2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-21 11:44:01 +08:00
linux-next/include/linux/log2.h
Robert P. J. Day de9330d13e log2.h: Define order_base_2() macro for convenience.
Given a number of places in the tree that need to calculate this value
explicitly, might as well just create a macro for it.

(akpm: must be implemented as a macro for callee typeof() usage)

Signed-off-by: Robert P. J. Day <rpjday@crashcourse.ca>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-06 10:41:03 -08:00

210 lines
5.3 KiB
C

/* Integer base 2 logarithm calculation
*
* Copyright (C) 2006 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef _LINUX_LOG2_H
#define _LINUX_LOG2_H
#include <linux/types.h>
#include <linux/bitops.h>
/*
* deal with unrepresentable constant logarithms
*/
extern __attribute__((const, noreturn))
int ____ilog2_NaN(void);
/*
* non-constant log of base 2 calculators
* - the arch may override these in asm/bitops.h if they can be implemented
* more efficiently than using fls() and fls64()
* - the arch is not required to handle n==0 if implementing the fallback
*/
#ifndef CONFIG_ARCH_HAS_ILOG2_U32
static inline __attribute__((const))
int __ilog2_u32(u32 n)
{
return fls(n) - 1;
}
#endif
#ifndef CONFIG_ARCH_HAS_ILOG2_U64
static inline __attribute__((const))
int __ilog2_u64(u64 n)
{
return fls64(n) - 1;
}
#endif
/*
* Determine whether some value is a power of two, where zero is
* *not* considered a power of two.
*/
static inline __attribute__((const))
bool is_power_of_2(unsigned long n)
{
return (n != 0 && ((n & (n - 1)) == 0));
}
/*
* round up to nearest power of two
*/
static inline __attribute__((const))
unsigned long __roundup_pow_of_two(unsigned long n)
{
return 1UL << fls_long(n - 1);
}
/*
* round down to nearest power of two
*/
static inline __attribute__((const))
unsigned long __rounddown_pow_of_two(unsigned long n)
{
return 1UL << (fls_long(n) - 1);
}
/**
* ilog2 - log of base 2 of 32-bit or a 64-bit unsigned value
* @n - parameter
*
* constant-capable log of base 2 calculation
* - this can be used to initialise global variables from constant data, hence
* the massive ternary operator construction
*
* selects the appropriately-sized optimised version depending on sizeof(n)
*/
#define ilog2(n) \
( \
__builtin_constant_p(n) ? ( \
(n) < 1 ? ____ilog2_NaN() : \
(n) & (1ULL << 63) ? 63 : \
(n) & (1ULL << 62) ? 62 : \
(n) & (1ULL << 61) ? 61 : \
(n) & (1ULL << 60) ? 60 : \
(n) & (1ULL << 59) ? 59 : \
(n) & (1ULL << 58) ? 58 : \
(n) & (1ULL << 57) ? 57 : \
(n) & (1ULL << 56) ? 56 : \
(n) & (1ULL << 55) ? 55 : \
(n) & (1ULL << 54) ? 54 : \
(n) & (1ULL << 53) ? 53 : \
(n) & (1ULL << 52) ? 52 : \
(n) & (1ULL << 51) ? 51 : \
(n) & (1ULL << 50) ? 50 : \
(n) & (1ULL << 49) ? 49 : \
(n) & (1ULL << 48) ? 48 : \
(n) & (1ULL << 47) ? 47 : \
(n) & (1ULL << 46) ? 46 : \
(n) & (1ULL << 45) ? 45 : \
(n) & (1ULL << 44) ? 44 : \
(n) & (1ULL << 43) ? 43 : \
(n) & (1ULL << 42) ? 42 : \
(n) & (1ULL << 41) ? 41 : \
(n) & (1ULL << 40) ? 40 : \
(n) & (1ULL << 39) ? 39 : \
(n) & (1ULL << 38) ? 38 : \
(n) & (1ULL << 37) ? 37 : \
(n) & (1ULL << 36) ? 36 : \
(n) & (1ULL << 35) ? 35 : \
(n) & (1ULL << 34) ? 34 : \
(n) & (1ULL << 33) ? 33 : \
(n) & (1ULL << 32) ? 32 : \
(n) & (1ULL << 31) ? 31 : \
(n) & (1ULL << 30) ? 30 : \
(n) & (1ULL << 29) ? 29 : \
(n) & (1ULL << 28) ? 28 : \
(n) & (1ULL << 27) ? 27 : \
(n) & (1ULL << 26) ? 26 : \
(n) & (1ULL << 25) ? 25 : \
(n) & (1ULL << 24) ? 24 : \
(n) & (1ULL << 23) ? 23 : \
(n) & (1ULL << 22) ? 22 : \
(n) & (1ULL << 21) ? 21 : \
(n) & (1ULL << 20) ? 20 : \
(n) & (1ULL << 19) ? 19 : \
(n) & (1ULL << 18) ? 18 : \
(n) & (1ULL << 17) ? 17 : \
(n) & (1ULL << 16) ? 16 : \
(n) & (1ULL << 15) ? 15 : \
(n) & (1ULL << 14) ? 14 : \
(n) & (1ULL << 13) ? 13 : \
(n) & (1ULL << 12) ? 12 : \
(n) & (1ULL << 11) ? 11 : \
(n) & (1ULL << 10) ? 10 : \
(n) & (1ULL << 9) ? 9 : \
(n) & (1ULL << 8) ? 8 : \
(n) & (1ULL << 7) ? 7 : \
(n) & (1ULL << 6) ? 6 : \
(n) & (1ULL << 5) ? 5 : \
(n) & (1ULL << 4) ? 4 : \
(n) & (1ULL << 3) ? 3 : \
(n) & (1ULL << 2) ? 2 : \
(n) & (1ULL << 1) ? 1 : \
(n) & (1ULL << 0) ? 0 : \
____ilog2_NaN() \
) : \
(sizeof(n) <= 4) ? \
__ilog2_u32(n) : \
__ilog2_u64(n) \
)
/**
* roundup_pow_of_two - round the given value up to nearest power of two
* @n - parameter
*
* round the given value up to the nearest power of two
* - the result is undefined when n == 0
* - this can be used to initialise global variables from constant data
*/
#define roundup_pow_of_two(n) \
( \
__builtin_constant_p(n) ? ( \
(n == 1) ? 1 : \
(1UL << (ilog2((n) - 1) + 1)) \
) : \
__roundup_pow_of_two(n) \
)
/**
* rounddown_pow_of_two - round the given value down to nearest power of two
* @n - parameter
*
* round the given value down to the nearest power of two
* - the result is undefined when n == 0
* - this can be used to initialise global variables from constant data
*/
#define rounddown_pow_of_two(n) \
( \
__builtin_constant_p(n) ? ( \
(n == 1) ? 0 : \
(1UL << ilog2(n))) : \
__rounddown_pow_of_two(n) \
)
/**
* order_base_2 - calculate the (rounded up) base 2 order of the argument
* @n: parameter
*
* The first few values calculated by this routine:
* ob2(0) = 0
* ob2(1) = 0
* ob2(2) = 1
* ob2(3) = 2
* ob2(4) = 2
* ob2(5) = 3
* ... and so on.
*/
#define order_base_2(n) ilog2(roundup_pow_of_two(n))
#endif /* _LINUX_LOG2_H */