2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-19 18:53:52 +08:00
linux-next/fs/f2fs/inode.c
Chao Yu 13ec7297e5 f2fs: fix to release inode correctly
In following call stack, if unfortunately we lose all chances to truncate
inode page in remove_inode_page, eventually we will add the nid allocated
previously into free nid cache, this nid is with NID_NEW status and with
NEW_ADDR in its blkaddr pointer:

 - f2fs_create
  - f2fs_add_link
   - __f2fs_add_link
    - init_inode_metadata
     - new_inode_page
      - new_node_page
       - set_node_addr(, NEW_ADDR)
     - f2fs_init_acl   failed
     - remove_inode_page  failed
  - handle_failed_inode
   - remove_inode_page  failed
   - iput
    - f2fs_evict_inode
     - remove_inode_page  failed
     - alloc_nid_failed   cache a nid with valid blkaddr: NEW_ADDR

This may not only cause resource leak of previous inode, but also may cause
incorrect use of the previous blkaddr which is located in NO.nid node entry
when this nid is reused by others.

This patch tries to add this inode to orphan list if we fail to truncate
inode, so that we can obtain a second chance to release it in orphan
recovery flow.

Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2015-08-24 16:35:59 -07:00

436 lines
12 KiB
C

/*
* fs/f2fs/inode.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include "f2fs.h"
#include "node.h"
#include <trace/events/f2fs.h>
void f2fs_set_inode_flags(struct inode *inode)
{
unsigned int flags = F2FS_I(inode)->i_flags;
unsigned int new_fl = 0;
if (flags & FS_SYNC_FL)
new_fl |= S_SYNC;
if (flags & FS_APPEND_FL)
new_fl |= S_APPEND;
if (flags & FS_IMMUTABLE_FL)
new_fl |= S_IMMUTABLE;
if (flags & FS_NOATIME_FL)
new_fl |= S_NOATIME;
if (flags & FS_DIRSYNC_FL)
new_fl |= S_DIRSYNC;
inode_set_flags(inode, new_fl,
S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
}
static void __get_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
{
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
if (ri->i_addr[0])
inode->i_rdev =
old_decode_dev(le32_to_cpu(ri->i_addr[0]));
else
inode->i_rdev =
new_decode_dev(le32_to_cpu(ri->i_addr[1]));
}
}
static bool __written_first_block(struct f2fs_inode *ri)
{
block_t addr = le32_to_cpu(ri->i_addr[0]);
if (addr != NEW_ADDR && addr != NULL_ADDR)
return true;
return false;
}
static void __set_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
{
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
if (old_valid_dev(inode->i_rdev)) {
ri->i_addr[0] =
cpu_to_le32(old_encode_dev(inode->i_rdev));
ri->i_addr[1] = 0;
} else {
ri->i_addr[0] = 0;
ri->i_addr[1] =
cpu_to_le32(new_encode_dev(inode->i_rdev));
ri->i_addr[2] = 0;
}
}
}
static void __recover_inline_status(struct inode *inode, struct page *ipage)
{
void *inline_data = inline_data_addr(ipage);
__le32 *start = inline_data;
__le32 *end = start + MAX_INLINE_DATA / sizeof(__le32);
while (start < end) {
if (*start++) {
f2fs_wait_on_page_writeback(ipage, NODE);
set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
set_raw_inline(F2FS_I(inode), F2FS_INODE(ipage));
set_page_dirty(ipage);
return;
}
}
return;
}
static int do_read_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_inode_info *fi = F2FS_I(inode);
struct page *node_page;
struct f2fs_inode *ri;
/* Check if ino is within scope */
if (check_nid_range(sbi, inode->i_ino)) {
f2fs_msg(inode->i_sb, KERN_ERR, "bad inode number: %lu",
(unsigned long) inode->i_ino);
WARN_ON(1);
return -EINVAL;
}
node_page = get_node_page(sbi, inode->i_ino);
if (IS_ERR(node_page))
return PTR_ERR(node_page);
ri = F2FS_INODE(node_page);
inode->i_mode = le16_to_cpu(ri->i_mode);
i_uid_write(inode, le32_to_cpu(ri->i_uid));
i_gid_write(inode, le32_to_cpu(ri->i_gid));
set_nlink(inode, le32_to_cpu(ri->i_links));
inode->i_size = le64_to_cpu(ri->i_size);
inode->i_blocks = le64_to_cpu(ri->i_blocks);
inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime);
inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime);
inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime);
inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
inode->i_generation = le32_to_cpu(ri->i_generation);
fi->i_current_depth = le32_to_cpu(ri->i_current_depth);
fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid);
fi->i_flags = le32_to_cpu(ri->i_flags);
fi->flags = 0;
fi->i_advise = ri->i_advise;
fi->i_pino = le32_to_cpu(ri->i_pino);
fi->i_dir_level = ri->i_dir_level;
f2fs_init_extent_tree(inode, &ri->i_ext);
get_inline_info(fi, ri);
/* check data exist */
if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode))
__recover_inline_status(inode, node_page);
/* get rdev by using inline_info */
__get_inode_rdev(inode, ri);
if (__written_first_block(ri))
set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
f2fs_put_page(node_page, 1);
stat_inc_inline_xattr(inode);
stat_inc_inline_inode(inode);
stat_inc_inline_dir(inode);
return 0;
}
struct inode *f2fs_iget(struct super_block *sb, unsigned long ino)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
struct inode *inode;
int ret = 0;
inode = iget_locked(sb, ino);
if (!inode)
return ERR_PTR(-ENOMEM);
if (!(inode->i_state & I_NEW)) {
trace_f2fs_iget(inode);
return inode;
}
if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi))
goto make_now;
ret = do_read_inode(inode);
if (ret)
goto bad_inode;
make_now:
if (ino == F2FS_NODE_INO(sbi)) {
inode->i_mapping->a_ops = &f2fs_node_aops;
mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
} else if (ino == F2FS_META_INO(sbi)) {
inode->i_mapping->a_ops = &f2fs_meta_aops;
mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
} else if (S_ISREG(inode->i_mode)) {
inode->i_op = &f2fs_file_inode_operations;
inode->i_fop = &f2fs_file_operations;
inode->i_mapping->a_ops = &f2fs_dblock_aops;
} else if (S_ISDIR(inode->i_mode)) {
inode->i_op = &f2fs_dir_inode_operations;
inode->i_fop = &f2fs_dir_operations;
inode->i_mapping->a_ops = &f2fs_dblock_aops;
mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO);
} else if (S_ISLNK(inode->i_mode)) {
if (f2fs_encrypted_inode(inode))
inode->i_op = &f2fs_encrypted_symlink_inode_operations;
else
inode->i_op = &f2fs_symlink_inode_operations;
inode->i_mapping->a_ops = &f2fs_dblock_aops;
} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
inode->i_op = &f2fs_special_inode_operations;
init_special_inode(inode, inode->i_mode, inode->i_rdev);
} else {
ret = -EIO;
goto bad_inode;
}
unlock_new_inode(inode);
trace_f2fs_iget(inode);
return inode;
bad_inode:
iget_failed(inode);
trace_f2fs_iget_exit(inode, ret);
return ERR_PTR(ret);
}
void update_inode(struct inode *inode, struct page *node_page)
{
struct f2fs_inode *ri;
f2fs_wait_on_page_writeback(node_page, NODE);
ri = F2FS_INODE(node_page);
ri->i_mode = cpu_to_le16(inode->i_mode);
ri->i_advise = F2FS_I(inode)->i_advise;
ri->i_uid = cpu_to_le32(i_uid_read(inode));
ri->i_gid = cpu_to_le32(i_gid_read(inode));
ri->i_links = cpu_to_le32(inode->i_nlink);
ri->i_size = cpu_to_le64(i_size_read(inode));
ri->i_blocks = cpu_to_le64(inode->i_blocks);
if (F2FS_I(inode)->extent_tree)
set_raw_extent(&F2FS_I(inode)->extent_tree->largest,
&ri->i_ext);
else
memset(&ri->i_ext, 0, sizeof(ri->i_ext));
set_raw_inline(F2FS_I(inode), ri);
ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth);
ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid);
ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags);
ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino);
ri->i_generation = cpu_to_le32(inode->i_generation);
ri->i_dir_level = F2FS_I(inode)->i_dir_level;
__set_inode_rdev(inode, ri);
set_cold_node(inode, node_page);
set_page_dirty(node_page);
clear_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
}
void update_inode_page(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct page *node_page;
retry:
node_page = get_node_page(sbi, inode->i_ino);
if (IS_ERR(node_page)) {
int err = PTR_ERR(node_page);
if (err == -ENOMEM) {
cond_resched();
goto retry;
} else if (err != -ENOENT) {
f2fs_stop_checkpoint(sbi);
}
return;
}
update_inode(inode, node_page);
f2fs_put_page(node_page, 1);
}
int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
if (inode->i_ino == F2FS_NODE_INO(sbi) ||
inode->i_ino == F2FS_META_INO(sbi))
return 0;
if (!is_inode_flag_set(F2FS_I(inode), FI_DIRTY_INODE))
return 0;
/*
* We need to lock here to prevent from producing dirty node pages
* during the urgent cleaning time when runing out of free sections.
*/
f2fs_lock_op(sbi);
update_inode_page(inode);
f2fs_unlock_op(sbi);
if (wbc)
f2fs_balance_fs(sbi);
return 0;
}
/*
* Called at the last iput() if i_nlink is zero
*/
void f2fs_evict_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_inode_info *fi = F2FS_I(inode);
nid_t xnid = fi->i_xattr_nid;
int err = 0;
/* some remained atomic pages should discarded */
if (f2fs_is_atomic_file(inode))
commit_inmem_pages(inode, true);
trace_f2fs_evict_inode(inode);
truncate_inode_pages_final(&inode->i_data);
if (inode->i_ino == F2FS_NODE_INO(sbi) ||
inode->i_ino == F2FS_META_INO(sbi))
goto out_clear;
f2fs_bug_on(sbi, get_dirty_pages(inode));
remove_dirty_dir_inode(inode);
f2fs_destroy_extent_tree(inode);
if (inode->i_nlink || is_bad_inode(inode))
goto no_delete;
sb_start_intwrite(inode->i_sb);
set_inode_flag(fi, FI_NO_ALLOC);
i_size_write(inode, 0);
if (F2FS_HAS_BLOCKS(inode))
err = f2fs_truncate(inode, true);
if (!err) {
f2fs_lock_op(sbi);
err = remove_inode_page(inode);
f2fs_unlock_op(sbi);
}
sb_end_intwrite(inode->i_sb);
no_delete:
stat_dec_inline_xattr(inode);
stat_dec_inline_dir(inode);
stat_dec_inline_inode(inode);
invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino, inode->i_ino);
if (xnid)
invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid);
if (is_inode_flag_set(fi, FI_APPEND_WRITE))
add_dirty_inode(sbi, inode->i_ino, APPEND_INO);
if (is_inode_flag_set(fi, FI_UPDATE_WRITE))
add_dirty_inode(sbi, inode->i_ino, UPDATE_INO);
if (is_inode_flag_set(fi, FI_FREE_NID)) {
if (err && err != -ENOENT)
alloc_nid_done(sbi, inode->i_ino);
else
alloc_nid_failed(sbi, inode->i_ino);
clear_inode_flag(fi, FI_FREE_NID);
}
if (err && err != -ENOENT) {
if (!exist_written_data(sbi, inode->i_ino, ORPHAN_INO)) {
/*
* get here because we failed to release resource
* of inode previously, reminder our user to run fsck
* for fixing.
*/
set_sbi_flag(sbi, SBI_NEED_FSCK);
f2fs_msg(sbi->sb, KERN_WARNING,
"inode (ino:%lu) resource leak, run fsck "
"to fix this issue!", inode->i_ino);
}
}
out_clear:
#ifdef CONFIG_F2FS_FS_ENCRYPTION
if (fi->i_crypt_info)
f2fs_free_encryption_info(inode, fi->i_crypt_info);
#endif
clear_inode(inode);
}
/* caller should call f2fs_lock_op() */
void handle_failed_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
int err = 0;
clear_nlink(inode);
make_bad_inode(inode);
unlock_new_inode(inode);
i_size_write(inode, 0);
if (F2FS_HAS_BLOCKS(inode))
err = f2fs_truncate(inode, false);
if (!err)
err = remove_inode_page(inode);
/*
* if we skip truncate_node in remove_inode_page bacause we failed
* before, it's better to find another way to release resource of
* this inode (e.g. valid block count, node block or nid). Here we
* choose to add this inode to orphan list, so that we can call iput
* for releasing in orphan recovery flow.
*
* Note: we should add inode to orphan list before f2fs_unlock_op()
* so we can prevent losing this orphan when encoutering checkpoint
* and following suddenly power-off.
*/
if (err && err != -ENOENT) {
err = acquire_orphan_inode(sbi);
if (!err)
add_orphan_inode(sbi, inode->i_ino);
}
set_inode_flag(F2FS_I(inode), FI_FREE_NID);
f2fs_unlock_op(sbi);
/* iput will drop the inode object */
iput(inode);
}