mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-02 02:34:05 +08:00
324bcf54c4
For the case where read-ahead is disabled on the file, or if the cgroup is congested, ensure that we can at least do 1 page of read-ahead to make progress on the read in an async fashion. This could potentially be larger, but it's not needed in terms of functionality, so let's error on the side of caution as larger counts of pages may run into reclaim issues (particularly if we're congested). This makes sure we're not hitting the potentially sync ->readpage() path for IO that is marked IOCB_WAITQ, which could cause us to block. It also means we'll use the same path for IO, regardless of whether or not read-ahead happens to be disabled on the lower level device. Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reported-by: Hao_Xu <haoxu@linux.alibaba.com> [axboe: updated for new ractl API] Signed-off-by: Jens Axboe <axboe@kernel.dk>
641 lines
17 KiB
C
641 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* mm/readahead.c - address_space-level file readahead.
|
|
*
|
|
* Copyright (C) 2002, Linus Torvalds
|
|
*
|
|
* 09Apr2002 Andrew Morton
|
|
* Initial version.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/dax.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/export.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/file.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/blk-cgroup.h>
|
|
#include <linux/fadvise.h>
|
|
#include <linux/sched/mm.h>
|
|
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* Initialise a struct file's readahead state. Assumes that the caller has
|
|
* memset *ra to zero.
|
|
*/
|
|
void
|
|
file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
|
|
{
|
|
ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
|
|
ra->prev_pos = -1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(file_ra_state_init);
|
|
|
|
/*
|
|
* see if a page needs releasing upon read_cache_pages() failure
|
|
* - the caller of read_cache_pages() may have set PG_private or PG_fscache
|
|
* before calling, such as the NFS fs marking pages that are cached locally
|
|
* on disk, thus we need to give the fs a chance to clean up in the event of
|
|
* an error
|
|
*/
|
|
static void read_cache_pages_invalidate_page(struct address_space *mapping,
|
|
struct page *page)
|
|
{
|
|
if (page_has_private(page)) {
|
|
if (!trylock_page(page))
|
|
BUG();
|
|
page->mapping = mapping;
|
|
do_invalidatepage(page, 0, PAGE_SIZE);
|
|
page->mapping = NULL;
|
|
unlock_page(page);
|
|
}
|
|
put_page(page);
|
|
}
|
|
|
|
/*
|
|
* release a list of pages, invalidating them first if need be
|
|
*/
|
|
static void read_cache_pages_invalidate_pages(struct address_space *mapping,
|
|
struct list_head *pages)
|
|
{
|
|
struct page *victim;
|
|
|
|
while (!list_empty(pages)) {
|
|
victim = lru_to_page(pages);
|
|
list_del(&victim->lru);
|
|
read_cache_pages_invalidate_page(mapping, victim);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* read_cache_pages - populate an address space with some pages & start reads against them
|
|
* @mapping: the address_space
|
|
* @pages: The address of a list_head which contains the target pages. These
|
|
* pages have their ->index populated and are otherwise uninitialised.
|
|
* @filler: callback routine for filling a single page.
|
|
* @data: private data for the callback routine.
|
|
*
|
|
* Hides the details of the LRU cache etc from the filesystems.
|
|
*
|
|
* Returns: %0 on success, error return by @filler otherwise
|
|
*/
|
|
int read_cache_pages(struct address_space *mapping, struct list_head *pages,
|
|
int (*filler)(void *, struct page *), void *data)
|
|
{
|
|
struct page *page;
|
|
int ret = 0;
|
|
|
|
while (!list_empty(pages)) {
|
|
page = lru_to_page(pages);
|
|
list_del(&page->lru);
|
|
if (add_to_page_cache_lru(page, mapping, page->index,
|
|
readahead_gfp_mask(mapping))) {
|
|
read_cache_pages_invalidate_page(mapping, page);
|
|
continue;
|
|
}
|
|
put_page(page);
|
|
|
|
ret = filler(data, page);
|
|
if (unlikely(ret)) {
|
|
read_cache_pages_invalidate_pages(mapping, pages);
|
|
break;
|
|
}
|
|
task_io_account_read(PAGE_SIZE);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
EXPORT_SYMBOL(read_cache_pages);
|
|
|
|
static void read_pages(struct readahead_control *rac, struct list_head *pages,
|
|
bool skip_page)
|
|
{
|
|
const struct address_space_operations *aops = rac->mapping->a_ops;
|
|
struct page *page;
|
|
struct blk_plug plug;
|
|
|
|
if (!readahead_count(rac))
|
|
goto out;
|
|
|
|
blk_start_plug(&plug);
|
|
|
|
if (aops->readahead) {
|
|
aops->readahead(rac);
|
|
/* Clean up the remaining pages */
|
|
while ((page = readahead_page(rac))) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
}
|
|
} else if (aops->readpages) {
|
|
aops->readpages(rac->file, rac->mapping, pages,
|
|
readahead_count(rac));
|
|
/* Clean up the remaining pages */
|
|
put_pages_list(pages);
|
|
rac->_index += rac->_nr_pages;
|
|
rac->_nr_pages = 0;
|
|
} else {
|
|
while ((page = readahead_page(rac))) {
|
|
aops->readpage(rac->file, page);
|
|
put_page(page);
|
|
}
|
|
}
|
|
|
|
blk_finish_plug(&plug);
|
|
|
|
BUG_ON(!list_empty(pages));
|
|
BUG_ON(readahead_count(rac));
|
|
|
|
out:
|
|
if (skip_page)
|
|
rac->_index++;
|
|
}
|
|
|
|
/**
|
|
* page_cache_ra_unbounded - Start unchecked readahead.
|
|
* @ractl: Readahead control.
|
|
* @nr_to_read: The number of pages to read.
|
|
* @lookahead_size: Where to start the next readahead.
|
|
*
|
|
* This function is for filesystems to call when they want to start
|
|
* readahead beyond a file's stated i_size. This is almost certainly
|
|
* not the function you want to call. Use page_cache_async_readahead()
|
|
* or page_cache_sync_readahead() instead.
|
|
*
|
|
* Context: File is referenced by caller. Mutexes may be held by caller.
|
|
* May sleep, but will not reenter filesystem to reclaim memory.
|
|
*/
|
|
void page_cache_ra_unbounded(struct readahead_control *ractl,
|
|
unsigned long nr_to_read, unsigned long lookahead_size)
|
|
{
|
|
struct address_space *mapping = ractl->mapping;
|
|
unsigned long index = readahead_index(ractl);
|
|
LIST_HEAD(page_pool);
|
|
gfp_t gfp_mask = readahead_gfp_mask(mapping);
|
|
unsigned long i;
|
|
|
|
/*
|
|
* Partway through the readahead operation, we will have added
|
|
* locked pages to the page cache, but will not yet have submitted
|
|
* them for I/O. Adding another page may need to allocate memory,
|
|
* which can trigger memory reclaim. Telling the VM we're in
|
|
* the middle of a filesystem operation will cause it to not
|
|
* touch file-backed pages, preventing a deadlock. Most (all?)
|
|
* filesystems already specify __GFP_NOFS in their mapping's
|
|
* gfp_mask, but let's be explicit here.
|
|
*/
|
|
unsigned int nofs = memalloc_nofs_save();
|
|
|
|
/*
|
|
* Preallocate as many pages as we will need.
|
|
*/
|
|
for (i = 0; i < nr_to_read; i++) {
|
|
struct page *page = xa_load(&mapping->i_pages, index + i);
|
|
|
|
BUG_ON(index + i != ractl->_index + ractl->_nr_pages);
|
|
|
|
if (page && !xa_is_value(page)) {
|
|
/*
|
|
* Page already present? Kick off the current batch
|
|
* of contiguous pages before continuing with the
|
|
* next batch. This page may be the one we would
|
|
* have intended to mark as Readahead, but we don't
|
|
* have a stable reference to this page, and it's
|
|
* not worth getting one just for that.
|
|
*/
|
|
read_pages(ractl, &page_pool, true);
|
|
continue;
|
|
}
|
|
|
|
page = __page_cache_alloc(gfp_mask);
|
|
if (!page)
|
|
break;
|
|
if (mapping->a_ops->readpages) {
|
|
page->index = index + i;
|
|
list_add(&page->lru, &page_pool);
|
|
} else if (add_to_page_cache_lru(page, mapping, index + i,
|
|
gfp_mask) < 0) {
|
|
put_page(page);
|
|
read_pages(ractl, &page_pool, true);
|
|
continue;
|
|
}
|
|
if (i == nr_to_read - lookahead_size)
|
|
SetPageReadahead(page);
|
|
ractl->_nr_pages++;
|
|
}
|
|
|
|
/*
|
|
* Now start the IO. We ignore I/O errors - if the page is not
|
|
* uptodate then the caller will launch readpage again, and
|
|
* will then handle the error.
|
|
*/
|
|
read_pages(ractl, &page_pool, false);
|
|
memalloc_nofs_restore(nofs);
|
|
}
|
|
EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
|
|
|
|
/*
|
|
* do_page_cache_ra() actually reads a chunk of disk. It allocates
|
|
* the pages first, then submits them for I/O. This avoids the very bad
|
|
* behaviour which would occur if page allocations are causing VM writeback.
|
|
* We really don't want to intermingle reads and writes like that.
|
|
*/
|
|
void do_page_cache_ra(struct readahead_control *ractl,
|
|
unsigned long nr_to_read, unsigned long lookahead_size)
|
|
{
|
|
struct inode *inode = ractl->mapping->host;
|
|
unsigned long index = readahead_index(ractl);
|
|
loff_t isize = i_size_read(inode);
|
|
pgoff_t end_index; /* The last page we want to read */
|
|
|
|
if (isize == 0)
|
|
return;
|
|
|
|
end_index = (isize - 1) >> PAGE_SHIFT;
|
|
if (index > end_index)
|
|
return;
|
|
/* Don't read past the page containing the last byte of the file */
|
|
if (nr_to_read > end_index - index)
|
|
nr_to_read = end_index - index + 1;
|
|
|
|
page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
|
|
}
|
|
|
|
/*
|
|
* Chunk the readahead into 2 megabyte units, so that we don't pin too much
|
|
* memory at once.
|
|
*/
|
|
void force_page_cache_ra(struct readahead_control *ractl,
|
|
struct file_ra_state *ra, unsigned long nr_to_read)
|
|
{
|
|
struct address_space *mapping = ractl->mapping;
|
|
struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
|
|
unsigned long max_pages, index;
|
|
|
|
if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages &&
|
|
!mapping->a_ops->readahead))
|
|
return;
|
|
|
|
/*
|
|
* If the request exceeds the readahead window, allow the read to
|
|
* be up to the optimal hardware IO size
|
|
*/
|
|
index = readahead_index(ractl);
|
|
max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
|
|
nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
|
|
while (nr_to_read) {
|
|
unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
|
|
|
|
if (this_chunk > nr_to_read)
|
|
this_chunk = nr_to_read;
|
|
ractl->_index = index;
|
|
do_page_cache_ra(ractl, this_chunk, 0);
|
|
|
|
index += this_chunk;
|
|
nr_to_read -= this_chunk;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the initial window size, round to next power of 2 and square
|
|
* for small size, x 4 for medium, and x 2 for large
|
|
* for 128k (32 page) max ra
|
|
* 1-8 page = 32k initial, > 8 page = 128k initial
|
|
*/
|
|
static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
|
|
{
|
|
unsigned long newsize = roundup_pow_of_two(size);
|
|
|
|
if (newsize <= max / 32)
|
|
newsize = newsize * 4;
|
|
else if (newsize <= max / 4)
|
|
newsize = newsize * 2;
|
|
else
|
|
newsize = max;
|
|
|
|
return newsize;
|
|
}
|
|
|
|
/*
|
|
* Get the previous window size, ramp it up, and
|
|
* return it as the new window size.
|
|
*/
|
|
static unsigned long get_next_ra_size(struct file_ra_state *ra,
|
|
unsigned long max)
|
|
{
|
|
unsigned long cur = ra->size;
|
|
|
|
if (cur < max / 16)
|
|
return 4 * cur;
|
|
if (cur <= max / 2)
|
|
return 2 * cur;
|
|
return max;
|
|
}
|
|
|
|
/*
|
|
* On-demand readahead design.
|
|
*
|
|
* The fields in struct file_ra_state represent the most-recently-executed
|
|
* readahead attempt:
|
|
*
|
|
* |<----- async_size ---------|
|
|
* |------------------- size -------------------->|
|
|
* |==================#===========================|
|
|
* ^start ^page marked with PG_readahead
|
|
*
|
|
* To overlap application thinking time and disk I/O time, we do
|
|
* `readahead pipelining': Do not wait until the application consumed all
|
|
* readahead pages and stalled on the missing page at readahead_index;
|
|
* Instead, submit an asynchronous readahead I/O as soon as there are
|
|
* only async_size pages left in the readahead window. Normally async_size
|
|
* will be equal to size, for maximum pipelining.
|
|
*
|
|
* In interleaved sequential reads, concurrent streams on the same fd can
|
|
* be invalidating each other's readahead state. So we flag the new readahead
|
|
* page at (start+size-async_size) with PG_readahead, and use it as readahead
|
|
* indicator. The flag won't be set on already cached pages, to avoid the
|
|
* readahead-for-nothing fuss, saving pointless page cache lookups.
|
|
*
|
|
* prev_pos tracks the last visited byte in the _previous_ read request.
|
|
* It should be maintained by the caller, and will be used for detecting
|
|
* small random reads. Note that the readahead algorithm checks loosely
|
|
* for sequential patterns. Hence interleaved reads might be served as
|
|
* sequential ones.
|
|
*
|
|
* There is a special-case: if the first page which the application tries to
|
|
* read happens to be the first page of the file, it is assumed that a linear
|
|
* read is about to happen and the window is immediately set to the initial size
|
|
* based on I/O request size and the max_readahead.
|
|
*
|
|
* The code ramps up the readahead size aggressively at first, but slow down as
|
|
* it approaches max_readhead.
|
|
*/
|
|
|
|
/*
|
|
* Count contiguously cached pages from @index-1 to @index-@max,
|
|
* this count is a conservative estimation of
|
|
* - length of the sequential read sequence, or
|
|
* - thrashing threshold in memory tight systems
|
|
*/
|
|
static pgoff_t count_history_pages(struct address_space *mapping,
|
|
pgoff_t index, unsigned long max)
|
|
{
|
|
pgoff_t head;
|
|
|
|
rcu_read_lock();
|
|
head = page_cache_prev_miss(mapping, index - 1, max);
|
|
rcu_read_unlock();
|
|
|
|
return index - 1 - head;
|
|
}
|
|
|
|
/*
|
|
* page cache context based read-ahead
|
|
*/
|
|
static int try_context_readahead(struct address_space *mapping,
|
|
struct file_ra_state *ra,
|
|
pgoff_t index,
|
|
unsigned long req_size,
|
|
unsigned long max)
|
|
{
|
|
pgoff_t size;
|
|
|
|
size = count_history_pages(mapping, index, max);
|
|
|
|
/*
|
|
* not enough history pages:
|
|
* it could be a random read
|
|
*/
|
|
if (size <= req_size)
|
|
return 0;
|
|
|
|
/*
|
|
* starts from beginning of file:
|
|
* it is a strong indication of long-run stream (or whole-file-read)
|
|
*/
|
|
if (size >= index)
|
|
size *= 2;
|
|
|
|
ra->start = index;
|
|
ra->size = min(size + req_size, max);
|
|
ra->async_size = 1;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* A minimal readahead algorithm for trivial sequential/random reads.
|
|
*/
|
|
static void ondemand_readahead(struct readahead_control *ractl,
|
|
struct file_ra_state *ra, bool hit_readahead_marker,
|
|
unsigned long req_size)
|
|
{
|
|
struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
|
|
unsigned long max_pages = ra->ra_pages;
|
|
unsigned long add_pages;
|
|
unsigned long index = readahead_index(ractl);
|
|
pgoff_t prev_index;
|
|
|
|
/*
|
|
* If the request exceeds the readahead window, allow the read to
|
|
* be up to the optimal hardware IO size
|
|
*/
|
|
if (req_size > max_pages && bdi->io_pages > max_pages)
|
|
max_pages = min(req_size, bdi->io_pages);
|
|
|
|
/*
|
|
* start of file
|
|
*/
|
|
if (!index)
|
|
goto initial_readahead;
|
|
|
|
/*
|
|
* It's the expected callback index, assume sequential access.
|
|
* Ramp up sizes, and push forward the readahead window.
|
|
*/
|
|
if ((index == (ra->start + ra->size - ra->async_size) ||
|
|
index == (ra->start + ra->size))) {
|
|
ra->start += ra->size;
|
|
ra->size = get_next_ra_size(ra, max_pages);
|
|
ra->async_size = ra->size;
|
|
goto readit;
|
|
}
|
|
|
|
/*
|
|
* Hit a marked page without valid readahead state.
|
|
* E.g. interleaved reads.
|
|
* Query the pagecache for async_size, which normally equals to
|
|
* readahead size. Ramp it up and use it as the new readahead size.
|
|
*/
|
|
if (hit_readahead_marker) {
|
|
pgoff_t start;
|
|
|
|
rcu_read_lock();
|
|
start = page_cache_next_miss(ractl->mapping, index + 1,
|
|
max_pages);
|
|
rcu_read_unlock();
|
|
|
|
if (!start || start - index > max_pages)
|
|
return;
|
|
|
|
ra->start = start;
|
|
ra->size = start - index; /* old async_size */
|
|
ra->size += req_size;
|
|
ra->size = get_next_ra_size(ra, max_pages);
|
|
ra->async_size = ra->size;
|
|
goto readit;
|
|
}
|
|
|
|
/*
|
|
* oversize read
|
|
*/
|
|
if (req_size > max_pages)
|
|
goto initial_readahead;
|
|
|
|
/*
|
|
* sequential cache miss
|
|
* trivial case: (index - prev_index) == 1
|
|
* unaligned reads: (index - prev_index) == 0
|
|
*/
|
|
prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
|
|
if (index - prev_index <= 1UL)
|
|
goto initial_readahead;
|
|
|
|
/*
|
|
* Query the page cache and look for the traces(cached history pages)
|
|
* that a sequential stream would leave behind.
|
|
*/
|
|
if (try_context_readahead(ractl->mapping, ra, index, req_size,
|
|
max_pages))
|
|
goto readit;
|
|
|
|
/*
|
|
* standalone, small random read
|
|
* Read as is, and do not pollute the readahead state.
|
|
*/
|
|
do_page_cache_ra(ractl, req_size, 0);
|
|
return;
|
|
|
|
initial_readahead:
|
|
ra->start = index;
|
|
ra->size = get_init_ra_size(req_size, max_pages);
|
|
ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
|
|
|
|
readit:
|
|
/*
|
|
* Will this read hit the readahead marker made by itself?
|
|
* If so, trigger the readahead marker hit now, and merge
|
|
* the resulted next readahead window into the current one.
|
|
* Take care of maximum IO pages as above.
|
|
*/
|
|
if (index == ra->start && ra->size == ra->async_size) {
|
|
add_pages = get_next_ra_size(ra, max_pages);
|
|
if (ra->size + add_pages <= max_pages) {
|
|
ra->async_size = add_pages;
|
|
ra->size += add_pages;
|
|
} else {
|
|
ra->size = max_pages;
|
|
ra->async_size = max_pages >> 1;
|
|
}
|
|
}
|
|
|
|
ractl->_index = ra->start;
|
|
do_page_cache_ra(ractl, ra->size, ra->async_size);
|
|
}
|
|
|
|
void page_cache_sync_ra(struct readahead_control *ractl,
|
|
struct file_ra_state *ra, unsigned long req_count)
|
|
{
|
|
bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
|
|
|
|
/*
|
|
* Even if read-ahead is disabled, issue this request as read-ahead
|
|
* as we'll need it to satisfy the requested range. The forced
|
|
* read-ahead will do the right thing and limit the read to just the
|
|
* requested range, which we'll set to 1 page for this case.
|
|
*/
|
|
if (!ra->ra_pages || blk_cgroup_congested()) {
|
|
if (!ractl->file)
|
|
return;
|
|
req_count = 1;
|
|
do_forced_ra = true;
|
|
}
|
|
|
|
/* be dumb */
|
|
if (do_forced_ra) {
|
|
force_page_cache_ra(ractl, ra, req_count);
|
|
return;
|
|
}
|
|
|
|
/* do read-ahead */
|
|
ondemand_readahead(ractl, ra, false, req_count);
|
|
}
|
|
EXPORT_SYMBOL_GPL(page_cache_sync_ra);
|
|
|
|
void page_cache_async_ra(struct readahead_control *ractl,
|
|
struct file_ra_state *ra, struct page *page,
|
|
unsigned long req_count)
|
|
{
|
|
/* no read-ahead */
|
|
if (!ra->ra_pages)
|
|
return;
|
|
|
|
/*
|
|
* Same bit is used for PG_readahead and PG_reclaim.
|
|
*/
|
|
if (PageWriteback(page))
|
|
return;
|
|
|
|
ClearPageReadahead(page);
|
|
|
|
/*
|
|
* Defer asynchronous read-ahead on IO congestion.
|
|
*/
|
|
if (inode_read_congested(ractl->mapping->host))
|
|
return;
|
|
|
|
if (blk_cgroup_congested())
|
|
return;
|
|
|
|
/* do read-ahead */
|
|
ondemand_readahead(ractl, ra, true, req_count);
|
|
}
|
|
EXPORT_SYMBOL_GPL(page_cache_async_ra);
|
|
|
|
ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
|
|
{
|
|
ssize_t ret;
|
|
struct fd f;
|
|
|
|
ret = -EBADF;
|
|
f = fdget(fd);
|
|
if (!f.file || !(f.file->f_mode & FMODE_READ))
|
|
goto out;
|
|
|
|
/*
|
|
* The readahead() syscall is intended to run only on files
|
|
* that can execute readahead. If readahead is not possible
|
|
* on this file, then we must return -EINVAL.
|
|
*/
|
|
ret = -EINVAL;
|
|
if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
|
|
!S_ISREG(file_inode(f.file)->i_mode))
|
|
goto out;
|
|
|
|
ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
|
|
out:
|
|
fdput(f);
|
|
return ret;
|
|
}
|
|
|
|
SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
|
|
{
|
|
return ksys_readahead(fd, offset, count);
|
|
}
|