2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 03:33:58 +08:00
linux-next/drivers/media/dvb-frontends/tda10048.c
Mauro Carvalho Chehab 9a0bf528b4 [media] move the dvb/frontends to drivers/media/dvb-frontends
Raise the DVB frontends one level up, as the intention is to remove
the drivers/media/dvb directory.

Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2012-08-13 23:13:41 -03:00

1192 lines
29 KiB
C

/*
NXP TDA10048HN DVB OFDM demodulator driver
Copyright (C) 2009 Steven Toth <stoth@kernellabs.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/math64.h>
#include <asm/div64.h>
#include "dvb_frontend.h"
#include "dvb_math.h"
#include "tda10048.h"
#define TDA10048_DEFAULT_FIRMWARE "dvb-fe-tda10048-1.0.fw"
#define TDA10048_DEFAULT_FIRMWARE_SIZE 24878
/* Register name definitions */
#define TDA10048_IDENTITY 0x00
#define TDA10048_VERSION 0x01
#define TDA10048_DSP_CODE_CPT 0x0C
#define TDA10048_DSP_CODE_IN 0x0E
#define TDA10048_IN_CONF1 0x10
#define TDA10048_IN_CONF2 0x11
#define TDA10048_IN_CONF3 0x12
#define TDA10048_OUT_CONF1 0x14
#define TDA10048_OUT_CONF2 0x15
#define TDA10048_OUT_CONF3 0x16
#define TDA10048_AUTO 0x18
#define TDA10048_SYNC_STATUS 0x1A
#define TDA10048_CONF_C4_1 0x1E
#define TDA10048_CONF_C4_2 0x1F
#define TDA10048_CODE_IN_RAM 0x20
#define TDA10048_CHANNEL_INFO1_R 0x22
#define TDA10048_CHANNEL_INFO2_R 0x23
#define TDA10048_CHANNEL_INFO1 0x24
#define TDA10048_CHANNEL_INFO2 0x25
#define TDA10048_TIME_ERROR_R 0x26
#define TDA10048_TIME_ERROR 0x27
#define TDA10048_FREQ_ERROR_LSB_R 0x28
#define TDA10048_FREQ_ERROR_MSB_R 0x29
#define TDA10048_FREQ_ERROR_LSB 0x2A
#define TDA10048_FREQ_ERROR_MSB 0x2B
#define TDA10048_IT_SEL 0x30
#define TDA10048_IT_STAT 0x32
#define TDA10048_DSP_AD_LSB 0x3C
#define TDA10048_DSP_AD_MSB 0x3D
#define TDA10048_DSP_REG_LSB 0x3E
#define TDA10048_DSP_REG_MSB 0x3F
#define TDA10048_CONF_TRISTATE1 0x44
#define TDA10048_CONF_TRISTATE2 0x45
#define TDA10048_CONF_POLARITY 0x46
#define TDA10048_GPIO_SP_DS0 0x48
#define TDA10048_GPIO_SP_DS1 0x49
#define TDA10048_GPIO_SP_DS2 0x4A
#define TDA10048_GPIO_SP_DS3 0x4B
#define TDA10048_GPIO_OUT_SEL 0x4C
#define TDA10048_GPIO_SELECT 0x4D
#define TDA10048_IC_MODE 0x4E
#define TDA10048_CONF_XO 0x50
#define TDA10048_CONF_PLL1 0x51
#define TDA10048_CONF_PLL2 0x52
#define TDA10048_CONF_PLL3 0x53
#define TDA10048_CONF_ADC 0x54
#define TDA10048_CONF_ADC_2 0x55
#define TDA10048_CONF_C1_1 0x60
#define TDA10048_CONF_C1_3 0x62
#define TDA10048_AGC_CONF 0x70
#define TDA10048_AGC_THRESHOLD_LSB 0x72
#define TDA10048_AGC_THRESHOLD_MSB 0x73
#define TDA10048_AGC_RENORM 0x74
#define TDA10048_AGC_GAINS 0x76
#define TDA10048_AGC_TUN_MIN 0x78
#define TDA10048_AGC_TUN_MAX 0x79
#define TDA10048_AGC_IF_MIN 0x7A
#define TDA10048_AGC_IF_MAX 0x7B
#define TDA10048_AGC_TUN_LEVEL 0x7E
#define TDA10048_AGC_IF_LEVEL 0x7F
#define TDA10048_DIG_AGC_LEVEL 0x81
#define TDA10048_FREQ_PHY2_LSB 0x86
#define TDA10048_FREQ_PHY2_MSB 0x87
#define TDA10048_TIME_INVWREF_LSB 0x88
#define TDA10048_TIME_INVWREF_MSB 0x89
#define TDA10048_TIME_WREF_LSB 0x8A
#define TDA10048_TIME_WREF_MID1 0x8B
#define TDA10048_TIME_WREF_MID2 0x8C
#define TDA10048_TIME_WREF_MSB 0x8D
#define TDA10048_NP_OUT 0xA2
#define TDA10048_CELL_ID_LSB 0xA4
#define TDA10048_CELL_ID_MSB 0xA5
#define TDA10048_EXTTPS_ODD 0xAA
#define TDA10048_EXTTPS_EVEN 0xAB
#define TDA10048_TPS_LENGTH 0xAC
#define TDA10048_FREE_REG_1 0xB2
#define TDA10048_FREE_REG_2 0xB3
#define TDA10048_CONF_C3_1 0xC0
#define TDA10048_CVBER_CTRL 0xC2
#define TDA10048_CBER_NMAX_LSB 0xC4
#define TDA10048_CBER_NMAX_MSB 0xC5
#define TDA10048_CBER_LSB 0xC6
#define TDA10048_CBER_MSB 0xC7
#define TDA10048_VBER_LSB 0xC8
#define TDA10048_VBER_MID 0xC9
#define TDA10048_VBER_MSB 0xCA
#define TDA10048_CVBER_LUT 0xCC
#define TDA10048_UNCOR_CTRL 0xCD
#define TDA10048_UNCOR_CPT_LSB 0xCE
#define TDA10048_UNCOR_CPT_MSB 0xCF
#define TDA10048_SOFT_IT_C3 0xD6
#define TDA10048_CONF_TS2 0xE0
#define TDA10048_CONF_TS1 0xE1
static unsigned int debug;
#define dprintk(level, fmt, arg...)\
do { if (debug >= level)\
printk(KERN_DEBUG "tda10048: " fmt, ## arg);\
} while (0)
struct tda10048_state {
struct i2c_adapter *i2c;
/* We'll cache and update the attach config settings */
struct tda10048_config config;
struct dvb_frontend frontend;
int fwloaded;
u32 freq_if_hz;
u32 xtal_hz;
u32 pll_mfactor;
u32 pll_nfactor;
u32 pll_pfactor;
u32 sample_freq;
u32 bandwidth;
};
static struct init_tab {
u8 reg;
u16 data;
} init_tab[] = {
{ TDA10048_CONF_PLL1, 0x08 },
{ TDA10048_CONF_ADC_2, 0x00 },
{ TDA10048_CONF_C4_1, 0x00 },
{ TDA10048_CONF_PLL1, 0x0f },
{ TDA10048_CONF_PLL2, 0x0a },
{ TDA10048_CONF_PLL3, 0x43 },
{ TDA10048_FREQ_PHY2_LSB, 0x02 },
{ TDA10048_FREQ_PHY2_MSB, 0x0a },
{ TDA10048_TIME_WREF_LSB, 0xbd },
{ TDA10048_TIME_WREF_MID1, 0xe4 },
{ TDA10048_TIME_WREF_MID2, 0xa8 },
{ TDA10048_TIME_WREF_MSB, 0x02 },
{ TDA10048_TIME_INVWREF_LSB, 0x04 },
{ TDA10048_TIME_INVWREF_MSB, 0x06 },
{ TDA10048_CONF_C4_1, 0x00 },
{ TDA10048_CONF_C1_1, 0xa8 },
{ TDA10048_AGC_CONF, 0x16 },
{ TDA10048_CONF_C1_3, 0x0b },
{ TDA10048_AGC_TUN_MIN, 0x00 },
{ TDA10048_AGC_TUN_MAX, 0xff },
{ TDA10048_AGC_IF_MIN, 0x00 },
{ TDA10048_AGC_IF_MAX, 0xff },
{ TDA10048_AGC_THRESHOLD_MSB, 0x00 },
{ TDA10048_AGC_THRESHOLD_LSB, 0x70 },
{ TDA10048_CVBER_CTRL, 0x38 },
{ TDA10048_AGC_GAINS, 0x12 },
{ TDA10048_CONF_XO, 0x00 },
{ TDA10048_CONF_TS1, 0x07 },
{ TDA10048_IC_MODE, 0x00 },
{ TDA10048_CONF_TS2, 0xc0 },
{ TDA10048_CONF_TRISTATE1, 0x21 },
{ TDA10048_CONF_TRISTATE2, 0x00 },
{ TDA10048_CONF_POLARITY, 0x00 },
{ TDA10048_CONF_C4_2, 0x04 },
{ TDA10048_CONF_ADC, 0x60 },
{ TDA10048_CONF_ADC_2, 0x10 },
{ TDA10048_CONF_ADC, 0x60 },
{ TDA10048_CONF_ADC_2, 0x00 },
{ TDA10048_CONF_C1_1, 0xa8 },
{ TDA10048_UNCOR_CTRL, 0x00 },
{ TDA10048_CONF_C4_2, 0x04 },
};
static struct pll_tab {
u32 clk_freq_khz;
u32 if_freq_khz;
} pll_tab[] = {
{ TDA10048_CLK_4000, TDA10048_IF_36130 },
{ TDA10048_CLK_16000, TDA10048_IF_3300 },
{ TDA10048_CLK_16000, TDA10048_IF_3500 },
{ TDA10048_CLK_16000, TDA10048_IF_3800 },
{ TDA10048_CLK_16000, TDA10048_IF_4000 },
{ TDA10048_CLK_16000, TDA10048_IF_4300 },
{ TDA10048_CLK_16000, TDA10048_IF_4500 },
{ TDA10048_CLK_16000, TDA10048_IF_5000 },
{ TDA10048_CLK_16000, TDA10048_IF_36130 },
};
static int tda10048_writereg(struct tda10048_state *state, u8 reg, u8 data)
{
struct tda10048_config *config = &state->config;
int ret;
u8 buf[] = { reg, data };
struct i2c_msg msg = {
.addr = config->demod_address,
.flags = 0, .buf = buf, .len = 2 };
dprintk(2, "%s(reg = 0x%02x, data = 0x%02x)\n", __func__, reg, data);
ret = i2c_transfer(state->i2c, &msg, 1);
if (ret != 1)
printk("%s: writereg error (ret == %i)\n", __func__, ret);
return (ret != 1) ? -1 : 0;
}
static u8 tda10048_readreg(struct tda10048_state *state, u8 reg)
{
struct tda10048_config *config = &state->config;
int ret;
u8 b0[] = { reg };
u8 b1[] = { 0 };
struct i2c_msg msg[] = {
{ .addr = config->demod_address,
.flags = 0, .buf = b0, .len = 1 },
{ .addr = config->demod_address,
.flags = I2C_M_RD, .buf = b1, .len = 1 } };
dprintk(2, "%s(reg = 0x%02x)\n", __func__, reg);
ret = i2c_transfer(state->i2c, msg, 2);
if (ret != 2)
printk(KERN_ERR "%s: readreg error (ret == %i)\n",
__func__, ret);
return b1[0];
}
static int tda10048_writeregbulk(struct tda10048_state *state, u8 reg,
const u8 *data, u16 len)
{
struct tda10048_config *config = &state->config;
int ret = -EREMOTEIO;
struct i2c_msg msg;
u8 *buf;
dprintk(2, "%s(%d, ?, len = %d)\n", __func__, reg, len);
buf = kmalloc(len + 1, GFP_KERNEL);
if (buf == NULL) {
ret = -ENOMEM;
goto error;
}
*buf = reg;
memcpy(buf + 1, data, len);
msg.addr = config->demod_address;
msg.flags = 0;
msg.buf = buf;
msg.len = len + 1;
dprintk(2, "%s(): write len = %d\n",
__func__, msg.len);
ret = i2c_transfer(state->i2c, &msg, 1);
if (ret != 1) {
printk(KERN_ERR "%s(): writereg error err %i\n",
__func__, ret);
ret = -EREMOTEIO;
}
error:
kfree(buf);
return ret;
}
static int tda10048_set_phy2(struct dvb_frontend *fe, u32 sample_freq_hz,
u32 if_hz)
{
struct tda10048_state *state = fe->demodulator_priv;
u64 t;
dprintk(1, "%s()\n", __func__);
if (sample_freq_hz == 0)
return -EINVAL;
if (if_hz < (sample_freq_hz / 2)) {
/* PHY2 = (if2/fs) * 2^15 */
t = if_hz;
t *= 10;
t *= 32768;
do_div(t, sample_freq_hz);
t += 5;
do_div(t, 10);
} else {
/* PHY2 = ((IF1-fs)/fs) * 2^15 */
t = sample_freq_hz - if_hz;
t *= 10;
t *= 32768;
do_div(t, sample_freq_hz);
t += 5;
do_div(t, 10);
t = ~t + 1;
}
tda10048_writereg(state, TDA10048_FREQ_PHY2_LSB, (u8)t);
tda10048_writereg(state, TDA10048_FREQ_PHY2_MSB, (u8)(t >> 8));
return 0;
}
static int tda10048_set_wref(struct dvb_frontend *fe, u32 sample_freq_hz,
u32 bw)
{
struct tda10048_state *state = fe->demodulator_priv;
u64 t, z;
dprintk(1, "%s()\n", __func__);
if (sample_freq_hz == 0)
return -EINVAL;
/* WREF = (B / (7 * fs)) * 2^31 */
t = bw * 10;
/* avoid warning: this decimal constant is unsigned only in ISO C90 */
/* t *= 2147483648 on 32bit platforms */
t *= (2048 * 1024);
t *= 1024;
z = 7 * sample_freq_hz;
do_div(t, z);
t += 5;
do_div(t, 10);
tda10048_writereg(state, TDA10048_TIME_WREF_LSB, (u8)t);
tda10048_writereg(state, TDA10048_TIME_WREF_MID1, (u8)(t >> 8));
tda10048_writereg(state, TDA10048_TIME_WREF_MID2, (u8)(t >> 16));
tda10048_writereg(state, TDA10048_TIME_WREF_MSB, (u8)(t >> 24));
return 0;
}
static int tda10048_set_invwref(struct dvb_frontend *fe, u32 sample_freq_hz,
u32 bw)
{
struct tda10048_state *state = fe->demodulator_priv;
u64 t;
dprintk(1, "%s()\n", __func__);
if (sample_freq_hz == 0)
return -EINVAL;
/* INVWREF = ((7 * fs) / B) * 2^5 */
t = sample_freq_hz;
t *= 7;
t *= 32;
t *= 10;
do_div(t, bw);
t += 5;
do_div(t, 10);
tda10048_writereg(state, TDA10048_TIME_INVWREF_LSB, (u8)t);
tda10048_writereg(state, TDA10048_TIME_INVWREF_MSB, (u8)(t >> 8));
return 0;
}
static int tda10048_set_bandwidth(struct dvb_frontend *fe,
u32 bw)
{
struct tda10048_state *state = fe->demodulator_priv;
dprintk(1, "%s(bw=%d)\n", __func__, bw);
/* Bandwidth setting may need to be adjusted */
switch (bw) {
case 6000000:
case 7000000:
case 8000000:
tda10048_set_wref(fe, state->sample_freq, bw);
tda10048_set_invwref(fe, state->sample_freq, bw);
break;
default:
printk(KERN_ERR "%s() invalid bandwidth\n", __func__);
return -EINVAL;
}
state->bandwidth = bw;
return 0;
}
static int tda10048_set_if(struct dvb_frontend *fe, u32 bw)
{
struct tda10048_state *state = fe->demodulator_priv;
struct tda10048_config *config = &state->config;
int i;
u32 if_freq_khz;
dprintk(1, "%s(bw = %d)\n", __func__, bw);
/* based on target bandwidth and clk we calculate pll factors */
switch (bw) {
case 6000000:
if_freq_khz = config->dtv6_if_freq_khz;
break;
case 7000000:
if_freq_khz = config->dtv7_if_freq_khz;
break;
case 8000000:
if_freq_khz = config->dtv8_if_freq_khz;
break;
default:
printk(KERN_ERR "%s() no default\n", __func__);
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(pll_tab); i++) {
if ((pll_tab[i].clk_freq_khz == config->clk_freq_khz) &&
(pll_tab[i].if_freq_khz == if_freq_khz)) {
state->freq_if_hz = pll_tab[i].if_freq_khz * 1000;
state->xtal_hz = pll_tab[i].clk_freq_khz * 1000;
break;
}
}
if (i == ARRAY_SIZE(pll_tab)) {
printk(KERN_ERR "%s() Incorrect attach settings\n",
__func__);
return -EINVAL;
}
dprintk(1, "- freq_if_hz = %d\n", state->freq_if_hz);
dprintk(1, "- xtal_hz = %d\n", state->xtal_hz);
dprintk(1, "- pll_mfactor = %d\n", state->pll_mfactor);
dprintk(1, "- pll_nfactor = %d\n", state->pll_nfactor);
dprintk(1, "- pll_pfactor = %d\n", state->pll_pfactor);
/* Calculate the sample frequency */
state->sample_freq = state->xtal_hz * (state->pll_mfactor + 45);
state->sample_freq /= (state->pll_nfactor + 1);
state->sample_freq /= (state->pll_pfactor + 4);
dprintk(1, "- sample_freq = %d\n", state->sample_freq);
/* Update the I/F */
tda10048_set_phy2(fe, state->sample_freq, state->freq_if_hz);
return 0;
}
static int tda10048_firmware_upload(struct dvb_frontend *fe)
{
struct tda10048_state *state = fe->demodulator_priv;
struct tda10048_config *config = &state->config;
const struct firmware *fw;
int ret;
int pos = 0;
int cnt;
u8 wlen = config->fwbulkwritelen;
if ((wlen != TDA10048_BULKWRITE_200) && (wlen != TDA10048_BULKWRITE_50))
wlen = TDA10048_BULKWRITE_200;
/* request the firmware, this will block and timeout */
printk(KERN_INFO "%s: waiting for firmware upload (%s)...\n",
__func__,
TDA10048_DEFAULT_FIRMWARE);
ret = request_firmware(&fw, TDA10048_DEFAULT_FIRMWARE,
state->i2c->dev.parent);
if (ret) {
printk(KERN_ERR "%s: Upload failed. (file not found?)\n",
__func__);
return -EIO;
} else {
printk(KERN_INFO "%s: firmware read %Zu bytes.\n",
__func__,
fw->size);
ret = 0;
}
if (fw->size != TDA10048_DEFAULT_FIRMWARE_SIZE) {
printk(KERN_ERR "%s: firmware incorrect size\n", __func__);
ret = -EIO;
} else {
printk(KERN_INFO "%s: firmware uploading\n", __func__);
/* Soft reset */
tda10048_writereg(state, TDA10048_CONF_TRISTATE1,
tda10048_readreg(state, TDA10048_CONF_TRISTATE1)
& 0xfe);
tda10048_writereg(state, TDA10048_CONF_TRISTATE1,
tda10048_readreg(state, TDA10048_CONF_TRISTATE1)
| 0x01);
/* Put the demod into host download mode */
tda10048_writereg(state, TDA10048_CONF_C4_1,
tda10048_readreg(state, TDA10048_CONF_C4_1) & 0xf9);
/* Boot the DSP */
tda10048_writereg(state, TDA10048_CONF_C4_1,
tda10048_readreg(state, TDA10048_CONF_C4_1) | 0x08);
/* Prepare for download */
tda10048_writereg(state, TDA10048_DSP_CODE_CPT, 0);
/* Download the firmware payload */
while (pos < fw->size) {
if ((fw->size - pos) > wlen)
cnt = wlen;
else
cnt = fw->size - pos;
tda10048_writeregbulk(state, TDA10048_DSP_CODE_IN,
&fw->data[pos], cnt);
pos += cnt;
}
ret = -EIO;
/* Wait up to 250ms for the DSP to boot */
for (cnt = 0; cnt < 250 ; cnt += 10) {
msleep(10);
if (tda10048_readreg(state, TDA10048_SYNC_STATUS)
& 0x40) {
ret = 0;
break;
}
}
}
release_firmware(fw);
if (ret == 0) {
printk(KERN_INFO "%s: firmware uploaded\n", __func__);
state->fwloaded = 1;
} else
printk(KERN_ERR "%s: firmware upload failed\n", __func__);
return ret;
}
static int tda10048_set_inversion(struct dvb_frontend *fe, int inversion)
{
struct tda10048_state *state = fe->demodulator_priv;
dprintk(1, "%s(%d)\n", __func__, inversion);
if (inversion == TDA10048_INVERSION_ON)
tda10048_writereg(state, TDA10048_CONF_C1_1,
tda10048_readreg(state, TDA10048_CONF_C1_1) | 0x20);
else
tda10048_writereg(state, TDA10048_CONF_C1_1,
tda10048_readreg(state, TDA10048_CONF_C1_1) & 0xdf);
return 0;
}
/* Retrieve the demod settings */
static int tda10048_get_tps(struct tda10048_state *state,
struct dtv_frontend_properties *p)
{
u8 val;
/* Make sure the TPS regs are valid */
if (!(tda10048_readreg(state, TDA10048_AUTO) & 0x01))
return -EAGAIN;
val = tda10048_readreg(state, TDA10048_OUT_CONF2);
switch ((val & 0x60) >> 5) {
case 0:
p->modulation = QPSK;
break;
case 1:
p->modulation = QAM_16;
break;
case 2:
p->modulation = QAM_64;
break;
}
switch ((val & 0x18) >> 3) {
case 0:
p->hierarchy = HIERARCHY_NONE;
break;
case 1:
p->hierarchy = HIERARCHY_1;
break;
case 2:
p->hierarchy = HIERARCHY_2;
break;
case 3:
p->hierarchy = HIERARCHY_4;
break;
}
switch (val & 0x07) {
case 0:
p->code_rate_HP = FEC_1_2;
break;
case 1:
p->code_rate_HP = FEC_2_3;
break;
case 2:
p->code_rate_HP = FEC_3_4;
break;
case 3:
p->code_rate_HP = FEC_5_6;
break;
case 4:
p->code_rate_HP = FEC_7_8;
break;
}
val = tda10048_readreg(state, TDA10048_OUT_CONF3);
switch (val & 0x07) {
case 0:
p->code_rate_LP = FEC_1_2;
break;
case 1:
p->code_rate_LP = FEC_2_3;
break;
case 2:
p->code_rate_LP = FEC_3_4;
break;
case 3:
p->code_rate_LP = FEC_5_6;
break;
case 4:
p->code_rate_LP = FEC_7_8;
break;
}
val = tda10048_readreg(state, TDA10048_OUT_CONF1);
switch ((val & 0x0c) >> 2) {
case 0:
p->guard_interval = GUARD_INTERVAL_1_32;
break;
case 1:
p->guard_interval = GUARD_INTERVAL_1_16;
break;
case 2:
p->guard_interval = GUARD_INTERVAL_1_8;
break;
case 3:
p->guard_interval = GUARD_INTERVAL_1_4;
break;
}
switch (val & 0x03) {
case 0:
p->transmission_mode = TRANSMISSION_MODE_2K;
break;
case 1:
p->transmission_mode = TRANSMISSION_MODE_8K;
break;
}
return 0;
}
static int tda10048_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
{
struct tda10048_state *state = fe->demodulator_priv;
struct tda10048_config *config = &state->config;
dprintk(1, "%s(%d)\n", __func__, enable);
if (config->disable_gate_access)
return 0;
if (enable)
return tda10048_writereg(state, TDA10048_CONF_C4_1,
tda10048_readreg(state, TDA10048_CONF_C4_1) | 0x02);
else
return tda10048_writereg(state, TDA10048_CONF_C4_1,
tda10048_readreg(state, TDA10048_CONF_C4_1) & 0xfd);
}
static int tda10048_output_mode(struct dvb_frontend *fe, int serial)
{
struct tda10048_state *state = fe->demodulator_priv;
dprintk(1, "%s(%d)\n", __func__, serial);
/* Ensure pins are out of tri-state */
tda10048_writereg(state, TDA10048_CONF_TRISTATE1, 0x21);
tda10048_writereg(state, TDA10048_CONF_TRISTATE2, 0x00);
if (serial) {
tda10048_writereg(state, TDA10048_IC_MODE, 0x80 | 0x20);
tda10048_writereg(state, TDA10048_CONF_TS2, 0xc0);
} else {
tda10048_writereg(state, TDA10048_IC_MODE, 0x00);
tda10048_writereg(state, TDA10048_CONF_TS2, 0x01);
}
return 0;
}
/* Talk to the demod, set the FEC, GUARD, QAM settings etc */
/* TODO: Support manual tuning with specific params */
static int tda10048_set_frontend(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
struct tda10048_state *state = fe->demodulator_priv;
dprintk(1, "%s(frequency=%d)\n", __func__, p->frequency);
/* Update the I/F pll's if the bandwidth changes */
if (p->bandwidth_hz != state->bandwidth) {
tda10048_set_if(fe, p->bandwidth_hz);
tda10048_set_bandwidth(fe, p->bandwidth_hz);
}
if (fe->ops.tuner_ops.set_params) {
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
fe->ops.tuner_ops.set_params(fe);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
}
/* Enable demod TPS auto detection and begin acquisition */
tda10048_writereg(state, TDA10048_AUTO, 0x57);
/* trigger cber and vber acquisition */
tda10048_writereg(state, TDA10048_CVBER_CTRL, 0x3B);
return 0;
}
/* Establish sane defaults and load firmware. */
static int tda10048_init(struct dvb_frontend *fe)
{
struct tda10048_state *state = fe->demodulator_priv;
struct tda10048_config *config = &state->config;
int ret = 0, i;
dprintk(1, "%s()\n", __func__);
/* PLL */
init_tab[4].data = (u8)(state->pll_mfactor);
init_tab[5].data = (u8)(state->pll_nfactor) | 0x40;
/* Apply register defaults */
for (i = 0; i < ARRAY_SIZE(init_tab); i++)
tda10048_writereg(state, init_tab[i].reg, init_tab[i].data);
if (state->fwloaded == 0)
ret = tda10048_firmware_upload(fe);
/* Set either serial or parallel */
tda10048_output_mode(fe, config->output_mode);
/* Set inversion */
tda10048_set_inversion(fe, config->inversion);
/* Establish default RF values */
tda10048_set_if(fe, 8000000);
tda10048_set_bandwidth(fe, 8000000);
/* Ensure we leave the gate closed */
tda10048_i2c_gate_ctrl(fe, 0);
return ret;
}
static int tda10048_read_status(struct dvb_frontend *fe, fe_status_t *status)
{
struct tda10048_state *state = fe->demodulator_priv;
u8 reg;
*status = 0;
reg = tda10048_readreg(state, TDA10048_SYNC_STATUS);
dprintk(1, "%s() status =0x%02x\n", __func__, reg);
if (reg & 0x02)
*status |= FE_HAS_CARRIER;
if (reg & 0x04)
*status |= FE_HAS_SIGNAL;
if (reg & 0x08) {
*status |= FE_HAS_LOCK;
*status |= FE_HAS_VITERBI;
*status |= FE_HAS_SYNC;
}
return 0;
}
static int tda10048_read_ber(struct dvb_frontend *fe, u32 *ber)
{
struct tda10048_state *state = fe->demodulator_priv;
static u32 cber_current;
u32 cber_nmax;
u64 cber_tmp;
dprintk(1, "%s()\n", __func__);
/* update cber on interrupt */
if (tda10048_readreg(state, TDA10048_SOFT_IT_C3) & 0x01) {
cber_tmp = tda10048_readreg(state, TDA10048_CBER_MSB) << 8 |
tda10048_readreg(state, TDA10048_CBER_LSB);
cber_nmax = tda10048_readreg(state, TDA10048_CBER_NMAX_MSB) << 8 |
tda10048_readreg(state, TDA10048_CBER_NMAX_LSB);
cber_tmp *= 100000000;
cber_tmp *= 2;
cber_tmp = div_u64(cber_tmp, (cber_nmax * 32) + 1);
cber_current = (u32)cber_tmp;
/* retrigger cber acquisition */
tda10048_writereg(state, TDA10048_CVBER_CTRL, 0x39);
}
/* actual cber is (*ber)/1e8 */
*ber = cber_current;
return 0;
}
static int tda10048_read_signal_strength(struct dvb_frontend *fe,
u16 *signal_strength)
{
struct tda10048_state *state = fe->demodulator_priv;
u8 v;
dprintk(1, "%s()\n", __func__);
*signal_strength = 65535;
v = tda10048_readreg(state, TDA10048_NP_OUT);
if (v > 0)
*signal_strength -= (v << 8) | v;
return 0;
}
/* SNR lookup table */
static struct snr_tab {
u8 val;
u8 data;
} snr_tab[] = {
{ 0, 0 },
{ 1, 246 },
{ 2, 215 },
{ 3, 198 },
{ 4, 185 },
{ 5, 176 },
{ 6, 168 },
{ 7, 161 },
{ 8, 155 },
{ 9, 150 },
{ 10, 146 },
{ 11, 141 },
{ 12, 138 },
{ 13, 134 },
{ 14, 131 },
{ 15, 128 },
{ 16, 125 },
{ 17, 122 },
{ 18, 120 },
{ 19, 118 },
{ 20, 115 },
{ 21, 113 },
{ 22, 111 },
{ 23, 109 },
{ 24, 107 },
{ 25, 106 },
{ 26, 104 },
{ 27, 102 },
{ 28, 101 },
{ 29, 99 },
{ 30, 98 },
{ 31, 96 },
{ 32, 95 },
{ 33, 94 },
{ 34, 92 },
{ 35, 91 },
{ 36, 90 },
{ 37, 89 },
{ 38, 88 },
{ 39, 86 },
{ 40, 85 },
{ 41, 84 },
{ 42, 83 },
{ 43, 82 },
{ 44, 81 },
{ 45, 80 },
{ 46, 79 },
{ 47, 78 },
{ 48, 77 },
{ 49, 76 },
{ 50, 76 },
{ 51, 75 },
{ 52, 74 },
{ 53, 73 },
{ 54, 72 },
{ 56, 71 },
{ 57, 70 },
{ 58, 69 },
{ 60, 68 },
{ 61, 67 },
{ 63, 66 },
{ 64, 65 },
{ 66, 64 },
{ 67, 63 },
{ 68, 62 },
{ 69, 62 },
{ 70, 61 },
{ 72, 60 },
{ 74, 59 },
{ 75, 58 },
{ 77, 57 },
{ 79, 56 },
{ 81, 55 },
{ 83, 54 },
{ 85, 53 },
{ 87, 52 },
{ 89, 51 },
{ 91, 50 },
{ 93, 49 },
{ 95, 48 },
{ 97, 47 },
{ 100, 46 },
{ 102, 45 },
{ 104, 44 },
{ 107, 43 },
{ 109, 42 },
{ 112, 41 },
{ 114, 40 },
{ 117, 39 },
{ 120, 38 },
{ 123, 37 },
{ 125, 36 },
{ 128, 35 },
{ 131, 34 },
{ 134, 33 },
{ 138, 32 },
{ 141, 31 },
{ 144, 30 },
{ 147, 29 },
{ 151, 28 },
{ 154, 27 },
{ 158, 26 },
{ 162, 25 },
{ 165, 24 },
{ 169, 23 },
{ 173, 22 },
{ 177, 21 },
{ 181, 20 },
{ 186, 19 },
{ 190, 18 },
{ 194, 17 },
{ 199, 16 },
{ 204, 15 },
{ 208, 14 },
{ 213, 13 },
{ 218, 12 },
{ 223, 11 },
{ 229, 10 },
{ 234, 9 },
{ 239, 8 },
{ 245, 7 },
{ 251, 6 },
{ 255, 5 },
};
static int tda10048_read_snr(struct dvb_frontend *fe, u16 *snr)
{
struct tda10048_state *state = fe->demodulator_priv;
u8 v;
int i, ret = -EINVAL;
dprintk(1, "%s()\n", __func__);
v = tda10048_readreg(state, TDA10048_NP_OUT);
for (i = 0; i < ARRAY_SIZE(snr_tab); i++) {
if (v <= snr_tab[i].val) {
*snr = snr_tab[i].data;
ret = 0;
break;
}
}
return ret;
}
static int tda10048_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
struct tda10048_state *state = fe->demodulator_priv;
dprintk(1, "%s()\n", __func__);
*ucblocks = tda10048_readreg(state, TDA10048_UNCOR_CPT_MSB) << 8 |
tda10048_readreg(state, TDA10048_UNCOR_CPT_LSB);
/* clear the uncorrected TS packets counter when saturated */
if (*ucblocks == 0xFFFF)
tda10048_writereg(state, TDA10048_UNCOR_CTRL, 0x80);
return 0;
}
static int tda10048_get_frontend(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
struct tda10048_state *state = fe->demodulator_priv;
dprintk(1, "%s()\n", __func__);
p->inversion = tda10048_readreg(state, TDA10048_CONF_C1_1)
& 0x20 ? INVERSION_ON : INVERSION_OFF;
return tda10048_get_tps(state, p);
}
static int tda10048_get_tune_settings(struct dvb_frontend *fe,
struct dvb_frontend_tune_settings *tune)
{
tune->min_delay_ms = 1000;
return 0;
}
static void tda10048_release(struct dvb_frontend *fe)
{
struct tda10048_state *state = fe->demodulator_priv;
dprintk(1, "%s()\n", __func__);
kfree(state);
}
static void tda10048_establish_defaults(struct dvb_frontend *fe)
{
struct tda10048_state *state = fe->demodulator_priv;
struct tda10048_config *config = &state->config;
/* Validate/default the config */
if (config->dtv6_if_freq_khz == 0) {
config->dtv6_if_freq_khz = TDA10048_IF_4300;
printk(KERN_WARNING "%s() tda10048_config.dtv6_if_freq_khz "
"is not set (defaulting to %d)\n",
__func__,
config->dtv6_if_freq_khz);
}
if (config->dtv7_if_freq_khz == 0) {
config->dtv7_if_freq_khz = TDA10048_IF_4300;
printk(KERN_WARNING "%s() tda10048_config.dtv7_if_freq_khz "
"is not set (defaulting to %d)\n",
__func__,
config->dtv7_if_freq_khz);
}
if (config->dtv8_if_freq_khz == 0) {
config->dtv8_if_freq_khz = TDA10048_IF_4300;
printk(KERN_WARNING "%s() tda10048_config.dtv8_if_freq_khz "
"is not set (defaulting to %d)\n",
__func__,
config->dtv8_if_freq_khz);
}
if (config->clk_freq_khz == 0) {
config->clk_freq_khz = TDA10048_CLK_16000;
printk(KERN_WARNING "%s() tda10048_config.clk_freq_khz "
"is not set (defaulting to %d)\n",
__func__,
config->clk_freq_khz);
}
}
static struct dvb_frontend_ops tda10048_ops;
struct dvb_frontend *tda10048_attach(const struct tda10048_config *config,
struct i2c_adapter *i2c)
{
struct tda10048_state *state = NULL;
dprintk(1, "%s()\n", __func__);
/* allocate memory for the internal state */
state = kzalloc(sizeof(struct tda10048_state), GFP_KERNEL);
if (state == NULL)
goto error;
/* setup the state and clone the config */
memcpy(&state->config, config, sizeof(*config));
state->i2c = i2c;
state->fwloaded = config->no_firmware;
state->bandwidth = 8000000;
/* check if the demod is present */
if (tda10048_readreg(state, TDA10048_IDENTITY) != 0x048)
goto error;
/* create dvb_frontend */
memcpy(&state->frontend.ops, &tda10048_ops,
sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
/* set pll */
if (config->set_pll) {
state->pll_mfactor = config->pll_m;
state->pll_nfactor = config->pll_n;
state->pll_pfactor = config->pll_p;
} else {
state->pll_mfactor = 10;
state->pll_nfactor = 3;
state->pll_pfactor = 0;
}
/* Establish any defaults the the user didn't pass */
tda10048_establish_defaults(&state->frontend);
/* Set the xtal and freq defaults */
if (tda10048_set_if(&state->frontend, 8000000) != 0)
goto error;
/* Default bandwidth */
if (tda10048_set_bandwidth(&state->frontend, 8000000) != 0)
goto error;
/* Leave the gate closed */
tda10048_i2c_gate_ctrl(&state->frontend, 0);
return &state->frontend;
error:
kfree(state);
return NULL;
}
EXPORT_SYMBOL(tda10048_attach);
static struct dvb_frontend_ops tda10048_ops = {
.delsys = { SYS_DVBT },
.info = {
.name = "NXP TDA10048HN DVB-T",
.frequency_min = 177000000,
.frequency_max = 858000000,
.frequency_stepsize = 166666,
.caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_HIERARCHY_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_RECOVER
},
.release = tda10048_release,
.init = tda10048_init,
.i2c_gate_ctrl = tda10048_i2c_gate_ctrl,
.set_frontend = tda10048_set_frontend,
.get_frontend = tda10048_get_frontend,
.get_tune_settings = tda10048_get_tune_settings,
.read_status = tda10048_read_status,
.read_ber = tda10048_read_ber,
.read_signal_strength = tda10048_read_signal_strength,
.read_snr = tda10048_read_snr,
.read_ucblocks = tda10048_read_ucblocks,
};
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Enable verbose debug messages");
MODULE_DESCRIPTION("NXP TDA10048HN DVB-T Demodulator driver");
MODULE_AUTHOR("Steven Toth");
MODULE_LICENSE("GPL");