mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-16 01:04:08 +08:00
5d469ec0f4
Clean up several code points in which the return code from misc_register is not handled properly. Several modules failed to deregister various hooks when misc_register fails, and this patch cleans them up. Also there are a few modules that legitimately don't care about the failure status of misc register. These drivers however unilaterally call misc_deregister on module unload. Since misc_register doesn't initialize the list_head in the init_routine if it fails, the deregister operation is at risk for oopsing when list_del is called. The initial solution was to manually init the list in the miscdev structure in each of those modules, but the consensus in this thread was to consolodate and do that universally inside misc_register. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Cc: Bjorn Helgaas <bjorn.helgaas@hp.com> Cc: Kylene Jo Hall <kjhall@us.ibm.com> Cc: Dmitry Torokhov <dtor@mail.ru> Cc: Olaf Hering <olh@suse.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
759 lines
18 KiB
C
759 lines
18 KiB
C
/*
|
|
* Timer device implementation for SGI SN platforms.
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (c) 2001-2006 Silicon Graphics, Inc. All rights reserved.
|
|
*
|
|
* This driver exports an API that should be supportable by any HPET or IA-PC
|
|
* multimedia timer. The code below is currently specific to the SGI Altix
|
|
* SHub RTC, however.
|
|
*
|
|
* 11/01/01 - jbarnes - initial revision
|
|
* 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion
|
|
* 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE
|
|
* 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt
|
|
* support via the posix timer interface
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/ioctl.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mmtimer.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/posix-timers.h>
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/sn/addrs.h>
|
|
#include <asm/sn/intr.h>
|
|
#include <asm/sn/shub_mmr.h>
|
|
#include <asm/sn/nodepda.h>
|
|
#include <asm/sn/shubio.h>
|
|
|
|
MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
|
|
MODULE_DESCRIPTION("SGI Altix RTC Timer");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
/* name of the device, usually in /dev */
|
|
#define MMTIMER_NAME "mmtimer"
|
|
#define MMTIMER_DESC "SGI Altix RTC Timer"
|
|
#define MMTIMER_VERSION "2.1"
|
|
|
|
#define RTC_BITS 55 /* 55 bits for this implementation */
|
|
|
|
extern unsigned long sn_rtc_cycles_per_second;
|
|
|
|
#define RTC_COUNTER_ADDR ((long *)LOCAL_MMR_ADDR(SH_RTC))
|
|
|
|
#define rtc_time() (*RTC_COUNTER_ADDR)
|
|
|
|
static int mmtimer_ioctl(struct inode *inode, struct file *file,
|
|
unsigned int cmd, unsigned long arg);
|
|
static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma);
|
|
|
|
/*
|
|
* Period in femtoseconds (10^-15 s)
|
|
*/
|
|
static unsigned long mmtimer_femtoperiod = 0;
|
|
|
|
static const struct file_operations mmtimer_fops = {
|
|
.owner = THIS_MODULE,
|
|
.mmap = mmtimer_mmap,
|
|
.ioctl = mmtimer_ioctl,
|
|
};
|
|
|
|
/*
|
|
* We only have comparison registers RTC1-4 currently available per
|
|
* node. RTC0 is used by SAL.
|
|
*/
|
|
#define NUM_COMPARATORS 3
|
|
/* Check for an RTC interrupt pending */
|
|
static int inline mmtimer_int_pending(int comparator)
|
|
{
|
|
if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) &
|
|
SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
/* Clear the RTC interrupt pending bit */
|
|
static void inline mmtimer_clr_int_pending(int comparator)
|
|
{
|
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS),
|
|
SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator);
|
|
}
|
|
|
|
/* Setup timer on comparator RTC1 */
|
|
static void inline mmtimer_setup_int_0(u64 expires)
|
|
{
|
|
u64 val;
|
|
|
|
/* Disable interrupt */
|
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL);
|
|
|
|
/* Initialize comparator value */
|
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L);
|
|
|
|
/* Clear pending bit */
|
|
mmtimer_clr_int_pending(0);
|
|
|
|
val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) |
|
|
((u64)cpu_physical_id(smp_processor_id()) <<
|
|
SH_RTC1_INT_CONFIG_PID_SHFT);
|
|
|
|
/* Set configuration */
|
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val);
|
|
|
|
/* Enable RTC interrupts */
|
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL);
|
|
|
|
/* Initialize comparator value */
|
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires);
|
|
|
|
|
|
}
|
|
|
|
/* Setup timer on comparator RTC2 */
|
|
static void inline mmtimer_setup_int_1(u64 expires)
|
|
{
|
|
u64 val;
|
|
|
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL);
|
|
|
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L);
|
|
|
|
mmtimer_clr_int_pending(1);
|
|
|
|
val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) |
|
|
((u64)cpu_physical_id(smp_processor_id()) <<
|
|
SH_RTC2_INT_CONFIG_PID_SHFT);
|
|
|
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val);
|
|
|
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL);
|
|
|
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires);
|
|
}
|
|
|
|
/* Setup timer on comparator RTC3 */
|
|
static void inline mmtimer_setup_int_2(u64 expires)
|
|
{
|
|
u64 val;
|
|
|
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL);
|
|
|
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L);
|
|
|
|
mmtimer_clr_int_pending(2);
|
|
|
|
val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) |
|
|
((u64)cpu_physical_id(smp_processor_id()) <<
|
|
SH_RTC3_INT_CONFIG_PID_SHFT);
|
|
|
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val);
|
|
|
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL);
|
|
|
|
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires);
|
|
}
|
|
|
|
/*
|
|
* This function must be called with interrupts disabled and preemption off
|
|
* in order to insure that the setup succeeds in a deterministic time frame.
|
|
* It will check if the interrupt setup succeeded.
|
|
*/
|
|
static int inline mmtimer_setup(int comparator, unsigned long expires)
|
|
{
|
|
|
|
switch (comparator) {
|
|
case 0:
|
|
mmtimer_setup_int_0(expires);
|
|
break;
|
|
case 1:
|
|
mmtimer_setup_int_1(expires);
|
|
break;
|
|
case 2:
|
|
mmtimer_setup_int_2(expires);
|
|
break;
|
|
}
|
|
/* We might've missed our expiration time */
|
|
if (rtc_time() < expires)
|
|
return 1;
|
|
|
|
/*
|
|
* If an interrupt is already pending then its okay
|
|
* if not then we failed
|
|
*/
|
|
return mmtimer_int_pending(comparator);
|
|
}
|
|
|
|
static int inline mmtimer_disable_int(long nasid, int comparator)
|
|
{
|
|
switch (comparator) {
|
|
case 0:
|
|
nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE),
|
|
0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL);
|
|
break;
|
|
case 1:
|
|
nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE),
|
|
0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL);
|
|
break;
|
|
case 2:
|
|
nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE),
|
|
0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL);
|
|
break;
|
|
default:
|
|
return -EFAULT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define TIMER_OFF 0xbadcabLL
|
|
|
|
/* There is one of these for each comparator */
|
|
typedef struct mmtimer {
|
|
spinlock_t lock ____cacheline_aligned;
|
|
struct k_itimer *timer;
|
|
int i;
|
|
int cpu;
|
|
struct tasklet_struct tasklet;
|
|
} mmtimer_t;
|
|
|
|
static mmtimer_t ** timers;
|
|
|
|
/**
|
|
* mmtimer_ioctl - ioctl interface for /dev/mmtimer
|
|
* @inode: inode of the device
|
|
* @file: file structure for the device
|
|
* @cmd: command to execute
|
|
* @arg: optional argument to command
|
|
*
|
|
* Executes the command specified by @cmd. Returns 0 for success, < 0 for
|
|
* failure.
|
|
*
|
|
* Valid commands:
|
|
*
|
|
* %MMTIMER_GETOFFSET - Should return the offset (relative to the start
|
|
* of the page where the registers are mapped) for the counter in question.
|
|
*
|
|
* %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15)
|
|
* seconds
|
|
*
|
|
* %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address
|
|
* specified by @arg
|
|
*
|
|
* %MMTIMER_GETBITS - Returns the number of bits in the clock's counter
|
|
*
|
|
* %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace
|
|
*
|
|
* %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it
|
|
* in the address specified by @arg.
|
|
*/
|
|
static int mmtimer_ioctl(struct inode *inode, struct file *file,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
int ret = 0;
|
|
|
|
switch (cmd) {
|
|
case MMTIMER_GETOFFSET: /* offset of the counter */
|
|
/*
|
|
* SN RTC registers are on their own 64k page
|
|
*/
|
|
if(PAGE_SIZE <= (1 << 16))
|
|
ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8;
|
|
else
|
|
ret = -ENOSYS;
|
|
break;
|
|
|
|
case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */
|
|
if(copy_to_user((unsigned long __user *)arg,
|
|
&mmtimer_femtoperiod, sizeof(unsigned long)))
|
|
return -EFAULT;
|
|
break;
|
|
|
|
case MMTIMER_GETFREQ: /* frequency in Hz */
|
|
if(copy_to_user((unsigned long __user *)arg,
|
|
&sn_rtc_cycles_per_second,
|
|
sizeof(unsigned long)))
|
|
return -EFAULT;
|
|
ret = 0;
|
|
break;
|
|
|
|
case MMTIMER_GETBITS: /* number of bits in the clock */
|
|
ret = RTC_BITS;
|
|
break;
|
|
|
|
case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */
|
|
ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0;
|
|
break;
|
|
|
|
case MMTIMER_GETCOUNTER:
|
|
if(copy_to_user((unsigned long __user *)arg,
|
|
RTC_COUNTER_ADDR, sizeof(unsigned long)))
|
|
return -EFAULT;
|
|
break;
|
|
default:
|
|
ret = -ENOSYS;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* mmtimer_mmap - maps the clock's registers into userspace
|
|
* @file: file structure for the device
|
|
* @vma: VMA to map the registers into
|
|
*
|
|
* Calls remap_pfn_range() to map the clock's registers into
|
|
* the calling process' address space.
|
|
*/
|
|
static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
unsigned long mmtimer_addr;
|
|
|
|
if (vma->vm_end - vma->vm_start != PAGE_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (vma->vm_flags & VM_WRITE)
|
|
return -EPERM;
|
|
|
|
if (PAGE_SIZE > (1 << 16))
|
|
return -ENOSYS;
|
|
|
|
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
|
|
|
|
mmtimer_addr = __pa(RTC_COUNTER_ADDR);
|
|
mmtimer_addr &= ~(PAGE_SIZE - 1);
|
|
mmtimer_addr &= 0xfffffffffffffffUL;
|
|
|
|
if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT,
|
|
PAGE_SIZE, vma->vm_page_prot)) {
|
|
printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n");
|
|
return -EAGAIN;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct miscdevice mmtimer_miscdev = {
|
|
SGI_MMTIMER,
|
|
MMTIMER_NAME,
|
|
&mmtimer_fops
|
|
};
|
|
|
|
static struct timespec sgi_clock_offset;
|
|
static int sgi_clock_period;
|
|
|
|
/*
|
|
* Posix Timer Interface
|
|
*/
|
|
|
|
static struct timespec sgi_clock_offset;
|
|
static int sgi_clock_period;
|
|
|
|
static int sgi_clock_get(clockid_t clockid, struct timespec *tp)
|
|
{
|
|
u64 nsec;
|
|
|
|
nsec = rtc_time() * sgi_clock_period
|
|
+ sgi_clock_offset.tv_nsec;
|
|
tp->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tp->tv_nsec)
|
|
+ sgi_clock_offset.tv_sec;
|
|
return 0;
|
|
};
|
|
|
|
static int sgi_clock_set(clockid_t clockid, struct timespec *tp)
|
|
{
|
|
|
|
u64 nsec;
|
|
u64 rem;
|
|
|
|
nsec = rtc_time() * sgi_clock_period;
|
|
|
|
sgi_clock_offset.tv_sec = tp->tv_sec - div_long_long_rem(nsec, NSEC_PER_SEC, &rem);
|
|
|
|
if (rem <= tp->tv_nsec)
|
|
sgi_clock_offset.tv_nsec = tp->tv_sec - rem;
|
|
else {
|
|
sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem;
|
|
sgi_clock_offset.tv_sec--;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Schedule the next periodic interrupt. This function will attempt
|
|
* to schedule a periodic interrupt later if necessary. If the scheduling
|
|
* of an interrupt fails then the time to skip is lengthened
|
|
* exponentially in order to ensure that the next interrupt
|
|
* can be properly scheduled..
|
|
*/
|
|
static int inline reschedule_periodic_timer(mmtimer_t *x)
|
|
{
|
|
int n;
|
|
struct k_itimer *t = x->timer;
|
|
|
|
t->it.mmtimer.clock = x->i;
|
|
t->it_overrun--;
|
|
|
|
n = 0;
|
|
do {
|
|
|
|
t->it.mmtimer.expires += t->it.mmtimer.incr << n;
|
|
t->it_overrun += 1 << n;
|
|
n++;
|
|
if (n > 20)
|
|
return 1;
|
|
|
|
} while (!mmtimer_setup(x->i, t->it.mmtimer.expires));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mmtimer_interrupt - timer interrupt handler
|
|
* @irq: irq received
|
|
* @dev_id: device the irq came from
|
|
*
|
|
* Called when one of the comarators matches the counter, This
|
|
* routine will send signals to processes that have requested
|
|
* them.
|
|
*
|
|
* This interrupt is run in an interrupt context
|
|
* by the SHUB. It is therefore safe to locally access SHub
|
|
* registers.
|
|
*/
|
|
static irqreturn_t
|
|
mmtimer_interrupt(int irq, void *dev_id)
|
|
{
|
|
int i;
|
|
unsigned long expires = 0;
|
|
int result = IRQ_NONE;
|
|
unsigned indx = cpu_to_node(smp_processor_id());
|
|
|
|
/*
|
|
* Do this once for each comparison register
|
|
*/
|
|
for (i = 0; i < NUM_COMPARATORS; i++) {
|
|
mmtimer_t *base = timers[indx] + i;
|
|
/* Make sure this doesn't get reused before tasklet_sched */
|
|
spin_lock(&base->lock);
|
|
if (base->cpu == smp_processor_id()) {
|
|
if (base->timer)
|
|
expires = base->timer->it.mmtimer.expires;
|
|
/* expires test won't work with shared irqs */
|
|
if ((mmtimer_int_pending(i) > 0) ||
|
|
(expires && (expires < rtc_time()))) {
|
|
mmtimer_clr_int_pending(i);
|
|
tasklet_schedule(&base->tasklet);
|
|
result = IRQ_HANDLED;
|
|
}
|
|
}
|
|
spin_unlock(&base->lock);
|
|
expires = 0;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void mmtimer_tasklet(unsigned long data) {
|
|
mmtimer_t *x = (mmtimer_t *)data;
|
|
struct k_itimer *t = x->timer;
|
|
unsigned long flags;
|
|
|
|
if (t == NULL)
|
|
return;
|
|
|
|
/* Send signal and deal with periodic signals */
|
|
spin_lock_irqsave(&t->it_lock, flags);
|
|
spin_lock(&x->lock);
|
|
/* If timer was deleted between interrupt and here, leave */
|
|
if (t != x->timer)
|
|
goto out;
|
|
t->it_overrun = 0;
|
|
|
|
if (posix_timer_event(t, 0) != 0) {
|
|
|
|
// printk(KERN_WARNING "mmtimer: cannot deliver signal.\n");
|
|
|
|
t->it_overrun++;
|
|
}
|
|
if(t->it.mmtimer.incr) {
|
|
/* Periodic timer */
|
|
if (reschedule_periodic_timer(x)) {
|
|
printk(KERN_WARNING "mmtimer: unable to reschedule\n");
|
|
x->timer = NULL;
|
|
}
|
|
} else {
|
|
/* Ensure we don't false trigger in mmtimer_interrupt */
|
|
t->it.mmtimer.expires = 0;
|
|
}
|
|
t->it_overrun_last = t->it_overrun;
|
|
out:
|
|
spin_unlock(&x->lock);
|
|
spin_unlock_irqrestore(&t->it_lock, flags);
|
|
}
|
|
|
|
static int sgi_timer_create(struct k_itimer *timer)
|
|
{
|
|
/* Insure that a newly created timer is off */
|
|
timer->it.mmtimer.clock = TIMER_OFF;
|
|
return 0;
|
|
}
|
|
|
|
/* This does not really delete a timer. It just insures
|
|
* that the timer is not active
|
|
*
|
|
* Assumption: it_lock is already held with irq's disabled
|
|
*/
|
|
static int sgi_timer_del(struct k_itimer *timr)
|
|
{
|
|
int i = timr->it.mmtimer.clock;
|
|
cnodeid_t nodeid = timr->it.mmtimer.node;
|
|
mmtimer_t *t = timers[nodeid] + i;
|
|
unsigned long irqflags;
|
|
|
|
if (i != TIMER_OFF) {
|
|
spin_lock_irqsave(&t->lock, irqflags);
|
|
mmtimer_disable_int(cnodeid_to_nasid(nodeid),i);
|
|
t->timer = NULL;
|
|
timr->it.mmtimer.clock = TIMER_OFF;
|
|
timr->it.mmtimer.expires = 0;
|
|
spin_unlock_irqrestore(&t->lock, irqflags);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define timespec_to_ns(x) ((x).tv_nsec + (x).tv_sec * NSEC_PER_SEC)
|
|
#define ns_to_timespec(ts, nsec) (ts).tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &(ts).tv_nsec)
|
|
|
|
/* Assumption: it_lock is already held with irq's disabled */
|
|
static void sgi_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
|
|
{
|
|
|
|
if (timr->it.mmtimer.clock == TIMER_OFF) {
|
|
cur_setting->it_interval.tv_nsec = 0;
|
|
cur_setting->it_interval.tv_sec = 0;
|
|
cur_setting->it_value.tv_nsec = 0;
|
|
cur_setting->it_value.tv_sec =0;
|
|
return;
|
|
}
|
|
|
|
ns_to_timespec(cur_setting->it_interval, timr->it.mmtimer.incr * sgi_clock_period);
|
|
ns_to_timespec(cur_setting->it_value, (timr->it.mmtimer.expires - rtc_time())* sgi_clock_period);
|
|
return;
|
|
}
|
|
|
|
|
|
static int sgi_timer_set(struct k_itimer *timr, int flags,
|
|
struct itimerspec * new_setting,
|
|
struct itimerspec * old_setting)
|
|
{
|
|
|
|
int i;
|
|
unsigned long when, period, irqflags;
|
|
int err = 0;
|
|
cnodeid_t nodeid;
|
|
mmtimer_t *base;
|
|
|
|
if (old_setting)
|
|
sgi_timer_get(timr, old_setting);
|
|
|
|
sgi_timer_del(timr);
|
|
when = timespec_to_ns(new_setting->it_value);
|
|
period = timespec_to_ns(new_setting->it_interval);
|
|
|
|
if (when == 0)
|
|
/* Clear timer */
|
|
return 0;
|
|
|
|
if (flags & TIMER_ABSTIME) {
|
|
struct timespec n;
|
|
unsigned long now;
|
|
|
|
getnstimeofday(&n);
|
|
now = timespec_to_ns(n);
|
|
if (when > now)
|
|
when -= now;
|
|
else
|
|
/* Fire the timer immediately */
|
|
when = 0;
|
|
}
|
|
|
|
/*
|
|
* Convert to sgi clock period. Need to keep rtc_time() as near as possible
|
|
* to getnstimeofday() in order to be as faithful as possible to the time
|
|
* specified.
|
|
*/
|
|
when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time();
|
|
period = (period + sgi_clock_period - 1) / sgi_clock_period;
|
|
|
|
/*
|
|
* We are allocating a local SHub comparator. If we would be moved to another
|
|
* cpu then another SHub may be local to us. Prohibit that by switching off
|
|
* preemption.
|
|
*/
|
|
preempt_disable();
|
|
|
|
nodeid = cpu_to_node(smp_processor_id());
|
|
retry:
|
|
/* Don't use an allocated timer, or a deleted one that's pending */
|
|
for(i = 0; i< NUM_COMPARATORS; i++) {
|
|
base = timers[nodeid] + i;
|
|
if (!base->timer && !base->tasklet.state) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == NUM_COMPARATORS) {
|
|
preempt_enable();
|
|
return -EBUSY;
|
|
}
|
|
|
|
spin_lock_irqsave(&base->lock, irqflags);
|
|
|
|
if (base->timer || base->tasklet.state != 0) {
|
|
spin_unlock_irqrestore(&base->lock, irqflags);
|
|
goto retry;
|
|
}
|
|
base->timer = timr;
|
|
base->cpu = smp_processor_id();
|
|
|
|
timr->it.mmtimer.clock = i;
|
|
timr->it.mmtimer.node = nodeid;
|
|
timr->it.mmtimer.incr = period;
|
|
timr->it.mmtimer.expires = when;
|
|
|
|
if (period == 0) {
|
|
if (!mmtimer_setup(i, when)) {
|
|
mmtimer_disable_int(-1, i);
|
|
posix_timer_event(timr, 0);
|
|
timr->it.mmtimer.expires = 0;
|
|
}
|
|
} else {
|
|
timr->it.mmtimer.expires -= period;
|
|
if (reschedule_periodic_timer(base))
|
|
err = -EINVAL;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&base->lock, irqflags);
|
|
|
|
preempt_enable();
|
|
|
|
return err;
|
|
}
|
|
|
|
static struct k_clock sgi_clock = {
|
|
.res = 0,
|
|
.clock_set = sgi_clock_set,
|
|
.clock_get = sgi_clock_get,
|
|
.timer_create = sgi_timer_create,
|
|
.nsleep = do_posix_clock_nonanosleep,
|
|
.timer_set = sgi_timer_set,
|
|
.timer_del = sgi_timer_del,
|
|
.timer_get = sgi_timer_get
|
|
};
|
|
|
|
/**
|
|
* mmtimer_init - device initialization routine
|
|
*
|
|
* Does initial setup for the mmtimer device.
|
|
*/
|
|
static int __init mmtimer_init(void)
|
|
{
|
|
unsigned i;
|
|
cnodeid_t node, maxn = -1;
|
|
|
|
if (!ia64_platform_is("sn2"))
|
|
return 0;
|
|
|
|
/*
|
|
* Sanity check the cycles/sec variable
|
|
*/
|
|
if (sn_rtc_cycles_per_second < 100000) {
|
|
printk(KERN_ERR "%s: unable to determine clock frequency\n",
|
|
MMTIMER_NAME);
|
|
goto out1;
|
|
}
|
|
|
|
mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second /
|
|
2) / sn_rtc_cycles_per_second;
|
|
|
|
if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, IRQF_PERCPU, MMTIMER_NAME, NULL)) {
|
|
printk(KERN_WARNING "%s: unable to allocate interrupt.",
|
|
MMTIMER_NAME);
|
|
goto out1;
|
|
}
|
|
|
|
if (misc_register(&mmtimer_miscdev)) {
|
|
printk(KERN_ERR "%s: failed to register device\n",
|
|
MMTIMER_NAME);
|
|
goto out2;
|
|
}
|
|
|
|
/* Get max numbered node, calculate slots needed */
|
|
for_each_online_node(node) {
|
|
maxn = node;
|
|
}
|
|
maxn++;
|
|
|
|
/* Allocate list of node ptrs to mmtimer_t's */
|
|
timers = kmalloc(sizeof(mmtimer_t *)*maxn, GFP_KERNEL);
|
|
if (timers == NULL) {
|
|
printk(KERN_ERR "%s: failed to allocate memory for device\n",
|
|
MMTIMER_NAME);
|
|
goto out3;
|
|
}
|
|
|
|
memset(timers,0,(sizeof(mmtimer_t *)*maxn));
|
|
|
|
/* Allocate mmtimer_t's for each online node */
|
|
for_each_online_node(node) {
|
|
timers[node] = kmalloc_node(sizeof(mmtimer_t)*NUM_COMPARATORS, GFP_KERNEL, node);
|
|
if (timers[node] == NULL) {
|
|
printk(KERN_ERR "%s: failed to allocate memory for device\n",
|
|
MMTIMER_NAME);
|
|
goto out4;
|
|
}
|
|
for (i=0; i< NUM_COMPARATORS; i++) {
|
|
mmtimer_t * base = timers[node] + i;
|
|
|
|
spin_lock_init(&base->lock);
|
|
base->timer = NULL;
|
|
base->cpu = 0;
|
|
base->i = i;
|
|
tasklet_init(&base->tasklet, mmtimer_tasklet,
|
|
(unsigned long) (base));
|
|
}
|
|
}
|
|
|
|
sgi_clock_period = sgi_clock.res = NSEC_PER_SEC / sn_rtc_cycles_per_second;
|
|
register_posix_clock(CLOCK_SGI_CYCLE, &sgi_clock);
|
|
|
|
printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION,
|
|
sn_rtc_cycles_per_second/(unsigned long)1E6);
|
|
|
|
return 0;
|
|
|
|
out4:
|
|
for_each_online_node(node) {
|
|
kfree(timers[node]);
|
|
}
|
|
out3:
|
|
misc_deregister(&mmtimer_miscdev);
|
|
out2:
|
|
free_irq(SGI_MMTIMER_VECTOR, NULL);
|
|
out1:
|
|
return -1;
|
|
}
|
|
|
|
module_init(mmtimer_init);
|
|
|