mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-28 15:13:55 +08:00
827a746f40
It's not sufficient to skip reading when the pos is beyond the EOF.
There may be data at the head of the page that we need to fill in
before the write.
Add a new helper function that corrects and clarifies the logic of
when we can skip reads, and have it only zero out the part of the page
that won't have data copied in for the write.
Finally, don't set the page Uptodate after zeroing. It's not up to date
since the write data won't have been copied in yet.
[DH made the following changes:
- Prefixed the new function with "netfs_".
- Don't call zero_user_segments() for a full-page write.
- Altered the beyond-last-page check to avoid a DIV instruction and got
rid of then-redundant zero-length file check.
]
Fixes: e1b1240c1f
("netfs: Add write_begin helper")
Reported-by: Andrew W Elble <aweits@rit.edu>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
cc: ceph-devel@vger.kernel.org
Link: https://lore.kernel.org/r/20210613233345.113565-1-jlayton@kernel.org/
Link: https://lore.kernel.org/r/162367683365.460125.4467036947364047314.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/162391826758.1173366.11794946719301590013.stgit@warthog.procyon.org.uk/ # v2
1209 lines
35 KiB
C
1209 lines
35 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/* Network filesystem high-level read support.
|
|
*
|
|
* Copyright (C) 2021 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/export.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include <linux/netfs.h>
|
|
#include "internal.h"
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/netfs.h>
|
|
|
|
MODULE_DESCRIPTION("Network fs support");
|
|
MODULE_AUTHOR("Red Hat, Inc.");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
unsigned netfs_debug;
|
|
module_param_named(debug, netfs_debug, uint, S_IWUSR | S_IRUGO);
|
|
MODULE_PARM_DESC(netfs_debug, "Netfs support debugging mask");
|
|
|
|
static void netfs_rreq_work(struct work_struct *);
|
|
static void __netfs_put_subrequest(struct netfs_read_subrequest *, bool);
|
|
|
|
static void netfs_put_subrequest(struct netfs_read_subrequest *subreq,
|
|
bool was_async)
|
|
{
|
|
if (refcount_dec_and_test(&subreq->usage))
|
|
__netfs_put_subrequest(subreq, was_async);
|
|
}
|
|
|
|
static struct netfs_read_request *netfs_alloc_read_request(
|
|
const struct netfs_read_request_ops *ops, void *netfs_priv,
|
|
struct file *file)
|
|
{
|
|
static atomic_t debug_ids;
|
|
struct netfs_read_request *rreq;
|
|
|
|
rreq = kzalloc(sizeof(struct netfs_read_request), GFP_KERNEL);
|
|
if (rreq) {
|
|
rreq->netfs_ops = ops;
|
|
rreq->netfs_priv = netfs_priv;
|
|
rreq->inode = file_inode(file);
|
|
rreq->i_size = i_size_read(rreq->inode);
|
|
rreq->debug_id = atomic_inc_return(&debug_ids);
|
|
INIT_LIST_HEAD(&rreq->subrequests);
|
|
INIT_WORK(&rreq->work, netfs_rreq_work);
|
|
refcount_set(&rreq->usage, 1);
|
|
__set_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
|
|
ops->init_rreq(rreq, file);
|
|
netfs_stat(&netfs_n_rh_rreq);
|
|
}
|
|
|
|
return rreq;
|
|
}
|
|
|
|
static void netfs_get_read_request(struct netfs_read_request *rreq)
|
|
{
|
|
refcount_inc(&rreq->usage);
|
|
}
|
|
|
|
static void netfs_rreq_clear_subreqs(struct netfs_read_request *rreq,
|
|
bool was_async)
|
|
{
|
|
struct netfs_read_subrequest *subreq;
|
|
|
|
while (!list_empty(&rreq->subrequests)) {
|
|
subreq = list_first_entry(&rreq->subrequests,
|
|
struct netfs_read_subrequest, rreq_link);
|
|
list_del(&subreq->rreq_link);
|
|
netfs_put_subrequest(subreq, was_async);
|
|
}
|
|
}
|
|
|
|
static void netfs_free_read_request(struct work_struct *work)
|
|
{
|
|
struct netfs_read_request *rreq =
|
|
container_of(work, struct netfs_read_request, work);
|
|
netfs_rreq_clear_subreqs(rreq, false);
|
|
if (rreq->netfs_priv)
|
|
rreq->netfs_ops->cleanup(rreq->mapping, rreq->netfs_priv);
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_free);
|
|
if (rreq->cache_resources.ops)
|
|
rreq->cache_resources.ops->end_operation(&rreq->cache_resources);
|
|
kfree(rreq);
|
|
netfs_stat_d(&netfs_n_rh_rreq);
|
|
}
|
|
|
|
static void netfs_put_read_request(struct netfs_read_request *rreq, bool was_async)
|
|
{
|
|
if (refcount_dec_and_test(&rreq->usage)) {
|
|
if (was_async) {
|
|
rreq->work.func = netfs_free_read_request;
|
|
if (!queue_work(system_unbound_wq, &rreq->work))
|
|
BUG();
|
|
} else {
|
|
netfs_free_read_request(&rreq->work);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate and partially initialise an I/O request structure.
|
|
*/
|
|
static struct netfs_read_subrequest *netfs_alloc_subrequest(
|
|
struct netfs_read_request *rreq)
|
|
{
|
|
struct netfs_read_subrequest *subreq;
|
|
|
|
subreq = kzalloc(sizeof(struct netfs_read_subrequest), GFP_KERNEL);
|
|
if (subreq) {
|
|
INIT_LIST_HEAD(&subreq->rreq_link);
|
|
refcount_set(&subreq->usage, 2);
|
|
subreq->rreq = rreq;
|
|
netfs_get_read_request(rreq);
|
|
netfs_stat(&netfs_n_rh_sreq);
|
|
}
|
|
|
|
return subreq;
|
|
}
|
|
|
|
static void netfs_get_read_subrequest(struct netfs_read_subrequest *subreq)
|
|
{
|
|
refcount_inc(&subreq->usage);
|
|
}
|
|
|
|
static void __netfs_put_subrequest(struct netfs_read_subrequest *subreq,
|
|
bool was_async)
|
|
{
|
|
struct netfs_read_request *rreq = subreq->rreq;
|
|
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_free);
|
|
kfree(subreq);
|
|
netfs_stat_d(&netfs_n_rh_sreq);
|
|
netfs_put_read_request(rreq, was_async);
|
|
}
|
|
|
|
/*
|
|
* Clear the unread part of an I/O request.
|
|
*/
|
|
static void netfs_clear_unread(struct netfs_read_subrequest *subreq)
|
|
{
|
|
struct iov_iter iter;
|
|
|
|
iov_iter_xarray(&iter, WRITE, &subreq->rreq->mapping->i_pages,
|
|
subreq->start + subreq->transferred,
|
|
subreq->len - subreq->transferred);
|
|
iov_iter_zero(iov_iter_count(&iter), &iter);
|
|
}
|
|
|
|
static void netfs_cache_read_terminated(void *priv, ssize_t transferred_or_error,
|
|
bool was_async)
|
|
{
|
|
struct netfs_read_subrequest *subreq = priv;
|
|
|
|
netfs_subreq_terminated(subreq, transferred_or_error, was_async);
|
|
}
|
|
|
|
/*
|
|
* Issue a read against the cache.
|
|
* - Eats the caller's ref on subreq.
|
|
*/
|
|
static void netfs_read_from_cache(struct netfs_read_request *rreq,
|
|
struct netfs_read_subrequest *subreq,
|
|
bool seek_data)
|
|
{
|
|
struct netfs_cache_resources *cres = &rreq->cache_resources;
|
|
struct iov_iter iter;
|
|
|
|
netfs_stat(&netfs_n_rh_read);
|
|
iov_iter_xarray(&iter, READ, &rreq->mapping->i_pages,
|
|
subreq->start + subreq->transferred,
|
|
subreq->len - subreq->transferred);
|
|
|
|
cres->ops->read(cres, subreq->start, &iter, seek_data,
|
|
netfs_cache_read_terminated, subreq);
|
|
}
|
|
|
|
/*
|
|
* Fill a subrequest region with zeroes.
|
|
*/
|
|
static void netfs_fill_with_zeroes(struct netfs_read_request *rreq,
|
|
struct netfs_read_subrequest *subreq)
|
|
{
|
|
netfs_stat(&netfs_n_rh_zero);
|
|
__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
|
|
netfs_subreq_terminated(subreq, 0, false);
|
|
}
|
|
|
|
/*
|
|
* Ask the netfs to issue a read request to the server for us.
|
|
*
|
|
* The netfs is expected to read from subreq->pos + subreq->transferred to
|
|
* subreq->pos + subreq->len - 1. It may not backtrack and write data into the
|
|
* buffer prior to the transferred point as it might clobber dirty data
|
|
* obtained from the cache.
|
|
*
|
|
* Alternatively, the netfs is allowed to indicate one of two things:
|
|
*
|
|
* - NETFS_SREQ_SHORT_READ: A short read - it will get called again to try and
|
|
* make progress.
|
|
*
|
|
* - NETFS_SREQ_CLEAR_TAIL: A short read - the rest of the buffer will be
|
|
* cleared.
|
|
*/
|
|
static void netfs_read_from_server(struct netfs_read_request *rreq,
|
|
struct netfs_read_subrequest *subreq)
|
|
{
|
|
netfs_stat(&netfs_n_rh_download);
|
|
rreq->netfs_ops->issue_op(subreq);
|
|
}
|
|
|
|
/*
|
|
* Release those waiting.
|
|
*/
|
|
static void netfs_rreq_completed(struct netfs_read_request *rreq, bool was_async)
|
|
{
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_done);
|
|
netfs_rreq_clear_subreqs(rreq, was_async);
|
|
netfs_put_read_request(rreq, was_async);
|
|
}
|
|
|
|
/*
|
|
* Deal with the completion of writing the data to the cache. We have to clear
|
|
* the PG_fscache bits on the pages involved and release the caller's ref.
|
|
*
|
|
* May be called in softirq mode and we inherit a ref from the caller.
|
|
*/
|
|
static void netfs_rreq_unmark_after_write(struct netfs_read_request *rreq,
|
|
bool was_async)
|
|
{
|
|
struct netfs_read_subrequest *subreq;
|
|
struct page *page;
|
|
pgoff_t unlocked = 0;
|
|
bool have_unlocked = false;
|
|
|
|
rcu_read_lock();
|
|
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
XA_STATE(xas, &rreq->mapping->i_pages, subreq->start / PAGE_SIZE);
|
|
|
|
xas_for_each(&xas, page, (subreq->start + subreq->len - 1) / PAGE_SIZE) {
|
|
/* We might have multiple writes from the same huge
|
|
* page, but we mustn't unlock a page more than once.
|
|
*/
|
|
if (have_unlocked && page->index <= unlocked)
|
|
continue;
|
|
unlocked = page->index;
|
|
end_page_fscache(page);
|
|
have_unlocked = true;
|
|
}
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
netfs_rreq_completed(rreq, was_async);
|
|
}
|
|
|
|
static void netfs_rreq_copy_terminated(void *priv, ssize_t transferred_or_error,
|
|
bool was_async)
|
|
{
|
|
struct netfs_read_subrequest *subreq = priv;
|
|
struct netfs_read_request *rreq = subreq->rreq;
|
|
|
|
if (IS_ERR_VALUE(transferred_or_error)) {
|
|
netfs_stat(&netfs_n_rh_write_failed);
|
|
trace_netfs_failure(rreq, subreq, transferred_or_error,
|
|
netfs_fail_copy_to_cache);
|
|
} else {
|
|
netfs_stat(&netfs_n_rh_write_done);
|
|
}
|
|
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_write_term);
|
|
|
|
/* If we decrement nr_wr_ops to 0, the ref belongs to us. */
|
|
if (atomic_dec_and_test(&rreq->nr_wr_ops))
|
|
netfs_rreq_unmark_after_write(rreq, was_async);
|
|
|
|
netfs_put_subrequest(subreq, was_async);
|
|
}
|
|
|
|
/*
|
|
* Perform any outstanding writes to the cache. We inherit a ref from the
|
|
* caller.
|
|
*/
|
|
static void netfs_rreq_do_write_to_cache(struct netfs_read_request *rreq)
|
|
{
|
|
struct netfs_cache_resources *cres = &rreq->cache_resources;
|
|
struct netfs_read_subrequest *subreq, *next, *p;
|
|
struct iov_iter iter;
|
|
int ret;
|
|
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_write);
|
|
|
|
/* We don't want terminating writes trying to wake us up whilst we're
|
|
* still going through the list.
|
|
*/
|
|
atomic_inc(&rreq->nr_wr_ops);
|
|
|
|
list_for_each_entry_safe(subreq, p, &rreq->subrequests, rreq_link) {
|
|
if (!test_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags)) {
|
|
list_del_init(&subreq->rreq_link);
|
|
netfs_put_subrequest(subreq, false);
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
/* Amalgamate adjacent writes */
|
|
while (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
|
|
next = list_next_entry(subreq, rreq_link);
|
|
if (next->start != subreq->start + subreq->len)
|
|
break;
|
|
subreq->len += next->len;
|
|
list_del_init(&next->rreq_link);
|
|
netfs_put_subrequest(next, false);
|
|
}
|
|
|
|
ret = cres->ops->prepare_write(cres, &subreq->start, &subreq->len,
|
|
rreq->i_size);
|
|
if (ret < 0) {
|
|
trace_netfs_failure(rreq, subreq, ret, netfs_fail_prepare_write);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_write_skip);
|
|
continue;
|
|
}
|
|
|
|
iov_iter_xarray(&iter, WRITE, &rreq->mapping->i_pages,
|
|
subreq->start, subreq->len);
|
|
|
|
atomic_inc(&rreq->nr_wr_ops);
|
|
netfs_stat(&netfs_n_rh_write);
|
|
netfs_get_read_subrequest(subreq);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_write);
|
|
cres->ops->write(cres, subreq->start, &iter,
|
|
netfs_rreq_copy_terminated, subreq);
|
|
}
|
|
|
|
/* If we decrement nr_wr_ops to 0, the usage ref belongs to us. */
|
|
if (atomic_dec_and_test(&rreq->nr_wr_ops))
|
|
netfs_rreq_unmark_after_write(rreq, false);
|
|
}
|
|
|
|
static void netfs_rreq_write_to_cache_work(struct work_struct *work)
|
|
{
|
|
struct netfs_read_request *rreq =
|
|
container_of(work, struct netfs_read_request, work);
|
|
|
|
netfs_rreq_do_write_to_cache(rreq);
|
|
}
|
|
|
|
static void netfs_rreq_write_to_cache(struct netfs_read_request *rreq,
|
|
bool was_async)
|
|
{
|
|
if (was_async) {
|
|
rreq->work.func = netfs_rreq_write_to_cache_work;
|
|
if (!queue_work(system_unbound_wq, &rreq->work))
|
|
BUG();
|
|
} else {
|
|
netfs_rreq_do_write_to_cache(rreq);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Unlock the pages in a read operation. We need to set PG_fscache on any
|
|
* pages we're going to write back before we unlock them.
|
|
*/
|
|
static void netfs_rreq_unlock(struct netfs_read_request *rreq)
|
|
{
|
|
struct netfs_read_subrequest *subreq;
|
|
struct page *page;
|
|
unsigned int iopos, account = 0;
|
|
pgoff_t start_page = rreq->start / PAGE_SIZE;
|
|
pgoff_t last_page = ((rreq->start + rreq->len) / PAGE_SIZE) - 1;
|
|
bool subreq_failed = false;
|
|
int i;
|
|
|
|
XA_STATE(xas, &rreq->mapping->i_pages, start_page);
|
|
|
|
if (test_bit(NETFS_RREQ_FAILED, &rreq->flags)) {
|
|
__clear_bit(NETFS_RREQ_WRITE_TO_CACHE, &rreq->flags);
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
__clear_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags);
|
|
}
|
|
}
|
|
|
|
/* Walk through the pagecache and the I/O request lists simultaneously.
|
|
* We may have a mixture of cached and uncached sections and we only
|
|
* really want to write out the uncached sections. This is slightly
|
|
* complicated by the possibility that we might have huge pages with a
|
|
* mixture inside.
|
|
*/
|
|
subreq = list_first_entry(&rreq->subrequests,
|
|
struct netfs_read_subrequest, rreq_link);
|
|
iopos = 0;
|
|
subreq_failed = (subreq->error < 0);
|
|
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_unlock);
|
|
|
|
rcu_read_lock();
|
|
xas_for_each(&xas, page, last_page) {
|
|
unsigned int pgpos = (page->index - start_page) * PAGE_SIZE;
|
|
unsigned int pgend = pgpos + thp_size(page);
|
|
bool pg_failed = false;
|
|
|
|
for (;;) {
|
|
if (!subreq) {
|
|
pg_failed = true;
|
|
break;
|
|
}
|
|
if (test_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags))
|
|
set_page_fscache(page);
|
|
pg_failed |= subreq_failed;
|
|
if (pgend < iopos + subreq->len)
|
|
break;
|
|
|
|
account += subreq->transferred;
|
|
iopos += subreq->len;
|
|
if (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
|
|
subreq = list_next_entry(subreq, rreq_link);
|
|
subreq_failed = (subreq->error < 0);
|
|
} else {
|
|
subreq = NULL;
|
|
subreq_failed = false;
|
|
}
|
|
if (pgend == iopos)
|
|
break;
|
|
}
|
|
|
|
if (!pg_failed) {
|
|
for (i = 0; i < thp_nr_pages(page); i++)
|
|
flush_dcache_page(page);
|
|
SetPageUptodate(page);
|
|
}
|
|
|
|
if (!test_bit(NETFS_RREQ_DONT_UNLOCK_PAGES, &rreq->flags)) {
|
|
if (page->index == rreq->no_unlock_page &&
|
|
test_bit(NETFS_RREQ_NO_UNLOCK_PAGE, &rreq->flags))
|
|
_debug("no unlock");
|
|
else
|
|
unlock_page(page);
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
task_io_account_read(account);
|
|
if (rreq->netfs_ops->done)
|
|
rreq->netfs_ops->done(rreq);
|
|
}
|
|
|
|
/*
|
|
* Handle a short read.
|
|
*/
|
|
static void netfs_rreq_short_read(struct netfs_read_request *rreq,
|
|
struct netfs_read_subrequest *subreq)
|
|
{
|
|
__clear_bit(NETFS_SREQ_SHORT_READ, &subreq->flags);
|
|
__set_bit(NETFS_SREQ_SEEK_DATA_READ, &subreq->flags);
|
|
|
|
netfs_stat(&netfs_n_rh_short_read);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_resubmit_short);
|
|
|
|
netfs_get_read_subrequest(subreq);
|
|
atomic_inc(&rreq->nr_rd_ops);
|
|
if (subreq->source == NETFS_READ_FROM_CACHE)
|
|
netfs_read_from_cache(rreq, subreq, true);
|
|
else
|
|
netfs_read_from_server(rreq, subreq);
|
|
}
|
|
|
|
/*
|
|
* Resubmit any short or failed operations. Returns true if we got the rreq
|
|
* ref back.
|
|
*/
|
|
static bool netfs_rreq_perform_resubmissions(struct netfs_read_request *rreq)
|
|
{
|
|
struct netfs_read_subrequest *subreq;
|
|
|
|
WARN_ON(in_interrupt());
|
|
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_resubmit);
|
|
|
|
/* We don't want terminating submissions trying to wake us up whilst
|
|
* we're still going through the list.
|
|
*/
|
|
atomic_inc(&rreq->nr_rd_ops);
|
|
|
|
__clear_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
if (subreq->error) {
|
|
if (subreq->source != NETFS_READ_FROM_CACHE)
|
|
break;
|
|
subreq->source = NETFS_DOWNLOAD_FROM_SERVER;
|
|
subreq->error = 0;
|
|
netfs_stat(&netfs_n_rh_download_instead);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_download_instead);
|
|
netfs_get_read_subrequest(subreq);
|
|
atomic_inc(&rreq->nr_rd_ops);
|
|
netfs_read_from_server(rreq, subreq);
|
|
} else if (test_bit(NETFS_SREQ_SHORT_READ, &subreq->flags)) {
|
|
netfs_rreq_short_read(rreq, subreq);
|
|
}
|
|
}
|
|
|
|
/* If we decrement nr_rd_ops to 0, the usage ref belongs to us. */
|
|
if (atomic_dec_and_test(&rreq->nr_rd_ops))
|
|
return true;
|
|
|
|
wake_up_var(&rreq->nr_rd_ops);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Check to see if the data read is still valid.
|
|
*/
|
|
static void netfs_rreq_is_still_valid(struct netfs_read_request *rreq)
|
|
{
|
|
struct netfs_read_subrequest *subreq;
|
|
|
|
if (!rreq->netfs_ops->is_still_valid ||
|
|
rreq->netfs_ops->is_still_valid(rreq))
|
|
return;
|
|
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
if (subreq->source == NETFS_READ_FROM_CACHE) {
|
|
subreq->error = -ESTALE;
|
|
__set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Assess the state of a read request and decide what to do next.
|
|
*
|
|
* Note that we could be in an ordinary kernel thread, on a workqueue or in
|
|
* softirq context at this point. We inherit a ref from the caller.
|
|
*/
|
|
static void netfs_rreq_assess(struct netfs_read_request *rreq, bool was_async)
|
|
{
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_assess);
|
|
|
|
again:
|
|
netfs_rreq_is_still_valid(rreq);
|
|
|
|
if (!test_bit(NETFS_RREQ_FAILED, &rreq->flags) &&
|
|
test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags)) {
|
|
if (netfs_rreq_perform_resubmissions(rreq))
|
|
goto again;
|
|
return;
|
|
}
|
|
|
|
netfs_rreq_unlock(rreq);
|
|
|
|
clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
|
|
wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS);
|
|
|
|
if (test_bit(NETFS_RREQ_WRITE_TO_CACHE, &rreq->flags))
|
|
return netfs_rreq_write_to_cache(rreq, was_async);
|
|
|
|
netfs_rreq_completed(rreq, was_async);
|
|
}
|
|
|
|
static void netfs_rreq_work(struct work_struct *work)
|
|
{
|
|
struct netfs_read_request *rreq =
|
|
container_of(work, struct netfs_read_request, work);
|
|
netfs_rreq_assess(rreq, false);
|
|
}
|
|
|
|
/*
|
|
* Handle the completion of all outstanding I/O operations on a read request.
|
|
* We inherit a ref from the caller.
|
|
*/
|
|
static void netfs_rreq_terminated(struct netfs_read_request *rreq,
|
|
bool was_async)
|
|
{
|
|
if (test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags) &&
|
|
was_async) {
|
|
if (!queue_work(system_unbound_wq, &rreq->work))
|
|
BUG();
|
|
} else {
|
|
netfs_rreq_assess(rreq, was_async);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* netfs_subreq_terminated - Note the termination of an I/O operation.
|
|
* @subreq: The I/O request that has terminated.
|
|
* @transferred_or_error: The amount of data transferred or an error code.
|
|
* @was_async: The termination was asynchronous
|
|
*
|
|
* This tells the read helper that a contributory I/O operation has terminated,
|
|
* one way or another, and that it should integrate the results.
|
|
*
|
|
* The caller indicates in @transferred_or_error the outcome of the operation,
|
|
* supplying a positive value to indicate the number of bytes transferred, 0 to
|
|
* indicate a failure to transfer anything that should be retried or a negative
|
|
* error code. The helper will look after reissuing I/O operations as
|
|
* appropriate and writing downloaded data to the cache.
|
|
*
|
|
* If @was_async is true, the caller might be running in softirq or interrupt
|
|
* context and we can't sleep.
|
|
*/
|
|
void netfs_subreq_terminated(struct netfs_read_subrequest *subreq,
|
|
ssize_t transferred_or_error,
|
|
bool was_async)
|
|
{
|
|
struct netfs_read_request *rreq = subreq->rreq;
|
|
int u;
|
|
|
|
_enter("[%u]{%llx,%lx},%zd",
|
|
subreq->debug_index, subreq->start, subreq->flags,
|
|
transferred_or_error);
|
|
|
|
switch (subreq->source) {
|
|
case NETFS_READ_FROM_CACHE:
|
|
netfs_stat(&netfs_n_rh_read_done);
|
|
break;
|
|
case NETFS_DOWNLOAD_FROM_SERVER:
|
|
netfs_stat(&netfs_n_rh_download_done);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (IS_ERR_VALUE(transferred_or_error)) {
|
|
subreq->error = transferred_or_error;
|
|
trace_netfs_failure(rreq, subreq, transferred_or_error,
|
|
netfs_fail_read);
|
|
goto failed;
|
|
}
|
|
|
|
if (WARN(transferred_or_error > subreq->len - subreq->transferred,
|
|
"Subreq overread: R%x[%x] %zd > %zu - %zu",
|
|
rreq->debug_id, subreq->debug_index,
|
|
transferred_or_error, subreq->len, subreq->transferred))
|
|
transferred_or_error = subreq->len - subreq->transferred;
|
|
|
|
subreq->error = 0;
|
|
subreq->transferred += transferred_or_error;
|
|
if (subreq->transferred < subreq->len)
|
|
goto incomplete;
|
|
|
|
complete:
|
|
__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
|
|
if (test_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags))
|
|
set_bit(NETFS_RREQ_WRITE_TO_CACHE, &rreq->flags);
|
|
|
|
out:
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);
|
|
|
|
/* If we decrement nr_rd_ops to 0, the ref belongs to us. */
|
|
u = atomic_dec_return(&rreq->nr_rd_ops);
|
|
if (u == 0)
|
|
netfs_rreq_terminated(rreq, was_async);
|
|
else if (u == 1)
|
|
wake_up_var(&rreq->nr_rd_ops);
|
|
|
|
netfs_put_subrequest(subreq, was_async);
|
|
return;
|
|
|
|
incomplete:
|
|
if (test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags)) {
|
|
netfs_clear_unread(subreq);
|
|
subreq->transferred = subreq->len;
|
|
goto complete;
|
|
}
|
|
|
|
if (transferred_or_error == 0) {
|
|
if (__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) {
|
|
subreq->error = -ENODATA;
|
|
goto failed;
|
|
}
|
|
} else {
|
|
__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
|
|
}
|
|
|
|
__set_bit(NETFS_SREQ_SHORT_READ, &subreq->flags);
|
|
set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
|
|
goto out;
|
|
|
|
failed:
|
|
if (subreq->source == NETFS_READ_FROM_CACHE) {
|
|
netfs_stat(&netfs_n_rh_read_failed);
|
|
set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
|
|
} else {
|
|
netfs_stat(&netfs_n_rh_download_failed);
|
|
set_bit(NETFS_RREQ_FAILED, &rreq->flags);
|
|
rreq->error = subreq->error;
|
|
}
|
|
goto out;
|
|
}
|
|
EXPORT_SYMBOL(netfs_subreq_terminated);
|
|
|
|
static enum netfs_read_source netfs_cache_prepare_read(struct netfs_read_subrequest *subreq,
|
|
loff_t i_size)
|
|
{
|
|
struct netfs_read_request *rreq = subreq->rreq;
|
|
struct netfs_cache_resources *cres = &rreq->cache_resources;
|
|
|
|
if (cres->ops)
|
|
return cres->ops->prepare_read(subreq, i_size);
|
|
if (subreq->start >= rreq->i_size)
|
|
return NETFS_FILL_WITH_ZEROES;
|
|
return NETFS_DOWNLOAD_FROM_SERVER;
|
|
}
|
|
|
|
/*
|
|
* Work out what sort of subrequest the next one will be.
|
|
*/
|
|
static enum netfs_read_source
|
|
netfs_rreq_prepare_read(struct netfs_read_request *rreq,
|
|
struct netfs_read_subrequest *subreq)
|
|
{
|
|
enum netfs_read_source source;
|
|
|
|
_enter("%llx-%llx,%llx", subreq->start, subreq->start + subreq->len, rreq->i_size);
|
|
|
|
source = netfs_cache_prepare_read(subreq, rreq->i_size);
|
|
if (source == NETFS_INVALID_READ)
|
|
goto out;
|
|
|
|
if (source == NETFS_DOWNLOAD_FROM_SERVER) {
|
|
/* Call out to the netfs to let it shrink the request to fit
|
|
* its own I/O sizes and boundaries. If it shinks it here, it
|
|
* will be called again to make simultaneous calls; if it wants
|
|
* to make serial calls, it can indicate a short read and then
|
|
* we will call it again.
|
|
*/
|
|
if (subreq->len > rreq->i_size - subreq->start)
|
|
subreq->len = rreq->i_size - subreq->start;
|
|
|
|
if (rreq->netfs_ops->clamp_length &&
|
|
!rreq->netfs_ops->clamp_length(subreq)) {
|
|
source = NETFS_INVALID_READ;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (WARN_ON(subreq->len == 0))
|
|
source = NETFS_INVALID_READ;
|
|
|
|
out:
|
|
subreq->source = source;
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
|
|
return source;
|
|
}
|
|
|
|
/*
|
|
* Slice off a piece of a read request and submit an I/O request for it.
|
|
*/
|
|
static bool netfs_rreq_submit_slice(struct netfs_read_request *rreq,
|
|
unsigned int *_debug_index)
|
|
{
|
|
struct netfs_read_subrequest *subreq;
|
|
enum netfs_read_source source;
|
|
|
|
subreq = netfs_alloc_subrequest(rreq);
|
|
if (!subreq)
|
|
return false;
|
|
|
|
subreq->debug_index = (*_debug_index)++;
|
|
subreq->start = rreq->start + rreq->submitted;
|
|
subreq->len = rreq->len - rreq->submitted;
|
|
|
|
_debug("slice %llx,%zx,%zx", subreq->start, subreq->len, rreq->submitted);
|
|
list_add_tail(&subreq->rreq_link, &rreq->subrequests);
|
|
|
|
/* Call out to the cache to find out what it can do with the remaining
|
|
* subset. It tells us in subreq->flags what it decided should be done
|
|
* and adjusts subreq->len down if the subset crosses a cache boundary.
|
|
*
|
|
* Then when we hand the subset, it can choose to take a subset of that
|
|
* (the starts must coincide), in which case, we go around the loop
|
|
* again and ask it to download the next piece.
|
|
*/
|
|
source = netfs_rreq_prepare_read(rreq, subreq);
|
|
if (source == NETFS_INVALID_READ)
|
|
goto subreq_failed;
|
|
|
|
atomic_inc(&rreq->nr_rd_ops);
|
|
|
|
rreq->submitted += subreq->len;
|
|
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
|
|
switch (source) {
|
|
case NETFS_FILL_WITH_ZEROES:
|
|
netfs_fill_with_zeroes(rreq, subreq);
|
|
break;
|
|
case NETFS_DOWNLOAD_FROM_SERVER:
|
|
netfs_read_from_server(rreq, subreq);
|
|
break;
|
|
case NETFS_READ_FROM_CACHE:
|
|
netfs_read_from_cache(rreq, subreq, false);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
return true;
|
|
|
|
subreq_failed:
|
|
rreq->error = subreq->error;
|
|
netfs_put_subrequest(subreq, false);
|
|
return false;
|
|
}
|
|
|
|
static void netfs_cache_expand_readahead(struct netfs_read_request *rreq,
|
|
loff_t *_start, size_t *_len, loff_t i_size)
|
|
{
|
|
struct netfs_cache_resources *cres = &rreq->cache_resources;
|
|
|
|
if (cres->ops && cres->ops->expand_readahead)
|
|
cres->ops->expand_readahead(cres, _start, _len, i_size);
|
|
}
|
|
|
|
static void netfs_rreq_expand(struct netfs_read_request *rreq,
|
|
struct readahead_control *ractl)
|
|
{
|
|
/* Give the cache a chance to change the request parameters. The
|
|
* resultant request must contain the original region.
|
|
*/
|
|
netfs_cache_expand_readahead(rreq, &rreq->start, &rreq->len, rreq->i_size);
|
|
|
|
/* Give the netfs a chance to change the request parameters. The
|
|
* resultant request must contain the original region.
|
|
*/
|
|
if (rreq->netfs_ops->expand_readahead)
|
|
rreq->netfs_ops->expand_readahead(rreq);
|
|
|
|
/* Expand the request if the cache wants it to start earlier. Note
|
|
* that the expansion may get further extended if the VM wishes to
|
|
* insert THPs and the preferred start and/or end wind up in the middle
|
|
* of THPs.
|
|
*
|
|
* If this is the case, however, the THP size should be an integer
|
|
* multiple of the cache granule size, so we get a whole number of
|
|
* granules to deal with.
|
|
*/
|
|
if (rreq->start != readahead_pos(ractl) ||
|
|
rreq->len != readahead_length(ractl)) {
|
|
readahead_expand(ractl, rreq->start, rreq->len);
|
|
rreq->start = readahead_pos(ractl);
|
|
rreq->len = readahead_length(ractl);
|
|
|
|
trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
|
|
netfs_read_trace_expanded);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* netfs_readahead - Helper to manage a read request
|
|
* @ractl: The description of the readahead request
|
|
* @ops: The network filesystem's operations for the helper to use
|
|
* @netfs_priv: Private netfs data to be retained in the request
|
|
*
|
|
* Fulfil a readahead request by drawing data from the cache if possible, or
|
|
* the netfs if not. Space beyond the EOF is zero-filled. Multiple I/O
|
|
* requests from different sources will get munged together. If necessary, the
|
|
* readahead window can be expanded in either direction to a more convenient
|
|
* alighment for RPC efficiency or to make storage in the cache feasible.
|
|
*
|
|
* The calling netfs must provide a table of operations, only one of which,
|
|
* issue_op, is mandatory. It may also be passed a private token, which will
|
|
* be retained in rreq->netfs_priv and will be cleaned up by ops->cleanup().
|
|
*
|
|
* This is usable whether or not caching is enabled.
|
|
*/
|
|
void netfs_readahead(struct readahead_control *ractl,
|
|
const struct netfs_read_request_ops *ops,
|
|
void *netfs_priv)
|
|
{
|
|
struct netfs_read_request *rreq;
|
|
struct page *page;
|
|
unsigned int debug_index = 0;
|
|
int ret;
|
|
|
|
_enter("%lx,%x", readahead_index(ractl), readahead_count(ractl));
|
|
|
|
if (readahead_count(ractl) == 0)
|
|
goto cleanup;
|
|
|
|
rreq = netfs_alloc_read_request(ops, netfs_priv, ractl->file);
|
|
if (!rreq)
|
|
goto cleanup;
|
|
rreq->mapping = ractl->mapping;
|
|
rreq->start = readahead_pos(ractl);
|
|
rreq->len = readahead_length(ractl);
|
|
|
|
if (ops->begin_cache_operation) {
|
|
ret = ops->begin_cache_operation(rreq);
|
|
if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
|
|
goto cleanup_free;
|
|
}
|
|
|
|
netfs_stat(&netfs_n_rh_readahead);
|
|
trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
|
|
netfs_read_trace_readahead);
|
|
|
|
netfs_rreq_expand(rreq, ractl);
|
|
|
|
atomic_set(&rreq->nr_rd_ops, 1);
|
|
do {
|
|
if (!netfs_rreq_submit_slice(rreq, &debug_index))
|
|
break;
|
|
|
|
} while (rreq->submitted < rreq->len);
|
|
|
|
/* Drop the refs on the pages here rather than in the cache or
|
|
* filesystem. The locks will be dropped in netfs_rreq_unlock().
|
|
*/
|
|
while ((page = readahead_page(ractl)))
|
|
put_page(page);
|
|
|
|
/* If we decrement nr_rd_ops to 0, the ref belongs to us. */
|
|
if (atomic_dec_and_test(&rreq->nr_rd_ops))
|
|
netfs_rreq_assess(rreq, false);
|
|
return;
|
|
|
|
cleanup_free:
|
|
netfs_put_read_request(rreq, false);
|
|
return;
|
|
cleanup:
|
|
if (netfs_priv)
|
|
ops->cleanup(ractl->mapping, netfs_priv);
|
|
return;
|
|
}
|
|
EXPORT_SYMBOL(netfs_readahead);
|
|
|
|
/**
|
|
* netfs_readpage - Helper to manage a readpage request
|
|
* @file: The file to read from
|
|
* @page: The page to read
|
|
* @ops: The network filesystem's operations for the helper to use
|
|
* @netfs_priv: Private netfs data to be retained in the request
|
|
*
|
|
* Fulfil a readpage request by drawing data from the cache if possible, or the
|
|
* netfs if not. Space beyond the EOF is zero-filled. Multiple I/O requests
|
|
* from different sources will get munged together.
|
|
*
|
|
* The calling netfs must provide a table of operations, only one of which,
|
|
* issue_op, is mandatory. It may also be passed a private token, which will
|
|
* be retained in rreq->netfs_priv and will be cleaned up by ops->cleanup().
|
|
*
|
|
* This is usable whether or not caching is enabled.
|
|
*/
|
|
int netfs_readpage(struct file *file,
|
|
struct page *page,
|
|
const struct netfs_read_request_ops *ops,
|
|
void *netfs_priv)
|
|
{
|
|
struct netfs_read_request *rreq;
|
|
unsigned int debug_index = 0;
|
|
int ret;
|
|
|
|
_enter("%lx", page_index(page));
|
|
|
|
rreq = netfs_alloc_read_request(ops, netfs_priv, file);
|
|
if (!rreq) {
|
|
if (netfs_priv)
|
|
ops->cleanup(netfs_priv, page_file_mapping(page));
|
|
unlock_page(page);
|
|
return -ENOMEM;
|
|
}
|
|
rreq->mapping = page_file_mapping(page);
|
|
rreq->start = page_file_offset(page);
|
|
rreq->len = thp_size(page);
|
|
|
|
if (ops->begin_cache_operation) {
|
|
ret = ops->begin_cache_operation(rreq);
|
|
if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS) {
|
|
unlock_page(page);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
netfs_stat(&netfs_n_rh_readpage);
|
|
trace_netfs_read(rreq, rreq->start, rreq->len, netfs_read_trace_readpage);
|
|
|
|
netfs_get_read_request(rreq);
|
|
|
|
atomic_set(&rreq->nr_rd_ops, 1);
|
|
do {
|
|
if (!netfs_rreq_submit_slice(rreq, &debug_index))
|
|
break;
|
|
|
|
} while (rreq->submitted < rreq->len);
|
|
|
|
/* Keep nr_rd_ops incremented so that the ref always belongs to us, and
|
|
* the service code isn't punted off to a random thread pool to
|
|
* process.
|
|
*/
|
|
do {
|
|
wait_var_event(&rreq->nr_rd_ops, atomic_read(&rreq->nr_rd_ops) == 1);
|
|
netfs_rreq_assess(rreq, false);
|
|
} while (test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags));
|
|
|
|
ret = rreq->error;
|
|
if (ret == 0 && rreq->submitted < rreq->len) {
|
|
trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_readpage);
|
|
ret = -EIO;
|
|
}
|
|
out:
|
|
netfs_put_read_request(rreq, false);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(netfs_readpage);
|
|
|
|
/**
|
|
* netfs_skip_page_read - prep a page for writing without reading first
|
|
* @page: page being prepared
|
|
* @pos: starting position for the write
|
|
* @len: length of write
|
|
*
|
|
* In some cases, write_begin doesn't need to read at all:
|
|
* - full page write
|
|
* - write that lies in a page that is completely beyond EOF
|
|
* - write that covers the the page from start to EOF or beyond it
|
|
*
|
|
* If any of these criteria are met, then zero out the unwritten parts
|
|
* of the page and return true. Otherwise, return false.
|
|
*/
|
|
static bool netfs_skip_page_read(struct page *page, loff_t pos, size_t len)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
loff_t i_size = i_size_read(inode);
|
|
size_t offset = offset_in_thp(page, pos);
|
|
|
|
/* Full page write */
|
|
if (offset == 0 && len >= thp_size(page))
|
|
return true;
|
|
|
|
/* pos beyond last page in the file */
|
|
if (pos - offset >= i_size)
|
|
goto zero_out;
|
|
|
|
/* Write that covers from the start of the page to EOF or beyond */
|
|
if (offset == 0 && (pos + len) >= i_size)
|
|
goto zero_out;
|
|
|
|
return false;
|
|
zero_out:
|
|
zero_user_segments(page, 0, offset, offset + len, thp_size(page));
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* netfs_write_begin - Helper to prepare for writing
|
|
* @file: The file to read from
|
|
* @mapping: The mapping to read from
|
|
* @pos: File position at which the write will begin
|
|
* @len: The length of the write (may extend beyond the end of the page chosen)
|
|
* @flags: AOP_* flags
|
|
* @_page: Where to put the resultant page
|
|
* @_fsdata: Place for the netfs to store a cookie
|
|
* @ops: The network filesystem's operations for the helper to use
|
|
* @netfs_priv: Private netfs data to be retained in the request
|
|
*
|
|
* Pre-read data for a write-begin request by drawing data from the cache if
|
|
* possible, or the netfs if not. Space beyond the EOF is zero-filled.
|
|
* Multiple I/O requests from different sources will get munged together. If
|
|
* necessary, the readahead window can be expanded in either direction to a
|
|
* more convenient alighment for RPC efficiency or to make storage in the cache
|
|
* feasible.
|
|
*
|
|
* The calling netfs must provide a table of operations, only one of which,
|
|
* issue_op, is mandatory.
|
|
*
|
|
* The check_write_begin() operation can be provided to check for and flush
|
|
* conflicting writes once the page is grabbed and locked. It is passed a
|
|
* pointer to the fsdata cookie that gets returned to the VM to be passed to
|
|
* write_end. It is permitted to sleep. It should return 0 if the request
|
|
* should go ahead; unlock the page and return -EAGAIN to cause the page to be
|
|
* regot; or return an error.
|
|
*
|
|
* This is usable whether or not caching is enabled.
|
|
*/
|
|
int netfs_write_begin(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned int len, unsigned int flags,
|
|
struct page **_page, void **_fsdata,
|
|
const struct netfs_read_request_ops *ops,
|
|
void *netfs_priv)
|
|
{
|
|
struct netfs_read_request *rreq;
|
|
struct page *page, *xpage;
|
|
struct inode *inode = file_inode(file);
|
|
unsigned int debug_index = 0;
|
|
pgoff_t index = pos >> PAGE_SHIFT;
|
|
int ret;
|
|
|
|
DEFINE_READAHEAD(ractl, file, NULL, mapping, index);
|
|
|
|
retry:
|
|
page = grab_cache_page_write_begin(mapping, index, flags);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
|
|
if (ops->check_write_begin) {
|
|
/* Allow the netfs (eg. ceph) to flush conflicts. */
|
|
ret = ops->check_write_begin(file, pos, len, page, _fsdata);
|
|
if (ret < 0) {
|
|
trace_netfs_failure(NULL, NULL, ret, netfs_fail_check_write_begin);
|
|
if (ret == -EAGAIN)
|
|
goto retry;
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
if (PageUptodate(page))
|
|
goto have_page;
|
|
|
|
/* If the page is beyond the EOF, we want to clear it - unless it's
|
|
* within the cache granule containing the EOF, in which case we need
|
|
* to preload the granule.
|
|
*/
|
|
if (!ops->is_cache_enabled(inode) &&
|
|
netfs_skip_page_read(page, pos, len)) {
|
|
netfs_stat(&netfs_n_rh_write_zskip);
|
|
goto have_page_no_wait;
|
|
}
|
|
|
|
ret = -ENOMEM;
|
|
rreq = netfs_alloc_read_request(ops, netfs_priv, file);
|
|
if (!rreq)
|
|
goto error;
|
|
rreq->mapping = page->mapping;
|
|
rreq->start = page_offset(page);
|
|
rreq->len = thp_size(page);
|
|
rreq->no_unlock_page = page->index;
|
|
__set_bit(NETFS_RREQ_NO_UNLOCK_PAGE, &rreq->flags);
|
|
netfs_priv = NULL;
|
|
|
|
if (ops->begin_cache_operation) {
|
|
ret = ops->begin_cache_operation(rreq);
|
|
if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
|
|
goto error_put;
|
|
}
|
|
|
|
netfs_stat(&netfs_n_rh_write_begin);
|
|
trace_netfs_read(rreq, pos, len, netfs_read_trace_write_begin);
|
|
|
|
/* Expand the request to meet caching requirements and download
|
|
* preferences.
|
|
*/
|
|
ractl._nr_pages = thp_nr_pages(page);
|
|
netfs_rreq_expand(rreq, &ractl);
|
|
netfs_get_read_request(rreq);
|
|
|
|
/* We hold the page locks, so we can drop the references */
|
|
while ((xpage = readahead_page(&ractl)))
|
|
if (xpage != page)
|
|
put_page(xpage);
|
|
|
|
atomic_set(&rreq->nr_rd_ops, 1);
|
|
do {
|
|
if (!netfs_rreq_submit_slice(rreq, &debug_index))
|
|
break;
|
|
|
|
} while (rreq->submitted < rreq->len);
|
|
|
|
/* Keep nr_rd_ops incremented so that the ref always belongs to us, and
|
|
* the service code isn't punted off to a random thread pool to
|
|
* process.
|
|
*/
|
|
for (;;) {
|
|
wait_var_event(&rreq->nr_rd_ops, atomic_read(&rreq->nr_rd_ops) == 1);
|
|
netfs_rreq_assess(rreq, false);
|
|
if (!test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags))
|
|
break;
|
|
cond_resched();
|
|
}
|
|
|
|
ret = rreq->error;
|
|
if (ret == 0 && rreq->submitted < rreq->len) {
|
|
trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_write_begin);
|
|
ret = -EIO;
|
|
}
|
|
netfs_put_read_request(rreq, false);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
have_page:
|
|
ret = wait_on_page_fscache_killable(page);
|
|
if (ret < 0)
|
|
goto error;
|
|
have_page_no_wait:
|
|
if (netfs_priv)
|
|
ops->cleanup(netfs_priv, mapping);
|
|
*_page = page;
|
|
_leave(" = 0");
|
|
return 0;
|
|
|
|
error_put:
|
|
netfs_put_read_request(rreq, false);
|
|
error:
|
|
unlock_page(page);
|
|
put_page(page);
|
|
if (netfs_priv)
|
|
ops->cleanup(netfs_priv, mapping);
|
|
_leave(" = %d", ret);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(netfs_write_begin);
|