2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-09 14:14:00 +08:00
linux-next/arch/arm/kernel/setup.c
Linus Torvalds cfaa9f029f Merge branch 'spectre' of git://git.armlinux.org.uk/~rmk/linux-arm
Pull ARM spectre updates from Russell King:
 "These are the currently known final bits that resolve the Spectre
  issues. big.Little systems used to be sufficiently identical in that
  there were no differences between individual CPUs in the system that
  mattered to the kernel. With the advent of the Spectre problem, the
  CPUs now have differences in how the workaround is applied.

  As a result of previous Spectre patches, these systems ended up
  reporting quite a lot of:

     "CPUx: Spectre v2: incorrect context switching function, system vulnerable"

  messages due to the action of the big.Little switcher causing the CPUs
  to be re-initialised regularly. This series resolves that issue by
  making the CPU vtable unique to each CPU.

  However, since this is used very early, before per-cpu is setup,
  per-cpu can't be used. We also have a problem that two of the methods
  are not called from preempt-safe paths, but thankfully these remain
  identical between all CPUs in the system. To make sure, we validate
  that these are identical during boot"

* 'spectre' of git://git.armlinux.org.uk/~rmk/linux-arm:
  ARM: spectre-v2: per-CPU vtables to work around big.Little systems
  ARM: add PROC_VTABLE and PROC_TABLE macros
  ARM: clean up per-processor check_bugs method call
  ARM: split out processor lookup
  ARM: make lookup_processor_type() non-__init
2018-11-18 10:45:09 -08:00

1323 lines
32 KiB
C

/*
* linux/arch/arm/kernel/setup.c
*
* Copyright (C) 1995-2001 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/efi.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/stddef.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/utsname.h>
#include <linux/initrd.h>
#include <linux/console.h>
#include <linux/seq_file.h>
#include <linux/screen_info.h>
#include <linux/of_platform.h>
#include <linux/init.h>
#include <linux/kexec.h>
#include <linux/of_fdt.h>
#include <linux/cpu.h>
#include <linux/interrupt.h>
#include <linux/smp.h>
#include <linux/proc_fs.h>
#include <linux/memblock.h>
#include <linux/bug.h>
#include <linux/compiler.h>
#include <linux/sort.h>
#include <linux/psci.h>
#include <asm/unified.h>
#include <asm/cp15.h>
#include <asm/cpu.h>
#include <asm/cputype.h>
#include <asm/efi.h>
#include <asm/elf.h>
#include <asm/early_ioremap.h>
#include <asm/fixmap.h>
#include <asm/procinfo.h>
#include <asm/psci.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/smp_plat.h>
#include <asm/mach-types.h>
#include <asm/cacheflush.h>
#include <asm/cachetype.h>
#include <asm/tlbflush.h>
#include <asm/xen/hypervisor.h>
#include <asm/prom.h>
#include <asm/mach/arch.h>
#include <asm/mach/irq.h>
#include <asm/mach/time.h>
#include <asm/system_info.h>
#include <asm/system_misc.h>
#include <asm/traps.h>
#include <asm/unwind.h>
#include <asm/memblock.h>
#include <asm/virt.h>
#include "atags.h"
#if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
char fpe_type[8];
static int __init fpe_setup(char *line)
{
memcpy(fpe_type, line, 8);
return 1;
}
__setup("fpe=", fpe_setup);
#endif
extern void init_default_cache_policy(unsigned long);
extern void paging_init(const struct machine_desc *desc);
extern void early_mm_init(const struct machine_desc *);
extern void adjust_lowmem_bounds(void);
extern enum reboot_mode reboot_mode;
extern void setup_dma_zone(const struct machine_desc *desc);
unsigned int processor_id;
EXPORT_SYMBOL(processor_id);
unsigned int __machine_arch_type __read_mostly;
EXPORT_SYMBOL(__machine_arch_type);
unsigned int cacheid __read_mostly;
EXPORT_SYMBOL(cacheid);
unsigned int __atags_pointer __initdata;
unsigned int system_rev;
EXPORT_SYMBOL(system_rev);
const char *system_serial;
EXPORT_SYMBOL(system_serial);
unsigned int system_serial_low;
EXPORT_SYMBOL(system_serial_low);
unsigned int system_serial_high;
EXPORT_SYMBOL(system_serial_high);
unsigned int elf_hwcap __read_mostly;
EXPORT_SYMBOL(elf_hwcap);
unsigned int elf_hwcap2 __read_mostly;
EXPORT_SYMBOL(elf_hwcap2);
#ifdef MULTI_CPU
struct processor processor __ro_after_init;
#if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
struct processor *cpu_vtable[NR_CPUS] = {
[0] = &processor,
};
#endif
#endif
#ifdef MULTI_TLB
struct cpu_tlb_fns cpu_tlb __ro_after_init;
#endif
#ifdef MULTI_USER
struct cpu_user_fns cpu_user __ro_after_init;
#endif
#ifdef MULTI_CACHE
struct cpu_cache_fns cpu_cache __ro_after_init;
#endif
#ifdef CONFIG_OUTER_CACHE
struct outer_cache_fns outer_cache __ro_after_init;
EXPORT_SYMBOL(outer_cache);
#endif
/*
* Cached cpu_architecture() result for use by assembler code.
* C code should use the cpu_architecture() function instead of accessing this
* variable directly.
*/
int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
struct stack {
u32 irq[3];
u32 abt[3];
u32 und[3];
u32 fiq[3];
} ____cacheline_aligned;
#ifndef CONFIG_CPU_V7M
static struct stack stacks[NR_CPUS];
#endif
char elf_platform[ELF_PLATFORM_SIZE];
EXPORT_SYMBOL(elf_platform);
static const char *cpu_name;
static const char *machine_name;
static char __initdata cmd_line[COMMAND_LINE_SIZE];
const struct machine_desc *machine_desc __initdata;
static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
#define ENDIANNESS ((char)endian_test.l)
DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
/*
* Standard memory resources
*/
static struct resource mem_res[] = {
{
.name = "Video RAM",
.start = 0,
.end = 0,
.flags = IORESOURCE_MEM
},
{
.name = "Kernel code",
.start = 0,
.end = 0,
.flags = IORESOURCE_SYSTEM_RAM
},
{
.name = "Kernel data",
.start = 0,
.end = 0,
.flags = IORESOURCE_SYSTEM_RAM
}
};
#define video_ram mem_res[0]
#define kernel_code mem_res[1]
#define kernel_data mem_res[2]
static struct resource io_res[] = {
{
.name = "reserved",
.start = 0x3bc,
.end = 0x3be,
.flags = IORESOURCE_IO | IORESOURCE_BUSY
},
{
.name = "reserved",
.start = 0x378,
.end = 0x37f,
.flags = IORESOURCE_IO | IORESOURCE_BUSY
},
{
.name = "reserved",
.start = 0x278,
.end = 0x27f,
.flags = IORESOURCE_IO | IORESOURCE_BUSY
}
};
#define lp0 io_res[0]
#define lp1 io_res[1]
#define lp2 io_res[2]
static const char *proc_arch[] = {
"undefined/unknown",
"3",
"4",
"4T",
"5",
"5T",
"5TE",
"5TEJ",
"6TEJ",
"7",
"7M",
"?(12)",
"?(13)",
"?(14)",
"?(15)",
"?(16)",
"?(17)",
};
#ifdef CONFIG_CPU_V7M
static int __get_cpu_architecture(void)
{
return CPU_ARCH_ARMv7M;
}
#else
static int __get_cpu_architecture(void)
{
int cpu_arch;
if ((read_cpuid_id() & 0x0008f000) == 0) {
cpu_arch = CPU_ARCH_UNKNOWN;
} else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
} else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
cpu_arch = (read_cpuid_id() >> 16) & 7;
if (cpu_arch)
cpu_arch += CPU_ARCH_ARMv3;
} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
/* Revised CPUID format. Read the Memory Model Feature
* Register 0 and check for VMSAv7 or PMSAv7 */
unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
(mmfr0 & 0x000000f0) >= 0x00000030)
cpu_arch = CPU_ARCH_ARMv7;
else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
(mmfr0 & 0x000000f0) == 0x00000020)
cpu_arch = CPU_ARCH_ARMv6;
else
cpu_arch = CPU_ARCH_UNKNOWN;
} else
cpu_arch = CPU_ARCH_UNKNOWN;
return cpu_arch;
}
#endif
int __pure cpu_architecture(void)
{
BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
return __cpu_architecture;
}
static int cpu_has_aliasing_icache(unsigned int arch)
{
int aliasing_icache;
unsigned int id_reg, num_sets, line_size;
/* PIPT caches never alias. */
if (icache_is_pipt())
return 0;
/* arch specifies the register format */
switch (arch) {
case CPU_ARCH_ARMv7:
set_csselr(CSSELR_ICACHE | CSSELR_L1);
isb();
id_reg = read_ccsidr();
line_size = 4 << ((id_reg & 0x7) + 2);
num_sets = ((id_reg >> 13) & 0x7fff) + 1;
aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
break;
case CPU_ARCH_ARMv6:
aliasing_icache = read_cpuid_cachetype() & (1 << 11);
break;
default:
/* I-cache aliases will be handled by D-cache aliasing code */
aliasing_icache = 0;
}
return aliasing_icache;
}
static void __init cacheid_init(void)
{
unsigned int arch = cpu_architecture();
if (arch >= CPU_ARCH_ARMv6) {
unsigned int cachetype = read_cpuid_cachetype();
if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) {
cacheid = 0;
} else if ((cachetype & (7 << 29)) == 4 << 29) {
/* ARMv7 register format */
arch = CPU_ARCH_ARMv7;
cacheid = CACHEID_VIPT_NONALIASING;
switch (cachetype & (3 << 14)) {
case (1 << 14):
cacheid |= CACHEID_ASID_TAGGED;
break;
case (3 << 14):
cacheid |= CACHEID_PIPT;
break;
}
} else {
arch = CPU_ARCH_ARMv6;
if (cachetype & (1 << 23))
cacheid = CACHEID_VIPT_ALIASING;
else
cacheid = CACHEID_VIPT_NONALIASING;
}
if (cpu_has_aliasing_icache(arch))
cacheid |= CACHEID_VIPT_I_ALIASING;
} else {
cacheid = CACHEID_VIVT;
}
pr_info("CPU: %s data cache, %s instruction cache\n",
cache_is_vivt() ? "VIVT" :
cache_is_vipt_aliasing() ? "VIPT aliasing" :
cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
cache_is_vivt() ? "VIVT" :
icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
icache_is_vipt_aliasing() ? "VIPT aliasing" :
icache_is_pipt() ? "PIPT" :
cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
}
/*
* These functions re-use the assembly code in head.S, which
* already provide the required functionality.
*/
extern struct proc_info_list *lookup_processor_type(unsigned int);
void __init early_print(const char *str, ...)
{
extern void printascii(const char *);
char buf[256];
va_list ap;
va_start(ap, str);
vsnprintf(buf, sizeof(buf), str, ap);
va_end(ap);
#ifdef CONFIG_DEBUG_LL
printascii(buf);
#endif
printk("%s", buf);
}
#ifdef CONFIG_ARM_PATCH_IDIV
static inline u32 __attribute_const__ sdiv_instruction(void)
{
if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
/* "sdiv r0, r0, r1" */
u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
return __opcode_to_mem_thumb32(insn);
}
/* "sdiv r0, r0, r1" */
return __opcode_to_mem_arm(0xe710f110);
}
static inline u32 __attribute_const__ udiv_instruction(void)
{
if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
/* "udiv r0, r0, r1" */
u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
return __opcode_to_mem_thumb32(insn);
}
/* "udiv r0, r0, r1" */
return __opcode_to_mem_arm(0xe730f110);
}
static inline u32 __attribute_const__ bx_lr_instruction(void)
{
if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
/* "bx lr; nop" */
u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
return __opcode_to_mem_thumb32(insn);
}
/* "bx lr" */
return __opcode_to_mem_arm(0xe12fff1e);
}
static void __init patch_aeabi_idiv(void)
{
extern void __aeabi_uidiv(void);
extern void __aeabi_idiv(void);
uintptr_t fn_addr;
unsigned int mask;
mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
if (!(elf_hwcap & mask))
return;
pr_info("CPU: div instructions available: patching division code\n");
fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
asm ("" : "+g" (fn_addr));
((u32 *)fn_addr)[0] = udiv_instruction();
((u32 *)fn_addr)[1] = bx_lr_instruction();
flush_icache_range(fn_addr, fn_addr + 8);
fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
asm ("" : "+g" (fn_addr));
((u32 *)fn_addr)[0] = sdiv_instruction();
((u32 *)fn_addr)[1] = bx_lr_instruction();
flush_icache_range(fn_addr, fn_addr + 8);
}
#else
static inline void patch_aeabi_idiv(void) { }
#endif
static void __init cpuid_init_hwcaps(void)
{
int block;
u32 isar5;
if (cpu_architecture() < CPU_ARCH_ARMv7)
return;
block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
if (block >= 2)
elf_hwcap |= HWCAP_IDIVA;
if (block >= 1)
elf_hwcap |= HWCAP_IDIVT;
/* LPAE implies atomic ldrd/strd instructions */
block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
if (block >= 5)
elf_hwcap |= HWCAP_LPAE;
/* check for supported v8 Crypto instructions */
isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
block = cpuid_feature_extract_field(isar5, 4);
if (block >= 2)
elf_hwcap2 |= HWCAP2_PMULL;
if (block >= 1)
elf_hwcap2 |= HWCAP2_AES;
block = cpuid_feature_extract_field(isar5, 8);
if (block >= 1)
elf_hwcap2 |= HWCAP2_SHA1;
block = cpuid_feature_extract_field(isar5, 12);
if (block >= 1)
elf_hwcap2 |= HWCAP2_SHA2;
block = cpuid_feature_extract_field(isar5, 16);
if (block >= 1)
elf_hwcap2 |= HWCAP2_CRC32;
}
static void __init elf_hwcap_fixup(void)
{
unsigned id = read_cpuid_id();
/*
* HWCAP_TLS is available only on 1136 r1p0 and later,
* see also kuser_get_tls_init.
*/
if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
((id >> 20) & 3) == 0) {
elf_hwcap &= ~HWCAP_TLS;
return;
}
/* Verify if CPUID scheme is implemented */
if ((id & 0x000f0000) != 0x000f0000)
return;
/*
* If the CPU supports LDREX/STREX and LDREXB/STREXB,
* avoid advertising SWP; it may not be atomic with
* multiprocessing cores.
*/
if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
(cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
elf_hwcap &= ~HWCAP_SWP;
}
/*
* cpu_init - initialise one CPU.
*
* cpu_init sets up the per-CPU stacks.
*/
void notrace cpu_init(void)
{
#ifndef CONFIG_CPU_V7M
unsigned int cpu = smp_processor_id();
struct stack *stk = &stacks[cpu];
if (cpu >= NR_CPUS) {
pr_crit("CPU%u: bad primary CPU number\n", cpu);
BUG();
}
/*
* This only works on resume and secondary cores. For booting on the
* boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
*/
set_my_cpu_offset(per_cpu_offset(cpu));
cpu_proc_init();
/*
* Define the placement constraint for the inline asm directive below.
* In Thumb-2, msr with an immediate value is not allowed.
*/
#ifdef CONFIG_THUMB2_KERNEL
#define PLC "r"
#else
#define PLC "I"
#endif
/*
* setup stacks for re-entrant exception handlers
*/
__asm__ (
"msr cpsr_c, %1\n\t"
"add r14, %0, %2\n\t"
"mov sp, r14\n\t"
"msr cpsr_c, %3\n\t"
"add r14, %0, %4\n\t"
"mov sp, r14\n\t"
"msr cpsr_c, %5\n\t"
"add r14, %0, %6\n\t"
"mov sp, r14\n\t"
"msr cpsr_c, %7\n\t"
"add r14, %0, %8\n\t"
"mov sp, r14\n\t"
"msr cpsr_c, %9"
:
: "r" (stk),
PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
"I" (offsetof(struct stack, irq[0])),
PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
"I" (offsetof(struct stack, abt[0])),
PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
"I" (offsetof(struct stack, und[0])),
PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
"I" (offsetof(struct stack, fiq[0])),
PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
: "r14");
#endif
}
u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
void __init smp_setup_processor_id(void)
{
int i;
u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
cpu_logical_map(0) = cpu;
for (i = 1; i < nr_cpu_ids; ++i)
cpu_logical_map(i) = i == cpu ? 0 : i;
/*
* clear __my_cpu_offset on boot CPU to avoid hang caused by
* using percpu variable early, for example, lockdep will
* access percpu variable inside lock_release
*/
set_my_cpu_offset(0);
pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
}
struct mpidr_hash mpidr_hash;
#ifdef CONFIG_SMP
/**
* smp_build_mpidr_hash - Pre-compute shifts required at each affinity
* level in order to build a linear index from an
* MPIDR value. Resulting algorithm is a collision
* free hash carried out through shifting and ORing
*/
static void __init smp_build_mpidr_hash(void)
{
u32 i, affinity;
u32 fs[3], bits[3], ls, mask = 0;
/*
* Pre-scan the list of MPIDRS and filter out bits that do
* not contribute to affinity levels, ie they never toggle.
*/
for_each_possible_cpu(i)
mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
pr_debug("mask of set bits 0x%x\n", mask);
/*
* Find and stash the last and first bit set at all affinity levels to
* check how many bits are required to represent them.
*/
for (i = 0; i < 3; i++) {
affinity = MPIDR_AFFINITY_LEVEL(mask, i);
/*
* Find the MSB bit and LSB bits position
* to determine how many bits are required
* to express the affinity level.
*/
ls = fls(affinity);
fs[i] = affinity ? ffs(affinity) - 1 : 0;
bits[i] = ls - fs[i];
}
/*
* An index can be created from the MPIDR by isolating the
* significant bits at each affinity level and by shifting
* them in order to compress the 24 bits values space to a
* compressed set of values. This is equivalent to hashing
* the MPIDR through shifting and ORing. It is a collision free
* hash though not minimal since some levels might contain a number
* of CPUs that is not an exact power of 2 and their bit
* representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
*/
mpidr_hash.shift_aff[0] = fs[0];
mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
(bits[1] + bits[0]);
mpidr_hash.mask = mask;
mpidr_hash.bits = bits[2] + bits[1] + bits[0];
pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
mpidr_hash.shift_aff[0],
mpidr_hash.shift_aff[1],
mpidr_hash.shift_aff[2],
mpidr_hash.mask,
mpidr_hash.bits);
/*
* 4x is an arbitrary value used to warn on a hash table much bigger
* than expected on most systems.
*/
if (mpidr_hash_size() > 4 * num_possible_cpus())
pr_warn("Large number of MPIDR hash buckets detected\n");
sync_cache_w(&mpidr_hash);
}
#endif
/*
* locate processor in the list of supported processor types. The linker
* builds this table for us from the entries in arch/arm/mm/proc-*.S
*/
struct proc_info_list *lookup_processor(u32 midr)
{
struct proc_info_list *list = lookup_processor_type(midr);
if (!list) {
pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n",
smp_processor_id(), midr);
while (1)
/* can't use cpu_relax() here as it may require MMU setup */;
}
return list;
}
static void __init setup_processor(void)
{
unsigned int midr = read_cpuid_id();
struct proc_info_list *list = lookup_processor(midr);
cpu_name = list->cpu_name;
__cpu_architecture = __get_cpu_architecture();
init_proc_vtable(list->proc);
#ifdef MULTI_TLB
cpu_tlb = *list->tlb;
#endif
#ifdef MULTI_USER
cpu_user = *list->user;
#endif
#ifdef MULTI_CACHE
cpu_cache = *list->cache;
#endif
pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
list->cpu_name, midr, midr & 15,
proc_arch[cpu_architecture()], get_cr());
snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
list->arch_name, ENDIANNESS);
snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
list->elf_name, ENDIANNESS);
elf_hwcap = list->elf_hwcap;
cpuid_init_hwcaps();
patch_aeabi_idiv();
#ifndef CONFIG_ARM_THUMB
elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
#endif
#ifdef CONFIG_MMU
init_default_cache_policy(list->__cpu_mm_mmu_flags);
#endif
erratum_a15_798181_init();
elf_hwcap_fixup();
cacheid_init();
cpu_init();
}
void __init dump_machine_table(void)
{
const struct machine_desc *p;
early_print("Available machine support:\n\nID (hex)\tNAME\n");
for_each_machine_desc(p)
early_print("%08x\t%s\n", p->nr, p->name);
early_print("\nPlease check your kernel config and/or bootloader.\n");
while (true)
/* can't use cpu_relax() here as it may require MMU setup */;
}
int __init arm_add_memory(u64 start, u64 size)
{
u64 aligned_start;
/*
* Ensure that start/size are aligned to a page boundary.
* Size is rounded down, start is rounded up.
*/
aligned_start = PAGE_ALIGN(start);
if (aligned_start > start + size)
size = 0;
else
size -= aligned_start - start;
#ifndef CONFIG_PHYS_ADDR_T_64BIT
if (aligned_start > ULONG_MAX) {
pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
(long long)start);
return -EINVAL;
}
if (aligned_start + size > ULONG_MAX) {
pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
(long long)start);
/*
* To ensure bank->start + bank->size is representable in
* 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
* This means we lose a page after masking.
*/
size = ULONG_MAX - aligned_start;
}
#endif
if (aligned_start < PHYS_OFFSET) {
if (aligned_start + size <= PHYS_OFFSET) {
pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
aligned_start, aligned_start + size);
return -EINVAL;
}
pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
aligned_start, (u64)PHYS_OFFSET);
size -= PHYS_OFFSET - aligned_start;
aligned_start = PHYS_OFFSET;
}
start = aligned_start;
size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
/*
* Check whether this memory region has non-zero size or
* invalid node number.
*/
if (size == 0)
return -EINVAL;
memblock_add(start, size);
return 0;
}
/*
* Pick out the memory size. We look for mem=size@start,
* where start and size are "size[KkMm]"
*/
static int __init early_mem(char *p)
{
static int usermem __initdata = 0;
u64 size;
u64 start;
char *endp;
/*
* If the user specifies memory size, we
* blow away any automatically generated
* size.
*/
if (usermem == 0) {
usermem = 1;
memblock_remove(memblock_start_of_DRAM(),
memblock_end_of_DRAM() - memblock_start_of_DRAM());
}
start = PHYS_OFFSET;
size = memparse(p, &endp);
if (*endp == '@')
start = memparse(endp + 1, NULL);
arm_add_memory(start, size);
return 0;
}
early_param("mem", early_mem);
static void __init request_standard_resources(const struct machine_desc *mdesc)
{
struct memblock_region *region;
struct resource *res;
kernel_code.start = virt_to_phys(_text);
kernel_code.end = virt_to_phys(__init_begin - 1);
kernel_data.start = virt_to_phys(_sdata);
kernel_data.end = virt_to_phys(_end - 1);
for_each_memblock(memory, region) {
phys_addr_t start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
phys_addr_t end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
unsigned long boot_alias_start;
/*
* Some systems have a special memory alias which is only
* used for booting. We need to advertise this region to
* kexec-tools so they know where bootable RAM is located.
*/
boot_alias_start = phys_to_idmap(start);
if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
res->name = "System RAM (boot alias)";
res->start = boot_alias_start;
res->end = phys_to_idmap(end);
res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
request_resource(&iomem_resource, res);
}
res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
res->name = "System RAM";
res->start = start;
res->end = end;
res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
request_resource(&iomem_resource, res);
if (kernel_code.start >= res->start &&
kernel_code.end <= res->end)
request_resource(res, &kernel_code);
if (kernel_data.start >= res->start &&
kernel_data.end <= res->end)
request_resource(res, &kernel_data);
}
if (mdesc->video_start) {
video_ram.start = mdesc->video_start;
video_ram.end = mdesc->video_end;
request_resource(&iomem_resource, &video_ram);
}
/*
* Some machines don't have the possibility of ever
* possessing lp0, lp1 or lp2
*/
if (mdesc->reserve_lp0)
request_resource(&ioport_resource, &lp0);
if (mdesc->reserve_lp1)
request_resource(&ioport_resource, &lp1);
if (mdesc->reserve_lp2)
request_resource(&ioport_resource, &lp2);
}
#if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
defined(CONFIG_EFI)
struct screen_info screen_info = {
.orig_video_lines = 30,
.orig_video_cols = 80,
.orig_video_mode = 0,
.orig_video_ega_bx = 0,
.orig_video_isVGA = 1,
.orig_video_points = 8
};
#endif
static int __init customize_machine(void)
{
/*
* customizes platform devices, or adds new ones
* On DT based machines, we fall back to populating the
* machine from the device tree, if no callback is provided,
* otherwise we would always need an init_machine callback.
*/
if (machine_desc->init_machine)
machine_desc->init_machine();
return 0;
}
arch_initcall(customize_machine);
static int __init init_machine_late(void)
{
struct device_node *root;
int ret;
if (machine_desc->init_late)
machine_desc->init_late();
root = of_find_node_by_path("/");
if (root) {
ret = of_property_read_string(root, "serial-number",
&system_serial);
if (ret)
system_serial = NULL;
}
if (!system_serial)
system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
system_serial_high,
system_serial_low);
return 0;
}
late_initcall(init_machine_late);
#ifdef CONFIG_KEXEC
/*
* The crash region must be aligned to 128MB to avoid
* zImage relocating below the reserved region.
*/
#define CRASH_ALIGN (128 << 20)
static inline unsigned long long get_total_mem(void)
{
unsigned long total;
total = max_low_pfn - min_low_pfn;
return total << PAGE_SHIFT;
}
/**
* reserve_crashkernel() - reserves memory are for crash kernel
*
* This function reserves memory area given in "crashkernel=" kernel command
* line parameter. The memory reserved is used by a dump capture kernel when
* primary kernel is crashing.
*/
static void __init reserve_crashkernel(void)
{
unsigned long long crash_size, crash_base;
unsigned long long total_mem;
int ret;
total_mem = get_total_mem();
ret = parse_crashkernel(boot_command_line, total_mem,
&crash_size, &crash_base);
if (ret)
return;
if (crash_base <= 0) {
unsigned long long crash_max = idmap_to_phys((u32)~0);
unsigned long long lowmem_max = __pa(high_memory - 1) + 1;
if (crash_max > lowmem_max)
crash_max = lowmem_max;
crash_base = memblock_find_in_range(CRASH_ALIGN, crash_max,
crash_size, CRASH_ALIGN);
if (!crash_base) {
pr_err("crashkernel reservation failed - No suitable area found.\n");
return;
}
} else {
unsigned long long start;
start = memblock_find_in_range(crash_base,
crash_base + crash_size,
crash_size, SECTION_SIZE);
if (start != crash_base) {
pr_err("crashkernel reservation failed - memory is in use.\n");
return;
}
}
ret = memblock_reserve(crash_base, crash_size);
if (ret < 0) {
pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
(unsigned long)crash_base);
return;
}
pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
(unsigned long)(crash_size >> 20),
(unsigned long)(crash_base >> 20),
(unsigned long)(total_mem >> 20));
/* The crashk resource must always be located in normal mem */
crashk_res.start = crash_base;
crashk_res.end = crash_base + crash_size - 1;
insert_resource(&iomem_resource, &crashk_res);
if (arm_has_idmap_alias()) {
/*
* If we have a special RAM alias for use at boot, we
* need to advertise to kexec tools where the alias is.
*/
static struct resource crashk_boot_res = {
.name = "Crash kernel (boot alias)",
.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
};
crashk_boot_res.start = phys_to_idmap(crash_base);
crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
insert_resource(&iomem_resource, &crashk_boot_res);
}
}
#else
static inline void reserve_crashkernel(void) {}
#endif /* CONFIG_KEXEC */
void __init hyp_mode_check(void)
{
#ifdef CONFIG_ARM_VIRT_EXT
sync_boot_mode();
if (is_hyp_mode_available()) {
pr_info("CPU: All CPU(s) started in HYP mode.\n");
pr_info("CPU: Virtualization extensions available.\n");
} else if (is_hyp_mode_mismatched()) {
pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
__boot_cpu_mode & MODE_MASK);
pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
} else
pr_info("CPU: All CPU(s) started in SVC mode.\n");
#endif
}
void __init setup_arch(char **cmdline_p)
{
const struct machine_desc *mdesc;
setup_processor();
mdesc = setup_machine_fdt(__atags_pointer);
if (!mdesc)
mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
if (!mdesc) {
early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
early_print(" r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
__atags_pointer);
if (__atags_pointer)
early_print(" r2[]=%*ph\n", 16,
phys_to_virt(__atags_pointer));
dump_machine_table();
}
machine_desc = mdesc;
machine_name = mdesc->name;
dump_stack_set_arch_desc("%s", mdesc->name);
if (mdesc->reboot_mode != REBOOT_HARD)
reboot_mode = mdesc->reboot_mode;
init_mm.start_code = (unsigned long) _text;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = (unsigned long) _end;
/* populate cmd_line too for later use, preserving boot_command_line */
strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
*cmdline_p = cmd_line;
early_fixmap_init();
early_ioremap_init();
parse_early_param();
#ifdef CONFIG_MMU
early_mm_init(mdesc);
#endif
setup_dma_zone(mdesc);
xen_early_init();
efi_init();
/*
* Make sure the calculation for lowmem/highmem is set appropriately
* before reserving/allocating any mmeory
*/
adjust_lowmem_bounds();
arm_memblock_init(mdesc);
/* Memory may have been removed so recalculate the bounds. */
adjust_lowmem_bounds();
early_ioremap_reset();
paging_init(mdesc);
request_standard_resources(mdesc);
if (mdesc->restart)
arm_pm_restart = mdesc->restart;
unflatten_device_tree();
arm_dt_init_cpu_maps();
psci_dt_init();
#ifdef CONFIG_SMP
if (is_smp()) {
if (!mdesc->smp_init || !mdesc->smp_init()) {
if (psci_smp_available())
smp_set_ops(&psci_smp_ops);
else if (mdesc->smp)
smp_set_ops(mdesc->smp);
}
smp_init_cpus();
smp_build_mpidr_hash();
}
#endif
if (!is_smp())
hyp_mode_check();
reserve_crashkernel();
#ifdef CONFIG_GENERIC_IRQ_MULTI_HANDLER
handle_arch_irq = mdesc->handle_irq;
#endif
#ifdef CONFIG_VT
#if defined(CONFIG_VGA_CONSOLE)
conswitchp = &vga_con;
#elif defined(CONFIG_DUMMY_CONSOLE)
conswitchp = &dummy_con;
#endif
#endif
if (mdesc->init_early)
mdesc->init_early();
}
static int __init topology_init(void)
{
int cpu;
for_each_possible_cpu(cpu) {
struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
register_cpu(&cpuinfo->cpu, cpu);
}
return 0;
}
subsys_initcall(topology_init);
#ifdef CONFIG_HAVE_PROC_CPU
static int __init proc_cpu_init(void)
{
struct proc_dir_entry *res;
res = proc_mkdir("cpu", NULL);
if (!res)
return -ENOMEM;
return 0;
}
fs_initcall(proc_cpu_init);
#endif
static const char *hwcap_str[] = {
"swp",
"half",
"thumb",
"26bit",
"fastmult",
"fpa",
"vfp",
"edsp",
"java",
"iwmmxt",
"crunch",
"thumbee",
"neon",
"vfpv3",
"vfpv3d16",
"tls",
"vfpv4",
"idiva",
"idivt",
"vfpd32",
"lpae",
"evtstrm",
NULL
};
static const char *hwcap2_str[] = {
"aes",
"pmull",
"sha1",
"sha2",
"crc32",
NULL
};
static int c_show(struct seq_file *m, void *v)
{
int i, j;
u32 cpuid;
for_each_online_cpu(i) {
/*
* glibc reads /proc/cpuinfo to determine the number of
* online processors, looking for lines beginning with
* "processor". Give glibc what it expects.
*/
seq_printf(m, "processor\t: %d\n", i);
cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
seq_printf(m, "model name\t: %s rev %d (%s)\n",
cpu_name, cpuid & 15, elf_platform);
#if defined(CONFIG_SMP)
seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
(per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
#else
seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
loops_per_jiffy / (500000/HZ),
(loops_per_jiffy / (5000/HZ)) % 100);
#endif
/* dump out the processor features */
seq_puts(m, "Features\t: ");
for (j = 0; hwcap_str[j]; j++)
if (elf_hwcap & (1 << j))
seq_printf(m, "%s ", hwcap_str[j]);
for (j = 0; hwcap2_str[j]; j++)
if (elf_hwcap2 & (1 << j))
seq_printf(m, "%s ", hwcap2_str[j]);
seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
seq_printf(m, "CPU architecture: %s\n",
proc_arch[cpu_architecture()]);
if ((cpuid & 0x0008f000) == 0x00000000) {
/* pre-ARM7 */
seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
} else {
if ((cpuid & 0x0008f000) == 0x00007000) {
/* ARM7 */
seq_printf(m, "CPU variant\t: 0x%02x\n",
(cpuid >> 16) & 127);
} else {
/* post-ARM7 */
seq_printf(m, "CPU variant\t: 0x%x\n",
(cpuid >> 20) & 15);
}
seq_printf(m, "CPU part\t: 0x%03x\n",
(cpuid >> 4) & 0xfff);
}
seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
}
seq_printf(m, "Hardware\t: %s\n", machine_name);
seq_printf(m, "Revision\t: %04x\n", system_rev);
seq_printf(m, "Serial\t\t: %s\n", system_serial);
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
return *pos < 1 ? (void *)1 : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return NULL;
}
static void c_stop(struct seq_file *m, void *v)
{
}
const struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = c_show
};