xe, *last;
struct ocfs2_xattr_value_root *xv, *new_xv;
struct ocfs2_extent_tree data_et;
u32 clusters, cpos, p_cluster, num_clusters;
unsigned int ext_flags = 0;
trace_ocfs2_reflink_xattr_header((unsigned long long)old_bh->b_blocknr,
le16_to_cpu(xh->xh_count));
last = &new_xh->xh_entries[le16_to_cpu(new_xh->xh_count)];
for (i = 0, j = 0; i < le16_to_cpu(xh->xh_count); i++, j++) {
xe = &xh->xh_entries[i];
if (args->xattr_reflinked && !args->xattr_reflinked(xe)) {
xe = &new_xh->xh_entries[j];
le16_add_cpu(&new_xh->xh_count, -1);
if (new_xh->xh_count) {
memmove(xe, xe + 1,
(void *)last - (void *)xe);
memset(last, 0,
sizeof(struct ocfs2_xattr_entry));
}
/*
* We don't want j to increase in the next round since
* it is already moved ahead.
*/
j--;
continue;
}
if (ocfs2_xattr_is_local(xe))
continue;
ret = func(sb, old_bh, xh, i, &xv, NULL, para);
if (ret) {
mlog_errno(ret);
break;
}
ret = func(sb, new_bh, new_xh, j, &new_xv, &value_bh, para);
if (ret) {
mlog_errno(ret);
break;
}
/*
* For the xattr which has l_tree_depth = 0, all the extent
* recs have already be copied to the new xh with the
* propriate OCFS2_EXT_REFCOUNTED flag we just need to
* increase the refount count int the refcount tree.
*
* For the xattr which has l_tree_depth > 0, we need
* to initialize it to the empty default value root,
* and then insert the extents one by one.
*/
if (xv->xr_list.l_tree_depth) {
memcpy(new_xv, &def_xv, sizeof(def_xv));
vb->vb_xv = new_xv;
vb->vb_bh = value_bh;
ocfs2_init_xattr_value_extent_tree(&data_et,
INODE_CACHE(args->new_inode), vb);
}
clusters = le32_to_cpu(xv->xr_clusters);
cpos = 0;
while (cpos < clusters) {
ret = ocfs2_xattr_get_clusters(args->old_inode,
cpos,
&p_cluster,
&num_clusters,
&xv->xr_list,
&ext_flags);
if (ret) {
mlog_errno(ret);
goto out;
}
BUG_ON(!p_cluster);
if (xv->xr_list.l_tree_depth) {
ret = ocfs2_insert_extent(handle,
&data_et, cpos,
ocfs2_clusters_to_blocks(
args->old_inode->i_sb,
p_cluster),
num_clusters, ext_flags,
meta_ac);
if (ret) {
mlog_errno(ret);
goto out;
}
}
ret = ocfs2_increase_refcount(handle, args->ref_ci,
args->ref_root_bh,
p_cluster, num_clusters,
meta_ac, args->dealloc);
if (ret) {
mlog_errno(ret);
goto out;
}
cpos += num_clusters;
}
}
out:
return ret;
}
static int ocfs2_reflink_xattr_inline(struct ocfs2_xattr_reflink *args)
{
int ret = 0, credits = 0;
handle_t *handle;
struct ocfs2_super *osb = OCFS2_SB(args->old_inode->i_sb);
struct ocfs2_dinode *di = (struct ocfs2_dinode *)args->old_bh->b_data;
int inline_size = le16_to_cpu(di->i_xattr_inline_size);
int header_off = osb->sb->s_blocksize - inline_size;
struct ocfs2_xattr_header *xh = (struct ocfs2_xattr_header *)
(args->old_bh->b_data + header_off);
struct ocfs2_xattr_header *new_xh = (struct ocfs2_xattr_header *)
(args->new_bh->b_data + header_off);
struct ocfs2_alloc_context *meta_ac = NULL;
struct ocfs2_inode_info *new_oi;
struct ocfs2_dinode *new_di;
struct ocfs2_xattr_value_buf vb = {
.vb_bh = args->new_bh,
.vb_access = ocfs2_journal_access_di,
};
ret = ocfs2_reflink_lock_xattr_allocators(osb, xh, args->ref_root_bh,
&credits, &meta_ac);
if (ret) {
mlog_errno(ret);
goto out;
}
handle = ocfs2_start_trans(osb, credits);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
mlog_errno(ret);
goto out;
}
ret = ocfs2_journal_access_di(handle, INODE_CACHE(args->new_inode),
args->new_bh, OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out_commit;
}
memcpy(args->new_bh->b_data + header_off,
args->old_bh->b_data + header_off, inline_size);
new_di = (struct ocfs2_dinode *)args->new_bh->b_data;
new_di->i_xattr_inline_size = cpu_to_le16(inline_size);
ret = ocfs2_reflink_xattr_header(handle, args, args->old_bh, xh,
args->new_bh, new_xh, &vb, meta_ac,
ocfs2_get_xattr_value_root, NULL);
if (ret) {
mlog_errno(ret);
goto out_commit;
}
new_oi = OCFS2_I(args->new_inode);
/*
* Adjust extent record count to reserve space for extended attribute.
* Inline data count had been adjusted in ocfs2_duplicate_inline_data().
*/
if (!(new_oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) &&
!(ocfs2_inode_is_fast_symlink(args->new_inode))) {
struct ocfs2_extent_list *el = &new_di->id2.i_list;
le16_add_cpu(&el->l_count, -(inline_size /
sizeof(struct ocfs2_extent_rec)));
}
spin_lock(&new_oi->ip_lock);
new_oi->ip_dyn_features |= OCFS2_HAS_XATTR_FL | OCFS2_INLINE_XATTR_FL;
new_di->i_dyn_features = cpu_to_le16(new_oi->ip_dyn_features);
spin_unlock(&new_oi->ip_lock);
ocfs2_journal_dirty(handle, args->new_bh);
out_commit:
ocfs2_commit_trans(osb, handle);
out:
if (meta_ac)
ocfs2_free_alloc_context(meta_ac);
return ret;
}
static int ocfs2_create_empty_xattr_block(struct inode *inode,
struct buffer_head *fe_bh,
struct buffer_head **ret_bh,
int indexed)
{
int ret;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct ocfs2_xattr_set_ctxt ctxt;
memset(&ctxt, 0, sizeof(ctxt));
ret = ocfs2_reserve_new_metadata_blocks(osb, 1, &ctxt.meta_ac);
if (ret < 0) {
mlog_errno(ret);
return ret;
}
ctxt.handle = ocfs2_start_trans(osb, OCFS2_XATTR_BLOCK_CREATE_CREDITS);
if (IS_ERR(ctxt.handle)) {
ret = PTR_ERR(ctxt.handle);
mlog_errno(ret);
goto out;
}
trace_ocfs2_create_empty_xattr_block(
(unsigned long long)fe_bh->b_blocknr, indexed);
ret = ocfs2_create_xattr_block(inode, fe_bh, &ctxt, indexed,
ret_bh);
if (ret)
mlog_errno(ret);
ocfs2_commit_trans(osb, ctxt.handle);
out:
ocfs2_free_alloc_context(ctxt.meta_ac);
return ret;
}
static int ocfs2_reflink_xattr_block(struct ocfs2_xattr_reflink *args,
struct buffer_head *blk_bh,
struct buffer_head *new_blk_bh)
{
int ret = 0, credits = 0;
handle_t *handle;
struct ocfs2_inode_info *new_oi = OCFS2_I(args->new_inode);
struct ocfs2_dinode *new_di;
struct ocfs2_super *osb = OCFS2_SB(args->new_inode->i_sb);
int header_off = offsetof(struct ocfs2_xattr_block, xb_attrs.xb_header);
struct ocfs2_xattr_block *xb =
(struct ocfs2_xattr_block *)blk_bh->b_data;
struct ocfs2_xattr_header *xh = &xb->xb_attrs.xb_header;
struct ocfs2_xattr_block *new_xb =
(struct ocfs2_xattr_block *)new_blk_bh->b_data;
struct ocfs2_xattr_header *new_xh = &new_xb->xb_attrs.xb_header;
struct ocfs2_alloc_context *meta_ac;
struct ocfs2_xattr_value_buf vb = {
.vb_bh = new_blk_bh,
.vb_access = ocfs2_journal_access_xb,
};
ret = ocfs2_reflink_lock_xattr_allocators(osb, xh, args->ref_root_bh,
&credits, &meta_ac);
if (ret) {
mlog_errno(ret);
return ret;
}
/* One more credits in case we need to add xattr flags in new inode. */
handle = ocfs2_start_trans(osb, credits + 1);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
mlog_errno(ret);
goto out;
}
if (!(new_oi->ip_dyn_features & OCFS2_HAS_XATTR_FL)) {
ret = ocfs2_journal_access_di(handle,
INODE_CACHE(args->new_inode),
args->new_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out_commit;
}
}
ret = ocfs2_journal_access_xb(handle, INODE_CACHE(args->new_inode),
new_blk_bh, OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out_commit;
}
memcpy(new_blk_bh->b_data + header_off, blk_bh->b_data + header_off,
osb->sb->s_blocksize - header_off);
ret = ocfs2_reflink_xattr_header(handle, args, blk_bh, xh,
new_blk_bh, new_xh, &vb, meta_ac,
ocfs2_get_xattr_value_root, NULL);
if (ret) {
mlog_errno(ret);
goto out_commit;
}
ocfs2_journal_dirty(handle, new_blk_bh);
if (!(new_oi->ip_dyn_features & OCFS2_HAS_XATTR_FL)) {
new_di = (struct ocfs2_dinode *)args->new_bh->b_data;
spin_lock(&new_oi->ip_lock);
new_oi->ip_dyn_features |= OCFS2_HAS_XATTR_FL;
new_di->i_dyn_features = cpu_to_le16(new_oi->ip_dyn_features);
spin_unlock(&new_oi->ip_lock);
ocfs2_journal_dirty(handle, args->new_bh);
}
out_commit:
ocfs2_commit_trans(osb, handle);
out:
ocfs2_free_alloc_context(meta_ac);
return ret;
}
struct ocfs2_reflink_xattr_tree_args {
struct ocfs2_xattr_reflink *reflink;
struct buffer_head *old_blk_bh;
struct buffer_head *new_blk_bh;
struct ocfs2_xattr_bucket *old_bucket;
struct ocfs2_xattr_bucket *new_bucket;
};
/*
* NOTE:
* We have to handle the case that both old bucket and new bucket
* will call this function to get the right ret_bh.
* So The caller must give us the right bh.
*/
static int ocfs2_get_reflink_xattr_value_root(struct super_block *sb,
struct buffer_head *bh,
struct ocfs2_xattr_header *xh,
int offset,
struct ocfs2_xattr_value_root **xv,
struct buffer_head **ret_bh,
void *para)
{
struct ocfs2_reflink_xattr_tree_args *args =
(struct ocfs2_reflink_xattr_tree_args *)para;
struct ocfs2_xattr_bucket *bucket;
if (bh == args->old_bucket->bu_bhs[0])
bucket = args->old_bucket;
else
bucket = args->new_bucket;
return ocfs2_get_xattr_tree_value_root(sb, bucket, offset,
xv, ret_bh);
}
struct ocfs2_value_tree_metas {
int num_metas;
int credits;
int num_recs;
};
static int ocfs2_value_tree_metas_in_bucket(struct super_block *sb,
struct buffer_head *bh,
struct ocfs2_xattr_header *xh,
int offset,
struct ocfs2_xattr_value_root **xv,
struct buffer_head **ret_bh,
void *para)
{
struct ocfs2_xattr_bucket *bucket =
(struct ocfs2_xattr_bucket *)para;
return ocfs2_get_xattr_tree_value_root(sb, bucket, offset,
xv, ret_bh);
}
static int ocfs2_calc_value_tree_metas(struct inode *inode,
struct ocfs2_xattr_bucket *bucket,
void *para)
{
struct ocfs2_value_tree_metas *metas =
(struct ocfs2_value_tree_metas *)para;
struct ocfs2_xattr_header *xh =
(struct ocfs2_xattr_header *)bucket->bu_bhs[0]->b_data;
/* Add the credits for this bucket first. */
metas->credits += bucket->bu_blocks;
return ocfs2_value_metas_in_xattr_header(inode->i_sb, bucket->bu_bhs[0],
xh, &metas->num_metas,
&metas->credits, &metas->num_recs,
ocfs2_value_tree_metas_in_bucket,
bucket);
}
/*
* Given a xattr extent rec starting from blkno and having len clusters,
* iterate all the buckets calculate how much metadata we need for reflinking
* all the ocfs2_xattr_value_root and lock the allocators accordingly.
*/
static int ocfs2_lock_reflink_xattr_rec_allocators(
struct ocfs2_reflink_xattr_tree_args *args,
struct ocfs2_extent_tree *xt_et,
u64 blkno, u32 len, int *credits,
struct ocfs2_alloc_context **meta_ac,
struct ocfs2_alloc_context **data_ac)
{
int ret, num_free_extents;
struct ocfs2_value_tree_metas metas;
struct ocfs2_super *osb = OCFS2_SB(args->reflink->old_inode->i_sb);
struct ocfs2_refcount_block *rb;
memset(&metas, 0, sizeof(metas));
ret = ocfs2_iterate_xattr_buckets(args->reflink->old_inode, blkno, len,
ocfs2_calc_value_tree_metas, &metas);
if (ret) {
mlog_errno(ret);
goto out;
}
*credits = metas.credits;
/*
* Calculate we need for refcount tree change.
*
* We need to add/modify num_recs in refcount tree, so just calculate
* an approximate number we need for refcount tree change.
* Sometimes we need to split the tree, and after split, half recs
* will be moved to the new block, and a new block can only provide
* half number of recs. So we multiple new blocks by 2.
* In the end, we have to add credits for modifying the already
* existed refcount block.
*/
rb = (struct ocfs2_refcount_block *)args->reflink->ref_root_bh->b_data;
metas.num_recs =
(metas.num_recs + ocfs2_refcount_recs_per_rb(osb->sb) - 1) /
ocfs2_refcount_recs_per_rb(osb->sb) * 2;
metas.num_metas += metas.num_recs;
*credits += metas.num_recs +
metas.num_recs * OCFS2_EXPAND_REFCOUNT_TREE_CREDITS;
if (le32_to_cpu(rb->rf_flags) & OCFS2_REFCOUNT_TREE_FL)
*credits += le16_to_cpu(rb->rf_list.l_tree_depth) *
le16_to_cpu(rb->rf_list.l_next_free_rec) + 1;
else
*credits += 1;
/* count in the xattr tree change. */
num_free_extents = ocfs2_num_free_extents(xt_et);
if (num_free_extents < 0) {
ret = num_free_extents;
mlog_errno(ret);
goto out;
}
if (num_free_extents < len)
metas.num_metas += ocfs2_extend_meta_needed(xt_et->et_root_el);
*credits += ocfs2_calc_extend_credits(osb->sb,
xt_et->et_root_el);
if (metas.num_metas) {
ret = ocfs2_reserve_new_metadata_blocks(osb, metas.num_metas,
meta_ac);
if (ret) {
mlog_errno(ret);
goto out;
}
}
if (len) {
ret = ocfs2_reserve_clusters(osb, len, data_ac);
if (ret)
mlog_errno(ret);
}
out:
if (ret) {
if (*meta_ac) {
ocfs2_free_alloc_context(*meta_ac);
*meta_ac = NULL;
}
}
return ret;
}
static int ocfs2_reflink_xattr_bucket(handle_t *handle,
u64 blkno, u64 new_blkno, u32 clusters,
u32 *cpos, int num_buckets,
struct ocfs2_alloc_context *meta_ac,
struct ocfs2_alloc_context *data_ac,
struct ocfs2_reflink_xattr_tree_args *args)
{
int i, j, ret = 0;
struct super_block *sb = args->reflink->old_inode->i_sb;
int bpb = args->old_bucket->bu_blocks;
struct ocfs2_xattr_value_buf vb = {
.vb_access = ocfs2_journal_access,
};
for (i = 0; i < num_buckets; i++, blkno += bpb, new_blkno += bpb) {
ret = ocfs2_read_xattr_bucket(args->old_bucket, blkno);
if (ret) {
mlog_errno(ret);
break;
}
ret = ocfs2_init_xattr_bucket(args->new_bucket, new_blkno, 1);
if (ret) {
mlog_errno(ret);
break;
}
ret = ocfs2_xattr_bucket_journal_access(handle,
args->new_bucket,
OCFS2_JOURNAL_ACCESS_CREATE);
if (ret) {
mlog_errno(ret);
break;
}
for (j = 0; j < bpb; j++)
memcpy(bucket_block(args->new_bucket, j),
bucket_block(args->old_bucket, j),
sb->s_blocksize);
/*
* Record the start cpos so that we can use it to initialize
* our xattr tree we also set the xh_num_bucket for the new
* bucket.
*/
if (i == 0) {
*cpos = le32_to_cpu(bucket_xh(args->new_bucket)->
xh_entries[0].xe_name_hash);
bucket_xh(args->new_bucket)->xh_num_buckets =
cpu_to_le16(num_buckets);
}
ocfs2_xattr_bucket_journal_dirty(handle, args->new_bucket);
ret = ocfs2_reflink_xattr_header(handle, args->reflink,
args->old_bucket->bu_bhs[0],
bucket_xh(args->old_bucket),
args->new_bucket->bu_bhs[0],
bucket_xh(args->new_bucket),
&vb, meta_ac,
ocfs2_get_reflink_xattr_value_root,
args);
if (ret) {
mlog_errno(ret);
break;
}
/*
* Re-access and dirty the bucket to calculate metaecc.
* Because we may extend the transaction in reflink_xattr_header
* which will let the already accessed block gone.
*/
ret = ocfs2_xattr_bucket_journal_access(handle,
args->new_bucket,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
break;
}
ocfs2_xattr_bucket_journal_dirty(handle, args->new_bucket);
ocfs2_xattr_bucket_relse(args->old_bucket);
ocfs2_xattr_bucket_relse(args->new_bucket);
}
ocfs2_xattr_bucket_relse(args->old_bucket);
ocfs2_xattr_bucket_relse(args->new_bucket);
return ret;
}
static int ocfs2_reflink_xattr_buckets(handle_t *handle,
struct inode *inode,
struct ocfs2_reflink_xattr_tree_args *args,
struct ocfs2_extent_tree *et,
struct ocfs2_alloc_context *meta_ac,
struct ocfs2_alloc_context *data_ac,
u64 blkno, u32 cpos, u32 len)
{
int ret, first_inserted = 0;
u32 p_cluster, num_clusters, reflink_cpos = 0;
u64 new_blkno;
unsigned int num_buckets, reflink_buckets;
unsigned int bpc =
ocfs2_xattr_buckets_per_cluster(OCFS2_SB(inode->i_sb));
ret = ocfs2_read_xattr_bucket(args->old_bucket, blkno);
if (ret) {
mlog_errno(ret);
goto out;
}
num_buckets = le16_to_cpu(bucket_xh(args->old_bucket)->xh_num_buckets);
ocfs2_xattr_bucket_relse(args->old_bucket);
while (len && num_buckets) {
ret = ocfs2_claim_clusters(handle, data_ac,
1, &p_cluster, &num_clusters);
if (ret) {
mlog_errno(ret);
goto out;
}
new_blkno = ocfs2_clusters_to_blocks(inode->i_sb, p_cluster);
reflink_buckets = min(num_buckets, bpc * num_clusters);
ret = ocfs2_reflink_xattr_bucket(handle, blkno,
new_blkno, num_clusters,
&reflink_cpos, reflink_buckets,
meta_ac, data_ac, args);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* For the 1st allocated cluster, we make it use the same cpos
* so that the xattr tree looks the same as the original one
* in the most case.
*/
if (!first_inserted) {
reflink_cpos = cpos;
first_inserted = 1;
}
ret = ocfs2_insert_extent(handle, et, reflink_cpos, new_blkno,
num_clusters, 0, meta_ac);
if (ret)
mlog_errno(ret);
trace_ocfs2_reflink_xattr_buckets((unsigned long long)new_blkno,
num_clusters, reflink_cpos);
len -= num_clusters;
blkno += ocfs2_clusters_to_blocks(inode->i_sb, num_clusters);
num_buckets -= reflink_buckets;
}
out:
return ret;
}
/*
* Create the same xattr extent record in the new inode's xattr tree.
*/
static int ocfs2_reflink_xattr_rec(struct inode *inode,
struct buffer_head *root_bh,
u64 blkno,
u32 cpos,
u32 len,
void *para)
{
int ret, credits = 0;
handle_t *handle;
struct ocfs2_reflink_xattr_tree_args *args =
(struct ocfs2_reflink_xattr_tree_args *)para;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct ocfs2_alloc_context *meta_ac = NULL;
struct ocfs2_alloc_context *data_ac = NULL;
struct ocfs2_extent_tree et;
trace_ocfs2_reflink_xattr_rec((unsigned long long)blkno, len);
ocfs2_init_xattr_tree_extent_tree(&et,
INODE_CACHE(args->reflink->new_inode),
args->new_blk_bh);
ret = ocfs2_lock_reflink_xattr_rec_allocators(args, &et, blkno,
len, &credits,
&meta_ac, &data_ac);
if (ret) {
mlog_errno(ret);
goto out;
}
handle = ocfs2_start_trans(osb, credits);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
mlog_errno(ret);
goto out;
}
ret = ocfs2_reflink_xattr_buckets(handle, inode, args, &et,
meta_ac, data_ac,
blkno, cpos, len);
if (ret)
mlog_errno(ret);
ocfs2_commit_trans(osb, handle);
out:
if (meta_ac)
ocfs2_free_alloc_context(meta_ac);
if (data_ac)
ocfs2_free_alloc_context(data_ac);
return ret;
}
/*
* Create reflinked xattr buckets.
* We will add bucket one by one, and refcount all the xattrs in the bucket
* if they are stored outside.
*/
static int ocfs2_reflink_xattr_tree(struct ocfs2_xattr_reflink *args,
struct buffer_head *blk_bh,
struct buffer_head *new_blk_bh)
{
int ret;
struct ocfs2_reflink_xattr_tree_args para;
memset(&para, 0, sizeof(para));
para.reflink = args;
para.old_blk_bh = blk_bh;
para.new_blk_bh = new_blk_bh;
para.old_bucket = ocfs2_xattr_bucket_new(args->old_inode);
if (!para.old_bucket) {
mlog_errno(-ENOMEM);
return -ENOMEM;
}
para.new_bucket = ocfs2_xattr_bucket_new(args->new_inode);
if (!para.new_bucket) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
ret = ocfs2_iterate_xattr_index_block(args->old_inode, blk_bh,
ocfs2_reflink_xattr_rec,
&para);
if (ret)
mlog_errno(ret);
out:
ocfs2_xattr_bucket_free(para.old_bucket);
ocfs2_xattr_bucket_free(para.new_bucket);
return ret;
}
static int ocfs2_reflink_xattr_in_block(struct ocfs2_xattr_reflink *args,
struct buffer_head *blk_bh)
{
int ret, indexed = 0;
struct buffer_head *new_blk_bh = NULL;
struct ocfs2_xattr_block *xb =
(struct ocfs2_xattr_block *)blk_bh->b_data;
if (le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED)
indexed = 1;
ret = ocfs2_create_empty_xattr_block(args->new_inode, args->new_bh,
&new_blk_bh, indexed);
if (ret) {
mlog_errno(ret);
goto out;
}
if (!indexed)
ret = ocfs2_reflink_xattr_block(args, blk_bh, new_blk_bh);
else
ret = ocfs2_reflink_xattr_tree(args, blk_bh, new_blk_bh);
if (ret)
mlog_errno(ret);
out:
brelse(new_blk_bh);
return ret;
}
static int ocfs2_reflink_xattr_no_security(struct ocfs2_xattr_entry *xe)
{
int type = ocfs2_xattr_get_type(xe);
return type != OCFS2_XATTR_INDEX_SECURITY &&
type != OCFS2_XATTR_INDEX_POSIX_ACL_ACCESS &&
type != OCFS2_XATTR_INDEX_POSIX_ACL_DEFAULT;
}
int ocfs2_reflink_xattrs(struct inode *old_inode,
struct buffer_head *old_bh,
struct inode *new_inode,
struct buffer_head *new_bh,
bool preserve_security)
{
int ret;
struct ocfs2_xattr_reflink args;
struct ocfs2_inode_info *oi = OCFS2_I(old_inode);
struct ocfs2_dinode *di = (struct ocfs2_dinode *)old_bh->b_data;
struct buffer_head *blk_bh = NULL;
struct ocfs2_cached_dealloc_ctxt dealloc;
struct ocfs2_refcount_tree *ref_tree;
struct buffer_head *ref_root_bh = NULL;
ret = ocfs2_lock_refcount_tree(OCFS2_SB(old_inode->i_sb),
le64_to_cpu(di->i_refcount_loc),
1, &ref_tree, &ref_root_bh);
if (ret) {
mlog_errno(ret);
goto out;
}
ocfs2_init_dealloc_ctxt(&dealloc);
args.old_inode = old_inode;
args.new_inode = new_inode;
args.old_bh = old_bh;
args.new_bh = new_bh;
args.ref_ci = &ref_tree->rf_ci;
args.ref_root_bh = ref_root_bh;
args.dealloc = &dealloc;
if (preserve_security)
args.xattr_reflinked = NULL;
else
args.xattr_reflinked = ocfs2_reflink_xattr_no_security;
if (oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL) {
ret = ocfs2_reflink_xattr_inline(&args);
if (ret) {
mlog_errno(ret);
goto out_unlock;
}
}
if (!di->i_xattr_loc)
goto out_unlock;
ret = ocfs2_read_xattr_block(old_inode, le64_to_cpu(di->i_xattr_loc),
&blk_bh);
if (ret < 0) {
mlog_errno(ret);
goto out_unlock;
}
ret = ocfs2_reflink_xattr_in_block(&args, blk_bh);
if (ret)
mlog_errno(ret);
brelse(blk_bh);
out_unlock:
ocfs2_unlock_refcount_tree(OCFS2_SB(old_inode->i_sb),
ref_tree, 1);
brelse(ref_root_bh);
if (ocfs2_dealloc_has_cluster(&dealloc)) {
ocfs2_schedule_truncate_log_flush(OCFS2_SB(old_inode->i_sb), 1);
ocfs2_run_deallocs(OCFS2_SB(old_inode->i_sb), &dealloc);
}
out:
return ret;
}
/*
* Initialize security and acl for a already created inode.
* Used for reflink a non-preserve-security file.
*
* It uses common api like ocfs2_xattr_set, so the caller
* must not hold any lock expect i_mutex.
*/
int ocfs2_init_security_and_acl(struct inode *dir,
struct inode *inode,
const struct qstr *qstr)
{
int ret = 0;
struct buffer_head *dir_bh = NULL;
ret = ocfs2_init_security_get(inode, dir, qstr, NULL);
if (ret) {
mlog_errno(ret);
goto leave;
}
ret = ocfs2_inode_lock(dir, &dir_bh, 0);
if (ret) {
mlog_errno(ret);
goto leave;
}
ret = ocfs2_init_acl(NULL, inode, dir, NULL, dir_bh, NULL, NULL);
if (ret)
mlog_errno(ret);
ocfs2_inode_unlock(dir, 0);
brelse(dir_bh);
leave:
return ret;
}
/*
* 'security' attributes support
*/
static int ocfs2_xattr_security_get(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *name, void *buffer, size_t size)
{
return ocfs2_xattr_get(inode, OCFS2_XATTR_INDEX_SECURITY,
name, buffer, size);
}
static int ocfs2_xattr_security_set(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *name, const void *value,
size_t size, int flags)
{
return ocfs2_xattr_set(inode, OCFS2_XATTR_INDEX_SECURITY,
name, value, size, flags);
}
static int ocfs2_initxattrs(struct inode *inode, const struct xattr *xattr_array,
void *fs_info)
{
const struct xattr *xattr;
int err = 0;
for (xattr = xattr_array; xattr->name != NULL; xattr++) {
err = ocfs2_xattr_set(inode, OCFS2_XATTR_INDEX_SECURITY,
xattr->name, xattr->value,
xattr->value_len, XATTR_CREATE);
if (err)
break;
}
return err;
}
int ocfs2_init_security_get(struct inode *inode,
struct inode *dir,
const struct qstr *qstr,
struct ocfs2_security_xattr_info *si)
{
/* check whether ocfs2 support feature xattr */
if (!ocfs2_supports_xattr(OCFS2_SB(dir->i_sb)))
return -EOPNOTSUPP;
if (si)
return security_old_inode_init_security(inode, dir, qstr,
&si->name, &si->value,
&si->value_len);
return security_inode_init_security(inode, dir, qstr,
&ocfs2_initxattrs, NULL);
}
int ocfs2_init_security_set(handle_t *handle,
struct inode *inode,
struct buffer_head *di_bh,
struct ocfs2_security_xattr_info *si,
struct ocfs2_alloc_context *xattr_ac,
struct ocfs2_alloc_context *data_ac)
{
return ocfs2_xattr_set_handle(handle, inode, di_bh,
OCFS2_XATTR_INDEX_SECURITY,
si->name, si->value, si->value_len, 0,
xattr_ac, data_ac);
}
const struct xattr_handler ocfs2_xattr_security_handler = {
.prefix = XATTR_SECURITY_PREFIX,
.get = ocfs2_xattr_security_get,
.set = ocfs2_xattr_security_set,
};
/*
* 'trusted' attributes support
*/
static int ocfs2_xattr_trusted_get(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *name, void *buffer, size_t size)
{
return ocfs2_xattr_get(inode, OCFS2_XATTR_INDEX_TRUSTED,
name, buffer, size);
}
static int ocfs2_xattr_trusted_set(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *name, const void *value,
size_t size, int flags)
{
return ocfs2_xattr_set(inode, OCFS2_XATTR_INDEX_TRUSTED,
name, value, size, flags);
}
const struct xattr_handler ocfs2_xattr_trusted_handler = {
.prefix = XATTR_TRUSTED_PREFIX,
.get = ocfs2_xattr_trusted_get,
.set = ocfs2_xattr_trusted_set,
};
/*
* 'user' attributes support
*/
static int ocfs2_xattr_user_get(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *name, void *buffer, size_t size)
{
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
if (osb->s_mount_opt & OCFS2_MOUNT_NOUSERXATTR)
return -EOPNOTSUPP;
return ocfs2_xattr_get(inode, OCFS2_XATTR_INDEX_USER, name,
buffer, size);
}
static int ocfs2_xattr_user_set(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *name, const void *value,
size_t size, int flags)
{
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
if (osb->s_mount_opt & OCFS2_MOUNT_NOUSERXATTR)
return -EOPNOTSUPP;
return ocfs2_xattr_set(inode, OCFS2_XATTR_INDEX_USER,
name, value, size, flags);
}
const struct xattr_handler ocfs2_xattr_user_handler = {
.prefix = XATTR_USER_PREFIX,
.get = ocfs2_xattr_user_get,
.set = ocfs2_xattr_user_set,
};