2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 10:13:58 +08:00
linux-next/drivers/edac/i5000_edac.c
Mauro Carvalho Chehab b70f833377 i5000: Fix the memory size calculation with 2R memories
When 2R memories are found, the memory size should be multiplied
by two, otherwise, it will report half of the memory size:

       +-----------------------------------------------+
       |                      mc0                      |
       |        branch0        |        branch1        |
       | channel0  | channel1  | channel0  | channel1  |
-------+-----------------------------------------------+
slot3: |     0 MB  |     0 MB  |     0 MB  |     0 MB  |
slot2: |     0 MB  |     0 MB  |     0 MB  |     0 MB  |
-------+-----------------------------------------------+
slot1: |     0 MB  |     0 MB  |     0 MB  |     0 MB  |
slot0: |  1024 MB  |  1024 MB  |  1024 MB  |  1024 MB  |
-------+-----------------------------------------------+

(the above machine have 4 x 2GB 2R memories)

Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2012-09-25 07:38:19 -03:00

1596 lines
42 KiB
C

/*
* Intel 5000(P/V/X) class Memory Controllers kernel module
*
* This file may be distributed under the terms of the
* GNU General Public License.
*
* Written by Douglas Thompson Linux Networx (http://lnxi.com)
* norsk5@xmission.com
*
* This module is based on the following document:
*
* Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
* http://developer.intel.com/design/chipsets/datashts/313070.htm
*
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/edac.h>
#include <asm/mmzone.h>
#include "edac_core.h"
/*
* Alter this version for the I5000 module when modifications are made
*/
#define I5000_REVISION " Ver: 2.0.12"
#define EDAC_MOD_STR "i5000_edac"
#define i5000_printk(level, fmt, arg...) \
edac_printk(level, "i5000", fmt, ##arg)
#define i5000_mc_printk(mci, level, fmt, arg...) \
edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
#ifndef PCI_DEVICE_ID_INTEL_FBD_0
#define PCI_DEVICE_ID_INTEL_FBD_0 0x25F5
#endif
#ifndef PCI_DEVICE_ID_INTEL_FBD_1
#define PCI_DEVICE_ID_INTEL_FBD_1 0x25F6
#endif
/* Device 16,
* Function 0: System Address
* Function 1: Memory Branch Map, Control, Errors Register
* Function 2: FSB Error Registers
*
* All 3 functions of Device 16 (0,1,2) share the SAME DID
*/
#define PCI_DEVICE_ID_INTEL_I5000_DEV16 0x25F0
/* OFFSETS for Function 0 */
/* OFFSETS for Function 1 */
#define AMBASE 0x48
#define MAXCH 0x56
#define MAXDIMMPERCH 0x57
#define TOLM 0x6C
#define REDMEMB 0x7C
#define RED_ECC_LOCATOR(x) ((x) & 0x3FFFF)
#define REC_ECC_LOCATOR_EVEN(x) ((x) & 0x001FF)
#define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3FE00)
#define MIR0 0x80
#define MIR1 0x84
#define MIR2 0x88
#define AMIR0 0x8C
#define AMIR1 0x90
#define AMIR2 0x94
#define FERR_FAT_FBD 0x98
#define NERR_FAT_FBD 0x9C
#define EXTRACT_FBDCHAN_INDX(x) (((x)>>28) & 0x3)
#define FERR_FAT_FBDCHAN 0x30000000
#define FERR_FAT_M3ERR 0x00000004
#define FERR_FAT_M2ERR 0x00000002
#define FERR_FAT_M1ERR 0x00000001
#define FERR_FAT_MASK (FERR_FAT_M1ERR | \
FERR_FAT_M2ERR | \
FERR_FAT_M3ERR)
#define FERR_NF_FBD 0xA0
/* Thermal and SPD or BFD errors */
#define FERR_NF_M28ERR 0x01000000
#define FERR_NF_M27ERR 0x00800000
#define FERR_NF_M26ERR 0x00400000
#define FERR_NF_M25ERR 0x00200000
#define FERR_NF_M24ERR 0x00100000
#define FERR_NF_M23ERR 0x00080000
#define FERR_NF_M22ERR 0x00040000
#define FERR_NF_M21ERR 0x00020000
/* Correctable errors */
#define FERR_NF_M20ERR 0x00010000
#define FERR_NF_M19ERR 0x00008000
#define FERR_NF_M18ERR 0x00004000
#define FERR_NF_M17ERR 0x00002000
/* Non-Retry or redundant Retry errors */
#define FERR_NF_M16ERR 0x00001000
#define FERR_NF_M15ERR 0x00000800
#define FERR_NF_M14ERR 0x00000400
#define FERR_NF_M13ERR 0x00000200
/* Uncorrectable errors */
#define FERR_NF_M12ERR 0x00000100
#define FERR_NF_M11ERR 0x00000080
#define FERR_NF_M10ERR 0x00000040
#define FERR_NF_M9ERR 0x00000020
#define FERR_NF_M8ERR 0x00000010
#define FERR_NF_M7ERR 0x00000008
#define FERR_NF_M6ERR 0x00000004
#define FERR_NF_M5ERR 0x00000002
#define FERR_NF_M4ERR 0x00000001
#define FERR_NF_UNCORRECTABLE (FERR_NF_M12ERR | \
FERR_NF_M11ERR | \
FERR_NF_M10ERR | \
FERR_NF_M9ERR | \
FERR_NF_M8ERR | \
FERR_NF_M7ERR | \
FERR_NF_M6ERR | \
FERR_NF_M5ERR | \
FERR_NF_M4ERR)
#define FERR_NF_CORRECTABLE (FERR_NF_M20ERR | \
FERR_NF_M19ERR | \
FERR_NF_M18ERR | \
FERR_NF_M17ERR)
#define FERR_NF_DIMM_SPARE (FERR_NF_M27ERR | \
FERR_NF_M28ERR)
#define FERR_NF_THERMAL (FERR_NF_M26ERR | \
FERR_NF_M25ERR | \
FERR_NF_M24ERR | \
FERR_NF_M23ERR)
#define FERR_NF_SPD_PROTOCOL (FERR_NF_M22ERR)
#define FERR_NF_NORTH_CRC (FERR_NF_M21ERR)
#define FERR_NF_NON_RETRY (FERR_NF_M13ERR | \
FERR_NF_M14ERR | \
FERR_NF_M15ERR)
#define NERR_NF_FBD 0xA4
#define FERR_NF_MASK (FERR_NF_UNCORRECTABLE | \
FERR_NF_CORRECTABLE | \
FERR_NF_DIMM_SPARE | \
FERR_NF_THERMAL | \
FERR_NF_SPD_PROTOCOL | \
FERR_NF_NORTH_CRC | \
FERR_NF_NON_RETRY)
#define EMASK_FBD 0xA8
#define EMASK_FBD_M28ERR 0x08000000
#define EMASK_FBD_M27ERR 0x04000000
#define EMASK_FBD_M26ERR 0x02000000
#define EMASK_FBD_M25ERR 0x01000000
#define EMASK_FBD_M24ERR 0x00800000
#define EMASK_FBD_M23ERR 0x00400000
#define EMASK_FBD_M22ERR 0x00200000
#define EMASK_FBD_M21ERR 0x00100000
#define EMASK_FBD_M20ERR 0x00080000
#define EMASK_FBD_M19ERR 0x00040000
#define EMASK_FBD_M18ERR 0x00020000
#define EMASK_FBD_M17ERR 0x00010000
#define EMASK_FBD_M15ERR 0x00004000
#define EMASK_FBD_M14ERR 0x00002000
#define EMASK_FBD_M13ERR 0x00001000
#define EMASK_FBD_M12ERR 0x00000800
#define EMASK_FBD_M11ERR 0x00000400
#define EMASK_FBD_M10ERR 0x00000200
#define EMASK_FBD_M9ERR 0x00000100
#define EMASK_FBD_M8ERR 0x00000080
#define EMASK_FBD_M7ERR 0x00000040
#define EMASK_FBD_M6ERR 0x00000020
#define EMASK_FBD_M5ERR 0x00000010
#define EMASK_FBD_M4ERR 0x00000008
#define EMASK_FBD_M3ERR 0x00000004
#define EMASK_FBD_M2ERR 0x00000002
#define EMASK_FBD_M1ERR 0x00000001
#define ENABLE_EMASK_FBD_FATAL_ERRORS (EMASK_FBD_M1ERR | \
EMASK_FBD_M2ERR | \
EMASK_FBD_M3ERR)
#define ENABLE_EMASK_FBD_UNCORRECTABLE (EMASK_FBD_M4ERR | \
EMASK_FBD_M5ERR | \
EMASK_FBD_M6ERR | \
EMASK_FBD_M7ERR | \
EMASK_FBD_M8ERR | \
EMASK_FBD_M9ERR | \
EMASK_FBD_M10ERR | \
EMASK_FBD_M11ERR | \
EMASK_FBD_M12ERR)
#define ENABLE_EMASK_FBD_CORRECTABLE (EMASK_FBD_M17ERR | \
EMASK_FBD_M18ERR | \
EMASK_FBD_M19ERR | \
EMASK_FBD_M20ERR)
#define ENABLE_EMASK_FBD_DIMM_SPARE (EMASK_FBD_M27ERR | \
EMASK_FBD_M28ERR)
#define ENABLE_EMASK_FBD_THERMALS (EMASK_FBD_M26ERR | \
EMASK_FBD_M25ERR | \
EMASK_FBD_M24ERR | \
EMASK_FBD_M23ERR)
#define ENABLE_EMASK_FBD_SPD_PROTOCOL (EMASK_FBD_M22ERR)
#define ENABLE_EMASK_FBD_NORTH_CRC (EMASK_FBD_M21ERR)
#define ENABLE_EMASK_FBD_NON_RETRY (EMASK_FBD_M15ERR | \
EMASK_FBD_M14ERR | \
EMASK_FBD_M13ERR)
#define ENABLE_EMASK_ALL (ENABLE_EMASK_FBD_NON_RETRY | \
ENABLE_EMASK_FBD_NORTH_CRC | \
ENABLE_EMASK_FBD_SPD_PROTOCOL | \
ENABLE_EMASK_FBD_THERMALS | \
ENABLE_EMASK_FBD_DIMM_SPARE | \
ENABLE_EMASK_FBD_FATAL_ERRORS | \
ENABLE_EMASK_FBD_CORRECTABLE | \
ENABLE_EMASK_FBD_UNCORRECTABLE)
#define ERR0_FBD 0xAC
#define ERR1_FBD 0xB0
#define ERR2_FBD 0xB4
#define MCERR_FBD 0xB8
#define NRECMEMA 0xBE
#define NREC_BANK(x) (((x)>>12) & 0x7)
#define NREC_RDWR(x) (((x)>>11) & 1)
#define NREC_RANK(x) (((x)>>8) & 0x7)
#define NRECMEMB 0xC0
#define NREC_CAS(x) (((x)>>16) & 0xFFFFFF)
#define NREC_RAS(x) ((x) & 0x7FFF)
#define NRECFGLOG 0xC4
#define NREEECFBDA 0xC8
#define NREEECFBDB 0xCC
#define NREEECFBDC 0xD0
#define NREEECFBDD 0xD4
#define NREEECFBDE 0xD8
#define REDMEMA 0xDC
#define RECMEMA 0xE2
#define REC_BANK(x) (((x)>>12) & 0x7)
#define REC_RDWR(x) (((x)>>11) & 1)
#define REC_RANK(x) (((x)>>8) & 0x7)
#define RECMEMB 0xE4
#define REC_CAS(x) (((x)>>16) & 0xFFFFFF)
#define REC_RAS(x) ((x) & 0x7FFF)
#define RECFGLOG 0xE8
#define RECFBDA 0xEC
#define RECFBDB 0xF0
#define RECFBDC 0xF4
#define RECFBDD 0xF8
#define RECFBDE 0xFC
/* OFFSETS for Function 2 */
/*
* Device 21,
* Function 0: Memory Map Branch 0
*
* Device 22,
* Function 0: Memory Map Branch 1
*/
#define PCI_DEVICE_ID_I5000_BRANCH_0 0x25F5
#define PCI_DEVICE_ID_I5000_BRANCH_1 0x25F6
#define AMB_PRESENT_0 0x64
#define AMB_PRESENT_1 0x66
#define MTR0 0x80
#define MTR1 0x84
#define MTR2 0x88
#define MTR3 0x8C
#define NUM_MTRS 4
#define CHANNELS_PER_BRANCH 2
#define MAX_BRANCHES 2
/* Defines to extract the various fields from the
* MTRx - Memory Technology Registers
*/
#define MTR_DIMMS_PRESENT(mtr) ((mtr) & (0x1 << 8))
#define MTR_DRAM_WIDTH(mtr) ((((mtr) >> 6) & 0x1) ? 8 : 4)
#define MTR_DRAM_BANKS(mtr) ((((mtr) >> 5) & 0x1) ? 8 : 4)
#define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
#define MTR_DIMM_RANK(mtr) (((mtr) >> 4) & 0x1)
#define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIMM_RANK(mtr) ? 2 : 1)
#define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
#define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
#define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
#define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
/* enables the report of miscellaneous messages as CE errors - default off */
static int misc_messages;
/* Enumeration of supported devices */
enum i5000_chips {
I5000P = 0,
I5000V = 1, /* future */
I5000X = 2 /* future */
};
/* Device name and register DID (Device ID) */
struct i5000_dev_info {
const char *ctl_name; /* name for this device */
u16 fsb_mapping_errors; /* DID for the branchmap,control */
};
/* Table of devices attributes supported by this driver */
static const struct i5000_dev_info i5000_devs[] = {
[I5000P] = {
.ctl_name = "I5000",
.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
},
};
struct i5000_dimm_info {
int megabytes; /* size, 0 means not present */
int dual_rank;
};
#define MAX_CHANNELS 6 /* max possible channels */
#define MAX_CSROWS (8*2) /* max possible csrows per channel */
/* driver private data structure */
struct i5000_pvt {
struct pci_dev *system_address; /* 16.0 */
struct pci_dev *branchmap_werrors; /* 16.1 */
struct pci_dev *fsb_error_regs; /* 16.2 */
struct pci_dev *branch_0; /* 21.0 */
struct pci_dev *branch_1; /* 22.0 */
u16 tolm; /* top of low memory */
union {
u64 ambase; /* AMB BAR */
struct {
u32 ambase_bottom;
u32 ambase_top;
} u __packed;
};
u16 mir0, mir1, mir2;
u16 b0_mtr[NUM_MTRS]; /* Memory Technlogy Reg */
u16 b0_ambpresent0; /* Branch 0, Channel 0 */
u16 b0_ambpresent1; /* Brnach 0, Channel 1 */
u16 b1_mtr[NUM_MTRS]; /* Memory Technlogy Reg */
u16 b1_ambpresent0; /* Branch 1, Channel 8 */
u16 b1_ambpresent1; /* Branch 1, Channel 1 */
/* DIMM information matrix, allocating architecture maximums */
struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
/* Actual values for this controller */
int maxch; /* Max channels */
int maxdimmperch; /* Max DIMMs per channel */
};
/* I5000 MCH error information retrieved from Hardware */
struct i5000_error_info {
/* These registers are always read from the MC */
u32 ferr_fat_fbd; /* First Errors Fatal */
u32 nerr_fat_fbd; /* Next Errors Fatal */
u32 ferr_nf_fbd; /* First Errors Non-Fatal */
u32 nerr_nf_fbd; /* Next Errors Non-Fatal */
/* These registers are input ONLY if there was a Recoverable Error */
u32 redmemb; /* Recoverable Mem Data Error log B */
u16 recmema; /* Recoverable Mem Error log A */
u32 recmemb; /* Recoverable Mem Error log B */
/* These registers are input ONLY if there was a
* Non-Recoverable Error */
u16 nrecmema; /* Non-Recoverable Mem log A */
u16 nrecmemb; /* Non-Recoverable Mem log B */
};
static struct edac_pci_ctl_info *i5000_pci;
/*
* i5000_get_error_info Retrieve the hardware error information from
* the hardware and cache it in the 'info'
* structure
*/
static void i5000_get_error_info(struct mem_ctl_info *mci,
struct i5000_error_info *info)
{
struct i5000_pvt *pvt;
u32 value;
pvt = mci->pvt_info;
/* read in the 1st FATAL error register */
pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
/* Mask only the bits that the doc says are valid
*/
value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
/* If there is an error, then read in the */
/* NEXT FATAL error register and the Memory Error Log Register A */
if (value & FERR_FAT_MASK) {
info->ferr_fat_fbd = value;
/* harvest the various error data we need */
pci_read_config_dword(pvt->branchmap_werrors,
NERR_FAT_FBD, &info->nerr_fat_fbd);
pci_read_config_word(pvt->branchmap_werrors,
NRECMEMA, &info->nrecmema);
pci_read_config_word(pvt->branchmap_werrors,
NRECMEMB, &info->nrecmemb);
/* Clear the error bits, by writing them back */
pci_write_config_dword(pvt->branchmap_werrors,
FERR_FAT_FBD, value);
} else {
info->ferr_fat_fbd = 0;
info->nerr_fat_fbd = 0;
info->nrecmema = 0;
info->nrecmemb = 0;
}
/* read in the 1st NON-FATAL error register */
pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
/* If there is an error, then read in the 1st NON-FATAL error
* register as well */
if (value & FERR_NF_MASK) {
info->ferr_nf_fbd = value;
/* harvest the various error data we need */
pci_read_config_dword(pvt->branchmap_werrors,
NERR_NF_FBD, &info->nerr_nf_fbd);
pci_read_config_word(pvt->branchmap_werrors,
RECMEMA, &info->recmema);
pci_read_config_dword(pvt->branchmap_werrors,
RECMEMB, &info->recmemb);
pci_read_config_dword(pvt->branchmap_werrors,
REDMEMB, &info->redmemb);
/* Clear the error bits, by writing them back */
pci_write_config_dword(pvt->branchmap_werrors,
FERR_NF_FBD, value);
} else {
info->ferr_nf_fbd = 0;
info->nerr_nf_fbd = 0;
info->recmema = 0;
info->recmemb = 0;
info->redmemb = 0;
}
}
/*
* i5000_process_fatal_error_info(struct mem_ctl_info *mci,
* struct i5000_error_info *info,
* int handle_errors);
*
* handle the Intel FATAL errors, if any
*/
static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
struct i5000_error_info *info,
int handle_errors)
{
char msg[EDAC_MC_LABEL_LEN + 1 + 160];
char *specific = NULL;
u32 allErrors;
int channel;
int bank;
int rank;
int rdwr;
int ras, cas;
/* mask off the Error bits that are possible */
allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
if (!allErrors)
return; /* if no error, return now */
channel = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
/* Use the NON-Recoverable macros to extract data */
bank = NREC_BANK(info->nrecmema);
rank = NREC_RANK(info->nrecmema);
rdwr = NREC_RDWR(info->nrecmema);
ras = NREC_RAS(info->nrecmemb);
cas = NREC_CAS(info->nrecmemb);
edac_dbg(0, "\t\tCSROW= %d Channel= %d (DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
rank, channel, bank,
rdwr ? "Write" : "Read", ras, cas);
/* Only 1 bit will be on */
switch (allErrors) {
case FERR_FAT_M1ERR:
specific = "Alert on non-redundant retry or fast "
"reset timeout";
break;
case FERR_FAT_M2ERR:
specific = "Northbound CRC error on non-redundant "
"retry";
break;
case FERR_FAT_M3ERR:
{
static int done;
/*
* This error is generated to inform that the intelligent
* throttling is disabled and the temperature passed the
* specified middle point. Since this is something the BIOS
* should take care of, we'll warn only once to avoid
* worthlessly flooding the log.
*/
if (done)
return;
done++;
specific = ">Tmid Thermal event with intelligent "
"throttling disabled";
}
break;
}
/* Form out message */
snprintf(msg, sizeof(msg),
"Bank=%d RAS=%d CAS=%d FATAL Err=0x%x (%s)",
bank, ras, cas, allErrors, specific);
/* Call the helper to output message */
edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
channel >> 1, channel & 1, rank,
rdwr ? "Write error" : "Read error",
msg);
}
/*
* i5000_process_fatal_error_info(struct mem_ctl_info *mci,
* struct i5000_error_info *info,
* int handle_errors);
*
* handle the Intel NON-FATAL errors, if any
*/
static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
struct i5000_error_info *info,
int handle_errors)
{
char msg[EDAC_MC_LABEL_LEN + 1 + 170];
char *specific = NULL;
u32 allErrors;
u32 ue_errors;
u32 ce_errors;
u32 misc_errors;
int branch;
int channel;
int bank;
int rank;
int rdwr;
int ras, cas;
/* mask off the Error bits that are possible */
allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
if (!allErrors)
return; /* if no error, return now */
/* ONLY ONE of the possible error bits will be set, as per the docs */
ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
if (ue_errors) {
edac_dbg(0, "\tUncorrected bits= 0x%x\n", ue_errors);
branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
/*
* According with i5000 datasheet, bit 28 has no significance
* for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD
*/
channel = branch & 2;
bank = NREC_BANK(info->nrecmema);
rank = NREC_RANK(info->nrecmema);
rdwr = NREC_RDWR(info->nrecmema);
ras = NREC_RAS(info->nrecmemb);
cas = NREC_CAS(info->nrecmemb);
edac_dbg(0, "\t\tCSROW= %d Channels= %d,%d (Branch= %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
rank, channel, channel + 1, branch >> 1, bank,
rdwr ? "Write" : "Read", ras, cas);
switch (ue_errors) {
case FERR_NF_M12ERR:
specific = "Non-Aliased Uncorrectable Patrol Data ECC";
break;
case FERR_NF_M11ERR:
specific = "Non-Aliased Uncorrectable Spare-Copy "
"Data ECC";
break;
case FERR_NF_M10ERR:
specific = "Non-Aliased Uncorrectable Mirrored Demand "
"Data ECC";
break;
case FERR_NF_M9ERR:
specific = "Non-Aliased Uncorrectable Non-Mirrored "
"Demand Data ECC";
break;
case FERR_NF_M8ERR:
specific = "Aliased Uncorrectable Patrol Data ECC";
break;
case FERR_NF_M7ERR:
specific = "Aliased Uncorrectable Spare-Copy Data ECC";
break;
case FERR_NF_M6ERR:
specific = "Aliased Uncorrectable Mirrored Demand "
"Data ECC";
break;
case FERR_NF_M5ERR:
specific = "Aliased Uncorrectable Non-Mirrored Demand "
"Data ECC";
break;
case FERR_NF_M4ERR:
specific = "Uncorrectable Data ECC on Replay";
break;
}
/* Form out message */
snprintf(msg, sizeof(msg),
"Rank=%d Bank=%d RAS=%d CAS=%d, UE Err=0x%x (%s)",
rank, bank, ras, cas, ue_errors, specific);
/* Call the helper to output message */
edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
channel >> 1, -1, rank,
rdwr ? "Write error" : "Read error",
msg);
}
/* Check correctable errors */
ce_errors = allErrors & FERR_NF_CORRECTABLE;
if (ce_errors) {
edac_dbg(0, "\tCorrected bits= 0x%x\n", ce_errors);
branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
channel = 0;
if (REC_ECC_LOCATOR_ODD(info->redmemb))
channel = 1;
/* Convert channel to be based from zero, instead of
* from branch base of 0 */
channel += branch;
bank = REC_BANK(info->recmema);
rank = REC_RANK(info->recmema);
rdwr = REC_RDWR(info->recmema);
ras = REC_RAS(info->recmemb);
cas = REC_CAS(info->recmemb);
edac_dbg(0, "\t\tCSROW= %d Channel= %d (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
rank, channel, branch >> 1, bank,
rdwr ? "Write" : "Read", ras, cas);
switch (ce_errors) {
case FERR_NF_M17ERR:
specific = "Correctable Non-Mirrored Demand Data ECC";
break;
case FERR_NF_M18ERR:
specific = "Correctable Mirrored Demand Data ECC";
break;
case FERR_NF_M19ERR:
specific = "Correctable Spare-Copy Data ECC";
break;
case FERR_NF_M20ERR:
specific = "Correctable Patrol Data ECC";
break;
}
/* Form out message */
snprintf(msg, sizeof(msg),
"Rank=%d Bank=%d RDWR=%s RAS=%d "
"CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank,
rdwr ? "Write" : "Read", ras, cas, ce_errors,
specific);
/* Call the helper to output message */
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
channel >> 1, channel % 2, rank,
rdwr ? "Write error" : "Read error",
msg);
}
if (!misc_messages)
return;
misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC |
FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE);
if (misc_errors) {
switch (misc_errors) {
case FERR_NF_M13ERR:
specific = "Non-Retry or Redundant Retry FBD Memory "
"Alert or Redundant Fast Reset Timeout";
break;
case FERR_NF_M14ERR:
specific = "Non-Retry or Redundant Retry FBD "
"Configuration Alert";
break;
case FERR_NF_M15ERR:
specific = "Non-Retry or Redundant Retry FBD "
"Northbound CRC error on read data";
break;
case FERR_NF_M21ERR:
specific = "FBD Northbound CRC error on "
"FBD Sync Status";
break;
case FERR_NF_M22ERR:
specific = "SPD protocol error";
break;
case FERR_NF_M27ERR:
specific = "DIMM-spare copy started";
break;
case FERR_NF_M28ERR:
specific = "DIMM-spare copy completed";
break;
}
branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
/* Form out message */
snprintf(msg, sizeof(msg),
"Err=%#x (%s)", misc_errors, specific);
/* Call the helper to output message */
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
branch >> 1, -1, -1,
"Misc error", msg);
}
}
/*
* i5000_process_error_info Process the error info that is
* in the 'info' structure, previously retrieved from hardware
*/
static void i5000_process_error_info(struct mem_ctl_info *mci,
struct i5000_error_info *info,
int handle_errors)
{
/* First handle any fatal errors that occurred */
i5000_process_fatal_error_info(mci, info, handle_errors);
/* now handle any non-fatal errors that occurred */
i5000_process_nonfatal_error_info(mci, info, handle_errors);
}
/*
* i5000_clear_error Retrieve any error from the hardware
* but do NOT process that error.
* Used for 'clearing' out of previous errors
* Called by the Core module.
*/
static void i5000_clear_error(struct mem_ctl_info *mci)
{
struct i5000_error_info info;
i5000_get_error_info(mci, &info);
}
/*
* i5000_check_error Retrieve and process errors reported by the
* hardware. Called by the Core module.
*/
static void i5000_check_error(struct mem_ctl_info *mci)
{
struct i5000_error_info info;
edac_dbg(4, "MC%d\n", mci->mc_idx);
i5000_get_error_info(mci, &info);
i5000_process_error_info(mci, &info, 1);
}
/*
* i5000_get_devices Find and perform 'get' operation on the MCH's
* device/functions we want to reference for this driver
*
* Need to 'get' device 16 func 1 and func 2
*/
static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
{
//const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
struct i5000_pvt *pvt;
struct pci_dev *pdev;
pvt = mci->pvt_info;
/* Attempt to 'get' the MCH register we want */
pdev = NULL;
while (1) {
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
/* End of list, leave */
if (pdev == NULL) {
i5000_printk(KERN_ERR,
"'system address,Process Bus' "
"device not found:"
"vendor 0x%x device 0x%x FUNC 1 "
"(broken BIOS?)\n",
PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_I5000_DEV16);
return 1;
}
/* Scan for device 16 func 1 */
if (PCI_FUNC(pdev->devfn) == 1)
break;
}
pvt->branchmap_werrors = pdev;
/* Attempt to 'get' the MCH register we want */
pdev = NULL;
while (1) {
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
if (pdev == NULL) {
i5000_printk(KERN_ERR,
"MC: 'branchmap,control,errors' "
"device not found:"
"vendor 0x%x device 0x%x Func 2 "
"(broken BIOS?)\n",
PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_I5000_DEV16);
pci_dev_put(pvt->branchmap_werrors);
return 1;
}
/* Scan for device 16 func 1 */
if (PCI_FUNC(pdev->devfn) == 2)
break;
}
pvt->fsb_error_regs = pdev;
edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s %x:%x\n",
pci_name(pvt->system_address),
pvt->system_address->vendor, pvt->system_address->device);
edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
pci_name(pvt->branchmap_werrors),
pvt->branchmap_werrors->vendor,
pvt->branchmap_werrors->device);
edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s %x:%x\n",
pci_name(pvt->fsb_error_regs),
pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
pdev = NULL;
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
if (pdev == NULL) {
i5000_printk(KERN_ERR,
"MC: 'BRANCH 0' device not found:"
"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
pci_dev_put(pvt->branchmap_werrors);
pci_dev_put(pvt->fsb_error_regs);
return 1;
}
pvt->branch_0 = pdev;
/* If this device claims to have more than 2 channels then
* fetch Branch 1's information
*/
if (pvt->maxch >= CHANNELS_PER_BRANCH) {
pdev = NULL;
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
if (pdev == NULL) {
i5000_printk(KERN_ERR,
"MC: 'BRANCH 1' device not found:"
"vendor 0x%x device 0x%x Func 0 "
"(broken BIOS?)\n",
PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_I5000_BRANCH_1);
pci_dev_put(pvt->branchmap_werrors);
pci_dev_put(pvt->fsb_error_regs);
pci_dev_put(pvt->branch_0);
return 1;
}
pvt->branch_1 = pdev;
}
return 0;
}
/*
* i5000_put_devices 'put' all the devices that we have
* reserved via 'get'
*/
static void i5000_put_devices(struct mem_ctl_info *mci)
{
struct i5000_pvt *pvt;
pvt = mci->pvt_info;
pci_dev_put(pvt->branchmap_werrors); /* FUNC 1 */
pci_dev_put(pvt->fsb_error_regs); /* FUNC 2 */
pci_dev_put(pvt->branch_0); /* DEV 21 */
/* Only if more than 2 channels do we release the second branch */
if (pvt->maxch >= CHANNELS_PER_BRANCH)
pci_dev_put(pvt->branch_1); /* DEV 22 */
}
/*
* determine_amb_resent
*
* the information is contained in NUM_MTRS different registers
* determineing which of the NUM_MTRS requires knowing
* which channel is in question
*
* 2 branches, each with 2 channels
* b0_ambpresent0 for channel '0'
* b0_ambpresent1 for channel '1'
* b1_ambpresent0 for channel '2'
* b1_ambpresent1 for channel '3'
*/
static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
{
int amb_present;
if (channel < CHANNELS_PER_BRANCH) {
if (channel & 0x1)
amb_present = pvt->b0_ambpresent1;
else
amb_present = pvt->b0_ambpresent0;
} else {
if (channel & 0x1)
amb_present = pvt->b1_ambpresent1;
else
amb_present = pvt->b1_ambpresent0;
}
return amb_present;
}
/*
* determine_mtr(pvt, csrow, channel)
*
* return the proper MTR register as determine by the csrow and channel desired
*/
static int determine_mtr(struct i5000_pvt *pvt, int slot, int channel)
{
int mtr;
if (channel < CHANNELS_PER_BRANCH)
mtr = pvt->b0_mtr[slot];
else
mtr = pvt->b1_mtr[slot];
return mtr;
}
/*
*/
static void decode_mtr(int slot_row, u16 mtr)
{
int ans;
ans = MTR_DIMMS_PRESENT(mtr);
edac_dbg(2, "\tMTR%d=0x%x: DIMMs are %sPresent\n",
slot_row, mtr, ans ? "" : "NOT ");
if (!ans)
return;
edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
edac_dbg(2, "\t\tNUMRANK: %s\n",
MTR_DIMM_RANK(mtr) ? "double" : "single");
edac_dbg(2, "\t\tNUMROW: %s\n",
MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
"reserved");
edac_dbg(2, "\t\tNUMCOL: %s\n",
MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
"reserved");
}
static void handle_channel(struct i5000_pvt *pvt, int slot, int channel,
struct i5000_dimm_info *dinfo)
{
int mtr;
int amb_present_reg;
int addrBits;
mtr = determine_mtr(pvt, slot, channel);
if (MTR_DIMMS_PRESENT(mtr)) {
amb_present_reg = determine_amb_present_reg(pvt, channel);
/* Determine if there is a DIMM present in this DIMM slot */
if (amb_present_reg) {
dinfo->dual_rank = MTR_DIMM_RANK(mtr);
/* Start with the number of bits for a Bank
* on the DRAM */
addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
/* Add the number of ROW bits */
addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
/* add the number of COLUMN bits */
addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
/* Dual-rank memories have twice the size */
if (dinfo->dual_rank)
addrBits++;
addrBits += 6; /* add 64 bits per DIMM */
addrBits -= 20; /* divide by 2^^20 */
addrBits -= 3; /* 8 bits per bytes */
dinfo->megabytes = 1 << addrBits;
}
}
}
/*
* calculate_dimm_size
*
* also will output a DIMM matrix map, if debug is enabled, for viewing
* how the DIMMs are populated
*/
static void calculate_dimm_size(struct i5000_pvt *pvt)
{
struct i5000_dimm_info *dinfo;
int slot, channel, branch;
char *p, *mem_buffer;
int space, n;
/* ================= Generate some debug output ================= */
space = PAGE_SIZE;
mem_buffer = p = kmalloc(space, GFP_KERNEL);
if (p == NULL) {
i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
__FILE__, __func__);
return;
}
/* Scan all the actual slots
* and calculate the information for each DIMM
* Start with the highest slot first, to display it first
* and work toward the 0th slot
*/
for (slot = pvt->maxdimmperch - 1; slot >= 0; slot--) {
/* on an odd slot, first output a 'boundary' marker,
* then reset the message buffer */
if (slot & 0x1) {
n = snprintf(p, space, "--------------------------"
"--------------------------------");
p += n;
space -= n;
edac_dbg(2, "%s\n", mem_buffer);
p = mem_buffer;
space = PAGE_SIZE;
}
n = snprintf(p, space, "slot %2d ", slot);
p += n;
space -= n;
for (channel = 0; channel < pvt->maxch; channel++) {
dinfo = &pvt->dimm_info[slot][channel];
handle_channel(pvt, slot, channel, dinfo);
if (dinfo->megabytes)
n = snprintf(p, space, "%4d MB %dR| ",
dinfo->megabytes, dinfo->dual_rank + 1);
else
n = snprintf(p, space, "%4d MB | ", 0);
p += n;
space -= n;
}
p += n;
space -= n;
edac_dbg(2, "%s\n", mem_buffer);
p = mem_buffer;
space = PAGE_SIZE;
}
/* Output the last bottom 'boundary' marker */
n = snprintf(p, space, "--------------------------"
"--------------------------------");
p += n;
space -= n;
edac_dbg(2, "%s\n", mem_buffer);
p = mem_buffer;
space = PAGE_SIZE;
/* now output the 'channel' labels */
n = snprintf(p, space, " ");
p += n;
space -= n;
for (channel = 0; channel < pvt->maxch; channel++) {
n = snprintf(p, space, "channel %d | ", channel);
p += n;
space -= n;
}
edac_dbg(2, "%s\n", mem_buffer);
p = mem_buffer;
space = PAGE_SIZE;
n = snprintf(p, space, " ");
p += n;
for (branch = 0; branch < MAX_BRANCHES; branch++) {
n = snprintf(p, space, " branch %d | ", branch);
p += n;
space -= n;
}
/* output the last message and free buffer */
edac_dbg(2, "%s\n", mem_buffer);
kfree(mem_buffer);
}
/*
* i5000_get_mc_regs read in the necessary registers and
* cache locally
*
* Fills in the private data members
*/
static void i5000_get_mc_regs(struct mem_ctl_info *mci)
{
struct i5000_pvt *pvt;
u32 actual_tolm;
u16 limit;
int slot_row;
int maxch;
int maxdimmperch;
int way0, way1;
pvt = mci->pvt_info;
pci_read_config_dword(pvt->system_address, AMBASE,
&pvt->u.ambase_bottom);
pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
&pvt->u.ambase_top);
maxdimmperch = pvt->maxdimmperch;
maxch = pvt->maxch;
edac_dbg(2, "AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n",
(long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
/* Get the Branch Map regs */
pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
pvt->tolm >>= 12;
edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
pvt->tolm, pvt->tolm);
actual_tolm = pvt->tolm << 28;
edac_dbg(2, "Actual TOLM byte addr=%u (0x%x)\n",
actual_tolm, actual_tolm);
pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);
/* Get the MIR[0-2] regs */
limit = (pvt->mir0 >> 4) & 0x0FFF;
way0 = pvt->mir0 & 0x1;
way1 = pvt->mir0 & 0x2;
edac_dbg(2, "MIR0: limit= 0x%x WAY1= %u WAY0= %x\n",
limit, way1, way0);
limit = (pvt->mir1 >> 4) & 0x0FFF;
way0 = pvt->mir1 & 0x1;
way1 = pvt->mir1 & 0x2;
edac_dbg(2, "MIR1: limit= 0x%x WAY1= %u WAY0= %x\n",
limit, way1, way0);
limit = (pvt->mir2 >> 4) & 0x0FFF;
way0 = pvt->mir2 & 0x1;
way1 = pvt->mir2 & 0x2;
edac_dbg(2, "MIR2: limit= 0x%x WAY1= %u WAY0= %x\n",
limit, way1, way0);
/* Get the MTR[0-3] regs */
for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
int where = MTR0 + (slot_row * sizeof(u32));
pci_read_config_word(pvt->branch_0, where,
&pvt->b0_mtr[slot_row]);
edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
slot_row, where, pvt->b0_mtr[slot_row]);
if (pvt->maxch >= CHANNELS_PER_BRANCH) {
pci_read_config_word(pvt->branch_1, where,
&pvt->b1_mtr[slot_row]);
edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
slot_row, where, pvt->b1_mtr[slot_row]);
} else {
pvt->b1_mtr[slot_row] = 0;
}
}
/* Read and dump branch 0's MTRs */
edac_dbg(2, "Memory Technology Registers:\n");
edac_dbg(2, " Branch 0:\n");
for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
}
pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
&pvt->b0_ambpresent0);
edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
&pvt->b0_ambpresent1);
edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
/* Only if we have 2 branchs (4 channels) */
if (pvt->maxch < CHANNELS_PER_BRANCH) {
pvt->b1_ambpresent0 = 0;
pvt->b1_ambpresent1 = 0;
} else {
/* Read and dump branch 1's MTRs */
edac_dbg(2, " Branch 1:\n");
for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
}
pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
&pvt->b1_ambpresent0);
edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
pvt->b1_ambpresent0);
pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
&pvt->b1_ambpresent1);
edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
pvt->b1_ambpresent1);
}
/* Go and determine the size of each DIMM and place in an
* orderly matrix */
calculate_dimm_size(pvt);
}
/*
* i5000_init_csrows Initialize the 'csrows' table within
* the mci control structure with the
* addressing of memory.
*
* return:
* 0 success
* 1 no actual memory found on this MC
*/
static int i5000_init_csrows(struct mem_ctl_info *mci)
{
struct i5000_pvt *pvt;
struct dimm_info *dimm;
int empty, channel_count;
int max_csrows;
int mtr;
int csrow_megs;
int channel;
int slot;
pvt = mci->pvt_info;
channel_count = pvt->maxch;
max_csrows = pvt->maxdimmperch * 2;
empty = 1; /* Assume NO memory */
/*
* FIXME: The memory layout used to map slot/channel into the
* real memory architecture is weird: branch+slot are "csrows"
* and channel is channel. That required an extra array (dimm_info)
* to map the dimms. A good cleanup would be to remove this array,
* and do a loop here with branch, channel, slot
*/
for (slot = 0; slot < max_csrows; slot++) {
for (channel = 0; channel < pvt->maxch; channel++) {
mtr = determine_mtr(pvt, slot, channel);
if (!MTR_DIMMS_PRESENT(mtr))
continue;
dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
channel / MAX_BRANCHES,
channel % MAX_BRANCHES, slot);
csrow_megs = pvt->dimm_info[slot][channel].megabytes;
dimm->grain = 8;
/* Assume DDR2 for now */
dimm->mtype = MEM_FB_DDR2;
/* ask what device type on this row */
if (MTR_DRAM_WIDTH(mtr))
dimm->dtype = DEV_X8;
else
dimm->dtype = DEV_X4;
dimm->edac_mode = EDAC_S8ECD8ED;
dimm->nr_pages = csrow_megs << 8;
}
empty = 0;
}
return empty;
}
/*
* i5000_enable_error_reporting
* Turn on the memory reporting features of the hardware
*/
static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
{
struct i5000_pvt *pvt;
u32 fbd_error_mask;
pvt = mci->pvt_info;
/* Read the FBD Error Mask Register */
pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
&fbd_error_mask);
/* Enable with a '0' */
fbd_error_mask &= ~(ENABLE_EMASK_ALL);
pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
fbd_error_mask);
}
/*
* i5000_get_dimm_and_channel_counts(pdev, &nr_csrows, &num_channels)
*
* ask the device how many channels are present and how many CSROWS
* as well
*/
static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
int *num_dimms_per_channel,
int *num_channels)
{
u8 value;
/* Need to retrieve just how many channels and dimms per channel are
* supported on this memory controller
*/
pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
*num_dimms_per_channel = (int)value;
pci_read_config_byte(pdev, MAXCH, &value);
*num_channels = (int)value;
}
/*
* i5000_probe1 Probe for ONE instance of device to see if it is
* present.
* return:
* 0 for FOUND a device
* < 0 for error code
*/
static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
{
struct mem_ctl_info *mci;
struct edac_mc_layer layers[3];
struct i5000_pvt *pvt;
int num_channels;
int num_dimms_per_channel;
edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
pdev->bus->number,
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
/* We only are looking for func 0 of the set */
if (PCI_FUNC(pdev->devfn) != 0)
return -ENODEV;
/* Ask the devices for the number of CSROWS and CHANNELS so
* that we can calculate the memory resources, etc
*
* The Chipset will report what it can handle which will be greater
* or equal to what the motherboard manufacturer will implement.
*
* As we don't have a motherboard identification routine to determine
* actual number of slots/dimms per channel, we thus utilize the
* resource as specified by the chipset. Thus, we might have
* have more DIMMs per channel than actually on the mobo, but this
* allows the driver to support up to the chipset max, without
* some fancy mobo determination.
*/
i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
&num_channels);
edac_dbg(0, "MC: Number of Branches=2 Channels= %d DIMMS= %d\n",
num_channels, num_dimms_per_channel);
/* allocate a new MC control structure */
layers[0].type = EDAC_MC_LAYER_BRANCH;
layers[0].size = MAX_BRANCHES;
layers[0].is_virt_csrow = false;
layers[1].type = EDAC_MC_LAYER_CHANNEL;
layers[1].size = num_channels / MAX_BRANCHES;
layers[1].is_virt_csrow = false;
layers[2].type = EDAC_MC_LAYER_SLOT;
layers[2].size = num_dimms_per_channel;
layers[2].is_virt_csrow = true;
mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
if (mci == NULL)
return -ENOMEM;
edac_dbg(0, "MC: mci = %p\n", mci);
mci->pdev = &pdev->dev; /* record ptr to the generic device */
pvt = mci->pvt_info;
pvt->system_address = pdev; /* Record this device in our private */
pvt->maxch = num_channels;
pvt->maxdimmperch = num_dimms_per_channel;
/* 'get' the pci devices we want to reserve for our use */
if (i5000_get_devices(mci, dev_idx))
goto fail0;
/* Time to get serious */
i5000_get_mc_regs(mci); /* retrieve the hardware registers */
mci->mc_idx = 0;
mci->mtype_cap = MEM_FLAG_FB_DDR2;
mci->edac_ctl_cap = EDAC_FLAG_NONE;
mci->edac_cap = EDAC_FLAG_NONE;
mci->mod_name = "i5000_edac.c";
mci->mod_ver = I5000_REVISION;
mci->ctl_name = i5000_devs[dev_idx].ctl_name;
mci->dev_name = pci_name(pdev);
mci->ctl_page_to_phys = NULL;
/* Set the function pointer to an actual operation function */
mci->edac_check = i5000_check_error;
/* initialize the MC control structure 'csrows' table
* with the mapping and control information */
if (i5000_init_csrows(mci)) {
edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5000_init_csrows() returned nonzero value\n");
mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
} else {
edac_dbg(1, "MC: Enable error reporting now\n");
i5000_enable_error_reporting(mci);
}
/* add this new MC control structure to EDAC's list of MCs */
if (edac_mc_add_mc(mci)) {
edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
/* FIXME: perhaps some code should go here that disables error
* reporting if we just enabled it
*/
goto fail1;
}
i5000_clear_error(mci);
/* allocating generic PCI control info */
i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
if (!i5000_pci) {
printk(KERN_WARNING
"%s(): Unable to create PCI control\n",
__func__);
printk(KERN_WARNING
"%s(): PCI error report via EDAC not setup\n",
__func__);
}
return 0;
/* Error exit unwinding stack */
fail1:
i5000_put_devices(mci);
fail0:
edac_mc_free(mci);
return -ENODEV;
}
/*
* i5000_init_one constructor for one instance of device
*
* returns:
* negative on error
* count (>= 0)
*/
static int __devinit i5000_init_one(struct pci_dev *pdev,
const struct pci_device_id *id)
{
int rc;
edac_dbg(0, "MC:\n");
/* wake up device */
rc = pci_enable_device(pdev);
if (rc)
return rc;
/* now probe and enable the device */
return i5000_probe1(pdev, id->driver_data);
}
/*
* i5000_remove_one destructor for one instance of device
*
*/
static void __devexit i5000_remove_one(struct pci_dev *pdev)
{
struct mem_ctl_info *mci;
edac_dbg(0, "\n");
if (i5000_pci)
edac_pci_release_generic_ctl(i5000_pci);
if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
return;
/* retrieve references to resources, and free those resources */
i5000_put_devices(mci);
edac_mc_free(mci);
}
/*
* pci_device_id table for which devices we are looking for
*
* The "E500P" device is the first device supported.
*/
static DEFINE_PCI_DEVICE_TABLE(i5000_pci_tbl) = {
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
.driver_data = I5000P},
{0,} /* 0 terminated list. */
};
MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);
/*
* i5000_driver pci_driver structure for this module
*
*/
static struct pci_driver i5000_driver = {
.name = KBUILD_BASENAME,
.probe = i5000_init_one,
.remove = __devexit_p(i5000_remove_one),
.id_table = i5000_pci_tbl,
};
/*
* i5000_init Module entry function
* Try to initialize this module for its devices
*/
static int __init i5000_init(void)
{
int pci_rc;
edac_dbg(2, "MC:\n");
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
opstate_init();
pci_rc = pci_register_driver(&i5000_driver);
return (pci_rc < 0) ? pci_rc : 0;
}
/*
* i5000_exit() Module exit function
* Unregister the driver
*/
static void __exit i5000_exit(void)
{
edac_dbg(2, "MC:\n");
pci_unregister_driver(&i5000_driver);
}
module_init(i5000_init);
module_exit(i5000_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR
("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
I5000_REVISION);
module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
module_param(misc_messages, int, 0444);
MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");