2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-22 20:43:56 +08:00
linux-next/drivers/cpufreq/mt8173-cpufreq.c
Linus Torvalds bfb764440d Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
Pull thermal management updates from Zhang Rui:

 - Introduce generic ADC thermal driver, based on OF thermal (Laxman
   Dewangan)

 - Introduce new thermal driver for Tango chips (Marc Gonzalez)

 - Rockchip driver support for RK3399, RK3366, and some fixes (Caesar
   Wang, Elaine Zhang and Shawn Lin)

 - Add CPU power cooling model to Mediatek thermal driver (Dawei Chien)

 - Wider usage of dev_thermal_zone_of_sensor_register (Eduardo Valentin)

 - TI thermal driver gained a new maintainer (Keerthy).

 - Enabled powerclamp driver by checking CPU feature and package cstate
   counter instead of CPU whitelist (Jacob Pan)

 - Various fixes on thermal governor, OF thermal, Tegra, and RCAR

* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux: (50 commits)
  thermal: tango: initialize TEMPSI_CFG
  thermal: rockchip: use the usleep_range instead of udelay
  thermal: rockchip: add the notes for better reading
  thermal: rockchip: Support RK3366 SoCs in the thermal driver
  thermal: rockchip: handle the power sequence for tsadc controller
  thermal: rockchip: update the tsadc table for rk3399
  thermal: rockchip: fixes the code_to_temp for tsadc driver
  thermal: rockchip: disable thermal->clk in err case
  thermal: tegra: add Tegra132 specific SOC_THERM driver
  thermal: fix ptr_ret.cocci warnings
  thermal: mediatek: Add cpu dynamic power cooling model.
  thermal: generic-adc: Add ADC based thermal sensor driver
  thermal: generic-adc: Add DT binding for ADC based thermal sensor
  thermal: tegra: fix static checker warning
  thermal: tegra: mark PM functions __maybe_unused
  thermal: add temperature sensor support for tango SoC
  thermal: hisilicon: fix IRQ imbalance enabling
  thermal: hisilicon: support to use any sensor
  thermal: rcar: Remove binding docs for r8a7794
  thermal: tegra: add PM support
  ...
2016-05-26 09:23:43 -07:00

607 lines
16 KiB
C

/*
* Copyright (c) 2015 Linaro Ltd.
* Author: Pi-Cheng Chen <pi-cheng.chen@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/cpu_cooling.h>
#include <linux/cpufreq.h>
#include <linux/cpumask.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/thermal.h>
#define MIN_VOLT_SHIFT (100000)
#define MAX_VOLT_SHIFT (200000)
#define MAX_VOLT_LIMIT (1150000)
#define VOLT_TOL (10000)
/*
* The struct mtk_cpu_dvfs_info holds necessary information for doing CPU DVFS
* on each CPU power/clock domain of Mediatek SoCs. Each CPU cluster in
* Mediatek SoCs has two voltage inputs, Vproc and Vsram. In some cases the two
* voltage inputs need to be controlled under a hardware limitation:
* 100mV < Vsram - Vproc < 200mV
*
* When scaling the clock frequency of a CPU clock domain, the clock source
* needs to be switched to another stable PLL clock temporarily until
* the original PLL becomes stable at target frequency.
*/
struct mtk_cpu_dvfs_info {
struct cpumask cpus;
struct device *cpu_dev;
struct regulator *proc_reg;
struct regulator *sram_reg;
struct clk *cpu_clk;
struct clk *inter_clk;
struct thermal_cooling_device *cdev;
struct list_head list_head;
int intermediate_voltage;
bool need_voltage_tracking;
};
static LIST_HEAD(dvfs_info_list);
static struct mtk_cpu_dvfs_info *mtk_cpu_dvfs_info_lookup(int cpu)
{
struct mtk_cpu_dvfs_info *info;
list_for_each_entry(info, &dvfs_info_list, list_head) {
if (cpumask_test_cpu(cpu, &info->cpus))
return info;
}
return NULL;
}
static int mtk_cpufreq_voltage_tracking(struct mtk_cpu_dvfs_info *info,
int new_vproc)
{
struct regulator *proc_reg = info->proc_reg;
struct regulator *sram_reg = info->sram_reg;
int old_vproc, old_vsram, new_vsram, vsram, vproc, ret;
old_vproc = regulator_get_voltage(proc_reg);
if (old_vproc < 0) {
pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc);
return old_vproc;
}
/* Vsram should not exceed the maximum allowed voltage of SoC. */
new_vsram = min(new_vproc + MIN_VOLT_SHIFT, MAX_VOLT_LIMIT);
if (old_vproc < new_vproc) {
/*
* When scaling up voltages, Vsram and Vproc scale up step
* by step. At each step, set Vsram to (Vproc + 200mV) first,
* then set Vproc to (Vsram - 100mV).
* Keep doing it until Vsram and Vproc hit target voltages.
*/
do {
old_vsram = regulator_get_voltage(sram_reg);
if (old_vsram < 0) {
pr_err("%s: invalid Vsram value: %d\n",
__func__, old_vsram);
return old_vsram;
}
old_vproc = regulator_get_voltage(proc_reg);
if (old_vproc < 0) {
pr_err("%s: invalid Vproc value: %d\n",
__func__, old_vproc);
return old_vproc;
}
vsram = min(new_vsram, old_vproc + MAX_VOLT_SHIFT);
if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
vsram = MAX_VOLT_LIMIT;
/*
* If the target Vsram hits the maximum voltage,
* try to set the exact voltage value first.
*/
ret = regulator_set_voltage(sram_reg, vsram,
vsram);
if (ret)
ret = regulator_set_voltage(sram_reg,
vsram - VOLT_TOL,
vsram);
vproc = new_vproc;
} else {
ret = regulator_set_voltage(sram_reg, vsram,
vsram + VOLT_TOL);
vproc = vsram - MIN_VOLT_SHIFT;
}
if (ret)
return ret;
ret = regulator_set_voltage(proc_reg, vproc,
vproc + VOLT_TOL);
if (ret) {
regulator_set_voltage(sram_reg, old_vsram,
old_vsram);
return ret;
}
} while (vproc < new_vproc || vsram < new_vsram);
} else if (old_vproc > new_vproc) {
/*
* When scaling down voltages, Vsram and Vproc scale down step
* by step. At each step, set Vproc to (Vsram - 200mV) first,
* then set Vproc to (Vproc + 100mV).
* Keep doing it until Vsram and Vproc hit target voltages.
*/
do {
old_vproc = regulator_get_voltage(proc_reg);
if (old_vproc < 0) {
pr_err("%s: invalid Vproc value: %d\n",
__func__, old_vproc);
return old_vproc;
}
old_vsram = regulator_get_voltage(sram_reg);
if (old_vsram < 0) {
pr_err("%s: invalid Vsram value: %d\n",
__func__, old_vsram);
return old_vsram;
}
vproc = max(new_vproc, old_vsram - MAX_VOLT_SHIFT);
ret = regulator_set_voltage(proc_reg, vproc,
vproc + VOLT_TOL);
if (ret)
return ret;
if (vproc == new_vproc)
vsram = new_vsram;
else
vsram = max(new_vsram, vproc + MIN_VOLT_SHIFT);
if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
vsram = MAX_VOLT_LIMIT;
/*
* If the target Vsram hits the maximum voltage,
* try to set the exact voltage value first.
*/
ret = regulator_set_voltage(sram_reg, vsram,
vsram);
if (ret)
ret = regulator_set_voltage(sram_reg,
vsram - VOLT_TOL,
vsram);
} else {
ret = regulator_set_voltage(sram_reg, vsram,
vsram + VOLT_TOL);
}
if (ret) {
regulator_set_voltage(proc_reg, old_vproc,
old_vproc);
return ret;
}
} while (vproc > new_vproc + VOLT_TOL ||
vsram > new_vsram + VOLT_TOL);
}
return 0;
}
static int mtk_cpufreq_set_voltage(struct mtk_cpu_dvfs_info *info, int vproc)
{
if (info->need_voltage_tracking)
return mtk_cpufreq_voltage_tracking(info, vproc);
else
return regulator_set_voltage(info->proc_reg, vproc,
vproc + VOLT_TOL);
}
static int mtk_cpufreq_set_target(struct cpufreq_policy *policy,
unsigned int index)
{
struct cpufreq_frequency_table *freq_table = policy->freq_table;
struct clk *cpu_clk = policy->clk;
struct clk *armpll = clk_get_parent(cpu_clk);
struct mtk_cpu_dvfs_info *info = policy->driver_data;
struct device *cpu_dev = info->cpu_dev;
struct dev_pm_opp *opp;
long freq_hz, old_freq_hz;
int vproc, old_vproc, inter_vproc, target_vproc, ret;
inter_vproc = info->intermediate_voltage;
old_freq_hz = clk_get_rate(cpu_clk);
old_vproc = regulator_get_voltage(info->proc_reg);
if (old_vproc < 0) {
pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc);
return old_vproc;
}
freq_hz = freq_table[index].frequency * 1000;
rcu_read_lock();
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
if (IS_ERR(opp)) {
rcu_read_unlock();
pr_err("cpu%d: failed to find OPP for %ld\n",
policy->cpu, freq_hz);
return PTR_ERR(opp);
}
vproc = dev_pm_opp_get_voltage(opp);
rcu_read_unlock();
/*
* If the new voltage or the intermediate voltage is higher than the
* current voltage, scale up voltage first.
*/
target_vproc = (inter_vproc > vproc) ? inter_vproc : vproc;
if (old_vproc < target_vproc) {
ret = mtk_cpufreq_set_voltage(info, target_vproc);
if (ret) {
pr_err("cpu%d: failed to scale up voltage!\n",
policy->cpu);
mtk_cpufreq_set_voltage(info, old_vproc);
return ret;
}
}
/* Reparent the CPU clock to intermediate clock. */
ret = clk_set_parent(cpu_clk, info->inter_clk);
if (ret) {
pr_err("cpu%d: failed to re-parent cpu clock!\n",
policy->cpu);
mtk_cpufreq_set_voltage(info, old_vproc);
WARN_ON(1);
return ret;
}
/* Set the original PLL to target rate. */
ret = clk_set_rate(armpll, freq_hz);
if (ret) {
pr_err("cpu%d: failed to scale cpu clock rate!\n",
policy->cpu);
clk_set_parent(cpu_clk, armpll);
mtk_cpufreq_set_voltage(info, old_vproc);
return ret;
}
/* Set parent of CPU clock back to the original PLL. */
ret = clk_set_parent(cpu_clk, armpll);
if (ret) {
pr_err("cpu%d: failed to re-parent cpu clock!\n",
policy->cpu);
mtk_cpufreq_set_voltage(info, inter_vproc);
WARN_ON(1);
return ret;
}
/*
* If the new voltage is lower than the intermediate voltage or the
* original voltage, scale down to the new voltage.
*/
if (vproc < inter_vproc || vproc < old_vproc) {
ret = mtk_cpufreq_set_voltage(info, vproc);
if (ret) {
pr_err("cpu%d: failed to scale down voltage!\n",
policy->cpu);
clk_set_parent(cpu_clk, info->inter_clk);
clk_set_rate(armpll, old_freq_hz);
clk_set_parent(cpu_clk, armpll);
return ret;
}
}
return 0;
}
#define DYNAMIC_POWER "dynamic-power-coefficient"
static void mtk_cpufreq_ready(struct cpufreq_policy *policy)
{
struct mtk_cpu_dvfs_info *info = policy->driver_data;
struct device_node *np = of_node_get(info->cpu_dev->of_node);
u32 capacitance = 0;
if (WARN_ON(!np))
return;
if (of_find_property(np, "#cooling-cells", NULL)) {
of_property_read_u32(np, DYNAMIC_POWER, &capacitance);
info->cdev = of_cpufreq_power_cooling_register(np,
policy->related_cpus,
capacitance,
NULL);
if (IS_ERR(info->cdev)) {
dev_err(info->cpu_dev,
"running cpufreq without cooling device: %ld\n",
PTR_ERR(info->cdev));
info->cdev = NULL;
}
}
of_node_put(np);
}
static int mtk_cpu_dvfs_info_init(struct mtk_cpu_dvfs_info *info, int cpu)
{
struct device *cpu_dev;
struct regulator *proc_reg = ERR_PTR(-ENODEV);
struct regulator *sram_reg = ERR_PTR(-ENODEV);
struct clk *cpu_clk = ERR_PTR(-ENODEV);
struct clk *inter_clk = ERR_PTR(-ENODEV);
struct dev_pm_opp *opp;
unsigned long rate;
int ret;
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev) {
pr_err("failed to get cpu%d device\n", cpu);
return -ENODEV;
}
cpu_clk = clk_get(cpu_dev, "cpu");
if (IS_ERR(cpu_clk)) {
if (PTR_ERR(cpu_clk) == -EPROBE_DEFER)
pr_warn("cpu clk for cpu%d not ready, retry.\n", cpu);
else
pr_err("failed to get cpu clk for cpu%d\n", cpu);
ret = PTR_ERR(cpu_clk);
return ret;
}
inter_clk = clk_get(cpu_dev, "intermediate");
if (IS_ERR(inter_clk)) {
if (PTR_ERR(inter_clk) == -EPROBE_DEFER)
pr_warn("intermediate clk for cpu%d not ready, retry.\n",
cpu);
else
pr_err("failed to get intermediate clk for cpu%d\n",
cpu);
ret = PTR_ERR(inter_clk);
goto out_free_resources;
}
proc_reg = regulator_get_exclusive(cpu_dev, "proc");
if (IS_ERR(proc_reg)) {
if (PTR_ERR(proc_reg) == -EPROBE_DEFER)
pr_warn("proc regulator for cpu%d not ready, retry.\n",
cpu);
else
pr_err("failed to get proc regulator for cpu%d\n",
cpu);
ret = PTR_ERR(proc_reg);
goto out_free_resources;
}
/* Both presence and absence of sram regulator are valid cases. */
sram_reg = regulator_get_exclusive(cpu_dev, "sram");
/* Get OPP-sharing information from "operating-points-v2" bindings */
ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, &info->cpus);
if (ret) {
pr_err("failed to get OPP-sharing information for cpu%d\n",
cpu);
goto out_free_resources;
}
ret = dev_pm_opp_of_cpumask_add_table(&info->cpus);
if (ret) {
pr_warn("no OPP table for cpu%d\n", cpu);
goto out_free_resources;
}
/* Search a safe voltage for intermediate frequency. */
rate = clk_get_rate(inter_clk);
rcu_read_lock();
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
if (IS_ERR(opp)) {
rcu_read_unlock();
pr_err("failed to get intermediate opp for cpu%d\n", cpu);
ret = PTR_ERR(opp);
goto out_free_opp_table;
}
info->intermediate_voltage = dev_pm_opp_get_voltage(opp);
rcu_read_unlock();
info->cpu_dev = cpu_dev;
info->proc_reg = proc_reg;
info->sram_reg = IS_ERR(sram_reg) ? NULL : sram_reg;
info->cpu_clk = cpu_clk;
info->inter_clk = inter_clk;
/*
* If SRAM regulator is present, software "voltage tracking" is needed
* for this CPU power domain.
*/
info->need_voltage_tracking = !IS_ERR(sram_reg);
return 0;
out_free_opp_table:
dev_pm_opp_of_cpumask_remove_table(&info->cpus);
out_free_resources:
if (!IS_ERR(proc_reg))
regulator_put(proc_reg);
if (!IS_ERR(sram_reg))
regulator_put(sram_reg);
if (!IS_ERR(cpu_clk))
clk_put(cpu_clk);
if (!IS_ERR(inter_clk))
clk_put(inter_clk);
return ret;
}
static void mtk_cpu_dvfs_info_release(struct mtk_cpu_dvfs_info *info)
{
if (!IS_ERR(info->proc_reg))
regulator_put(info->proc_reg);
if (!IS_ERR(info->sram_reg))
regulator_put(info->sram_reg);
if (!IS_ERR(info->cpu_clk))
clk_put(info->cpu_clk);
if (!IS_ERR(info->inter_clk))
clk_put(info->inter_clk);
dev_pm_opp_of_cpumask_remove_table(&info->cpus);
}
static int mtk_cpufreq_init(struct cpufreq_policy *policy)
{
struct mtk_cpu_dvfs_info *info;
struct cpufreq_frequency_table *freq_table;
int ret;
info = mtk_cpu_dvfs_info_lookup(policy->cpu);
if (!info) {
pr_err("dvfs info for cpu%d is not initialized.\n",
policy->cpu);
return -EINVAL;
}
ret = dev_pm_opp_init_cpufreq_table(info->cpu_dev, &freq_table);
if (ret) {
pr_err("failed to init cpufreq table for cpu%d: %d\n",
policy->cpu, ret);
return ret;
}
ret = cpufreq_table_validate_and_show(policy, freq_table);
if (ret) {
pr_err("%s: invalid frequency table: %d\n", __func__, ret);
goto out_free_cpufreq_table;
}
cpumask_copy(policy->cpus, &info->cpus);
policy->driver_data = info;
policy->clk = info->cpu_clk;
return 0;
out_free_cpufreq_table:
dev_pm_opp_free_cpufreq_table(info->cpu_dev, &freq_table);
return ret;
}
static int mtk_cpufreq_exit(struct cpufreq_policy *policy)
{
struct mtk_cpu_dvfs_info *info = policy->driver_data;
cpufreq_cooling_unregister(info->cdev);
dev_pm_opp_free_cpufreq_table(info->cpu_dev, &policy->freq_table);
return 0;
}
static struct cpufreq_driver mt8173_cpufreq_driver = {
.flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK |
CPUFREQ_HAVE_GOVERNOR_PER_POLICY,
.verify = cpufreq_generic_frequency_table_verify,
.target_index = mtk_cpufreq_set_target,
.get = cpufreq_generic_get,
.init = mtk_cpufreq_init,
.exit = mtk_cpufreq_exit,
.ready = mtk_cpufreq_ready,
.name = "mtk-cpufreq",
.attr = cpufreq_generic_attr,
};
static int mt8173_cpufreq_probe(struct platform_device *pdev)
{
struct mtk_cpu_dvfs_info *info, *tmp;
int cpu, ret;
for_each_possible_cpu(cpu) {
info = mtk_cpu_dvfs_info_lookup(cpu);
if (info)
continue;
info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
if (!info) {
ret = -ENOMEM;
goto release_dvfs_info_list;
}
ret = mtk_cpu_dvfs_info_init(info, cpu);
if (ret) {
dev_err(&pdev->dev,
"failed to initialize dvfs info for cpu%d\n",
cpu);
goto release_dvfs_info_list;
}
list_add(&info->list_head, &dvfs_info_list);
}
ret = cpufreq_register_driver(&mt8173_cpufreq_driver);
if (ret) {
dev_err(&pdev->dev, "failed to register mtk cpufreq driver\n");
goto release_dvfs_info_list;
}
return 0;
release_dvfs_info_list:
list_for_each_entry_safe(info, tmp, &dvfs_info_list, list_head) {
mtk_cpu_dvfs_info_release(info);
list_del(&info->list_head);
}
return ret;
}
static struct platform_driver mt8173_cpufreq_platdrv = {
.driver = {
.name = "mt8173-cpufreq",
},
.probe = mt8173_cpufreq_probe,
};
static int mt8173_cpufreq_driver_init(void)
{
struct platform_device *pdev;
int err;
if (!of_machine_is_compatible("mediatek,mt8173"))
return -ENODEV;
err = platform_driver_register(&mt8173_cpufreq_platdrv);
if (err)
return err;
/*
* Since there's no place to hold device registration code and no
* device tree based way to match cpufreq driver yet, both the driver
* and the device registration codes are put here to handle defer
* probing.
*/
pdev = platform_device_register_simple("mt8173-cpufreq", -1, NULL, 0);
if (IS_ERR(pdev)) {
pr_err("failed to register mtk-cpufreq platform device\n");
return PTR_ERR(pdev);
}
return 0;
}
device_initcall(mt8173_cpufreq_driver_init);