mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-29 23:53:55 +08:00
e8222502ee
This removes statically assigned platform numbers and reworks the powerpc platform probe code to use a better mechanism. With this, board support files can simply declare a new machine type with a macro, and implement a probe() function that uses the flattened device-tree to detect if they apply for a given machine. We now have a machine_is() macro that replaces the comparisons of _machine with the various PLATFORM_* constants. This commit also changes various drivers to use the new macro instead of looking at _machine. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
530 lines
12 KiB
C
530 lines
12 KiB
C
/*
|
|
* Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* Communication to userspace based on kernel/printk.c
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/init.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/delay.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/io.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/nvram.h>
|
|
#include <asm/atomic.h>
|
|
#include <asm/machdep.h>
|
|
|
|
#if 0
|
|
#define DEBUG(A...) printk(KERN_ERR A)
|
|
#else
|
|
#define DEBUG(A...)
|
|
#endif
|
|
|
|
static DEFINE_SPINLOCK(rtasd_log_lock);
|
|
|
|
DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);
|
|
|
|
static char *rtas_log_buf;
|
|
static unsigned long rtas_log_start;
|
|
static unsigned long rtas_log_size;
|
|
|
|
static int surveillance_timeout = -1;
|
|
static unsigned int rtas_event_scan_rate;
|
|
static unsigned int rtas_error_log_max;
|
|
static unsigned int rtas_error_log_buffer_max;
|
|
|
|
static int full_rtas_msgs = 0;
|
|
|
|
extern int no_logging;
|
|
|
|
volatile int error_log_cnt = 0;
|
|
|
|
/*
|
|
* Since we use 32 bit RTAS, the physical address of this must be below
|
|
* 4G or else bad things happen. Allocate this in the kernel data and
|
|
* make it big enough.
|
|
*/
|
|
static unsigned char logdata[RTAS_ERROR_LOG_MAX];
|
|
|
|
static int get_eventscan_parms(void);
|
|
|
|
static char *rtas_type[] = {
|
|
"Unknown", "Retry", "TCE Error", "Internal Device Failure",
|
|
"Timeout", "Data Parity", "Address Parity", "Cache Parity",
|
|
"Address Invalid", "ECC Uncorrected", "ECC Corrupted",
|
|
};
|
|
|
|
static char *rtas_event_type(int type)
|
|
{
|
|
if ((type > 0) && (type < 11))
|
|
return rtas_type[type];
|
|
|
|
switch (type) {
|
|
case RTAS_TYPE_EPOW:
|
|
return "EPOW";
|
|
case RTAS_TYPE_PLATFORM:
|
|
return "Platform Error";
|
|
case RTAS_TYPE_IO:
|
|
return "I/O Event";
|
|
case RTAS_TYPE_INFO:
|
|
return "Platform Information Event";
|
|
case RTAS_TYPE_DEALLOC:
|
|
return "Resource Deallocation Event";
|
|
case RTAS_TYPE_DUMP:
|
|
return "Dump Notification Event";
|
|
}
|
|
|
|
return rtas_type[0];
|
|
}
|
|
|
|
/* To see this info, grep RTAS /var/log/messages and each entry
|
|
* will be collected together with obvious begin/end.
|
|
* There will be a unique identifier on the begin and end lines.
|
|
* This will persist across reboots.
|
|
*
|
|
* format of error logs returned from RTAS:
|
|
* bytes (size) : contents
|
|
* --------------------------------------------------------
|
|
* 0-7 (8) : rtas_error_log
|
|
* 8-47 (40) : extended info
|
|
* 48-51 (4) : vendor id
|
|
* 52-1023 (vendor specific) : location code and debug data
|
|
*/
|
|
static void printk_log_rtas(char *buf, int len)
|
|
{
|
|
|
|
int i,j,n = 0;
|
|
int perline = 16;
|
|
char buffer[64];
|
|
char * str = "RTAS event";
|
|
|
|
if (full_rtas_msgs) {
|
|
printk(RTAS_DEBUG "%d -------- %s begin --------\n",
|
|
error_log_cnt, str);
|
|
|
|
/*
|
|
* Print perline bytes on each line, each line will start
|
|
* with RTAS and a changing number, so syslogd will
|
|
* print lines that are otherwise the same. Separate every
|
|
* 4 bytes with a space.
|
|
*/
|
|
for (i = 0; i < len; i++) {
|
|
j = i % perline;
|
|
if (j == 0) {
|
|
memset(buffer, 0, sizeof(buffer));
|
|
n = sprintf(buffer, "RTAS %d:", i/perline);
|
|
}
|
|
|
|
if ((i % 4) == 0)
|
|
n += sprintf(buffer+n, " ");
|
|
|
|
n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);
|
|
|
|
if (j == (perline-1))
|
|
printk(KERN_DEBUG "%s\n", buffer);
|
|
}
|
|
if ((i % perline) != 0)
|
|
printk(KERN_DEBUG "%s\n", buffer);
|
|
|
|
printk(RTAS_DEBUG "%d -------- %s end ----------\n",
|
|
error_log_cnt, str);
|
|
} else {
|
|
struct rtas_error_log *errlog = (struct rtas_error_log *)buf;
|
|
|
|
printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n",
|
|
error_log_cnt, rtas_event_type(errlog->type),
|
|
errlog->severity);
|
|
}
|
|
}
|
|
|
|
static int log_rtas_len(char * buf)
|
|
{
|
|
int len;
|
|
struct rtas_error_log *err;
|
|
|
|
/* rtas fixed header */
|
|
len = 8;
|
|
err = (struct rtas_error_log *)buf;
|
|
if (err->extended_log_length) {
|
|
|
|
/* extended header */
|
|
len += err->extended_log_length;
|
|
}
|
|
|
|
if (rtas_error_log_max == 0) {
|
|
get_eventscan_parms();
|
|
}
|
|
if (len > rtas_error_log_max)
|
|
len = rtas_error_log_max;
|
|
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* First write to nvram, if fatal error, that is the only
|
|
* place we log the info. The error will be picked up
|
|
* on the next reboot by rtasd. If not fatal, run the
|
|
* method for the type of error. Currently, only RTAS
|
|
* errors have methods implemented, but in the future
|
|
* there might be a need to store data in nvram before a
|
|
* call to panic().
|
|
*
|
|
* XXX We write to nvram periodically, to indicate error has
|
|
* been written and sync'd, but there is a possibility
|
|
* that if we don't shutdown correctly, a duplicate error
|
|
* record will be created on next reboot.
|
|
*/
|
|
void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
|
|
{
|
|
unsigned long offset;
|
|
unsigned long s;
|
|
int len = 0;
|
|
|
|
DEBUG("logging event\n");
|
|
if (buf == NULL)
|
|
return;
|
|
|
|
spin_lock_irqsave(&rtasd_log_lock, s);
|
|
|
|
/* get length and increase count */
|
|
switch (err_type & ERR_TYPE_MASK) {
|
|
case ERR_TYPE_RTAS_LOG:
|
|
len = log_rtas_len(buf);
|
|
if (!(err_type & ERR_FLAG_BOOT))
|
|
error_log_cnt++;
|
|
break;
|
|
case ERR_TYPE_KERNEL_PANIC:
|
|
default:
|
|
spin_unlock_irqrestore(&rtasd_log_lock, s);
|
|
return;
|
|
}
|
|
|
|
/* Write error to NVRAM */
|
|
if (!no_logging && !(err_type & ERR_FLAG_BOOT))
|
|
nvram_write_error_log(buf, len, err_type);
|
|
|
|
/*
|
|
* rtas errors can occur during boot, and we do want to capture
|
|
* those somewhere, even if nvram isn't ready (why not?), and even
|
|
* if rtasd isn't ready. Put them into the boot log, at least.
|
|
*/
|
|
if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
|
|
printk_log_rtas(buf, len);
|
|
|
|
/* Check to see if we need to or have stopped logging */
|
|
if (fatal || no_logging) {
|
|
no_logging = 1;
|
|
spin_unlock_irqrestore(&rtasd_log_lock, s);
|
|
return;
|
|
}
|
|
|
|
/* call type specific method for error */
|
|
switch (err_type & ERR_TYPE_MASK) {
|
|
case ERR_TYPE_RTAS_LOG:
|
|
offset = rtas_error_log_buffer_max *
|
|
((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);
|
|
|
|
/* First copy over sequence number */
|
|
memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));
|
|
|
|
/* Second copy over error log data */
|
|
offset += sizeof(int);
|
|
memcpy(&rtas_log_buf[offset], buf, len);
|
|
|
|
if (rtas_log_size < LOG_NUMBER)
|
|
rtas_log_size += 1;
|
|
else
|
|
rtas_log_start += 1;
|
|
|
|
spin_unlock_irqrestore(&rtasd_log_lock, s);
|
|
wake_up_interruptible(&rtas_log_wait);
|
|
break;
|
|
case ERR_TYPE_KERNEL_PANIC:
|
|
default:
|
|
spin_unlock_irqrestore(&rtasd_log_lock, s);
|
|
return;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
static int rtas_log_open(struct inode * inode, struct file * file)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int rtas_log_release(struct inode * inode, struct file * file)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/* This will check if all events are logged, if they are then, we
|
|
* know that we can safely clear the events in NVRAM.
|
|
* Next we'll sit and wait for something else to log.
|
|
*/
|
|
static ssize_t rtas_log_read(struct file * file, char __user * buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
int error;
|
|
char *tmp;
|
|
unsigned long s;
|
|
unsigned long offset;
|
|
|
|
if (!buf || count < rtas_error_log_buffer_max)
|
|
return -EINVAL;
|
|
|
|
count = rtas_error_log_buffer_max;
|
|
|
|
if (!access_ok(VERIFY_WRITE, buf, count))
|
|
return -EFAULT;
|
|
|
|
tmp = kmalloc(count, GFP_KERNEL);
|
|
if (!tmp)
|
|
return -ENOMEM;
|
|
|
|
|
|
spin_lock_irqsave(&rtasd_log_lock, s);
|
|
/* if it's 0, then we know we got the last one (the one in NVRAM) */
|
|
if (rtas_log_size == 0 && !no_logging)
|
|
nvram_clear_error_log();
|
|
spin_unlock_irqrestore(&rtasd_log_lock, s);
|
|
|
|
|
|
error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
|
|
if (error)
|
|
goto out;
|
|
|
|
spin_lock_irqsave(&rtasd_log_lock, s);
|
|
offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
|
|
memcpy(tmp, &rtas_log_buf[offset], count);
|
|
|
|
rtas_log_start += 1;
|
|
rtas_log_size -= 1;
|
|
spin_unlock_irqrestore(&rtasd_log_lock, s);
|
|
|
|
error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
|
|
out:
|
|
kfree(tmp);
|
|
return error;
|
|
}
|
|
|
|
static unsigned int rtas_log_poll(struct file *file, poll_table * wait)
|
|
{
|
|
poll_wait(file, &rtas_log_wait, wait);
|
|
if (rtas_log_size)
|
|
return POLLIN | POLLRDNORM;
|
|
return 0;
|
|
}
|
|
|
|
struct file_operations proc_rtas_log_operations = {
|
|
.read = rtas_log_read,
|
|
.poll = rtas_log_poll,
|
|
.open = rtas_log_open,
|
|
.release = rtas_log_release,
|
|
};
|
|
|
|
static int enable_surveillance(int timeout)
|
|
{
|
|
int error;
|
|
|
|
error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);
|
|
|
|
if (error == 0)
|
|
return 0;
|
|
|
|
if (error == -EINVAL) {
|
|
printk(KERN_INFO "rtasd: surveillance not supported\n");
|
|
return 0;
|
|
}
|
|
|
|
printk(KERN_ERR "rtasd: could not update surveillance\n");
|
|
return -1;
|
|
}
|
|
|
|
static int get_eventscan_parms(void)
|
|
{
|
|
struct device_node *node;
|
|
int *ip;
|
|
|
|
node = of_find_node_by_path("/rtas");
|
|
|
|
ip = (int *)get_property(node, "rtas-event-scan-rate", NULL);
|
|
if (ip == NULL) {
|
|
printk(KERN_ERR "rtasd: no rtas-event-scan-rate\n");
|
|
of_node_put(node);
|
|
return -1;
|
|
}
|
|
rtas_event_scan_rate = *ip;
|
|
DEBUG("rtas-event-scan-rate %d\n", rtas_event_scan_rate);
|
|
|
|
/* Make room for the sequence number */
|
|
rtas_error_log_max = rtas_get_error_log_max();
|
|
rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);
|
|
|
|
of_node_put(node);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void do_event_scan(int event_scan)
|
|
{
|
|
int error;
|
|
do {
|
|
memset(logdata, 0, rtas_error_log_max);
|
|
error = rtas_call(event_scan, 4, 1, NULL,
|
|
RTAS_EVENT_SCAN_ALL_EVENTS, 0,
|
|
__pa(logdata), rtas_error_log_max);
|
|
if (error == -1) {
|
|
printk(KERN_ERR "event-scan failed\n");
|
|
break;
|
|
}
|
|
|
|
if (error == 0)
|
|
pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0);
|
|
|
|
} while(error == 0);
|
|
}
|
|
|
|
static void do_event_scan_all_cpus(long delay)
|
|
{
|
|
int cpu;
|
|
|
|
lock_cpu_hotplug();
|
|
cpu = first_cpu(cpu_online_map);
|
|
for (;;) {
|
|
set_cpus_allowed(current, cpumask_of_cpu(cpu));
|
|
do_event_scan(rtas_token("event-scan"));
|
|
set_cpus_allowed(current, CPU_MASK_ALL);
|
|
|
|
/* Drop hotplug lock, and sleep for the specified delay */
|
|
unlock_cpu_hotplug();
|
|
msleep_interruptible(delay);
|
|
lock_cpu_hotplug();
|
|
|
|
cpu = next_cpu(cpu, cpu_online_map);
|
|
if (cpu == NR_CPUS)
|
|
break;
|
|
}
|
|
unlock_cpu_hotplug();
|
|
}
|
|
|
|
static int rtasd(void *unused)
|
|
{
|
|
unsigned int err_type;
|
|
int event_scan = rtas_token("event-scan");
|
|
int rc;
|
|
|
|
daemonize("rtasd");
|
|
|
|
if (event_scan == RTAS_UNKNOWN_SERVICE || get_eventscan_parms() == -1)
|
|
goto error;
|
|
|
|
rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER);
|
|
if (!rtas_log_buf) {
|
|
printk(KERN_ERR "rtasd: no memory\n");
|
|
goto error;
|
|
}
|
|
|
|
printk(KERN_INFO "RTAS daemon started\n");
|
|
|
|
DEBUG("will sleep for %d milliseconds\n", (30000/rtas_event_scan_rate));
|
|
|
|
/* See if we have any error stored in NVRAM */
|
|
memset(logdata, 0, rtas_error_log_max);
|
|
|
|
rc = nvram_read_error_log(logdata, rtas_error_log_max, &err_type);
|
|
|
|
/* We can use rtas_log_buf now */
|
|
no_logging = 0;
|
|
|
|
if (!rc) {
|
|
if (err_type != ERR_FLAG_ALREADY_LOGGED) {
|
|
pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
|
|
}
|
|
}
|
|
|
|
/* First pass. */
|
|
do_event_scan_all_cpus(1000);
|
|
|
|
if (surveillance_timeout != -1) {
|
|
DEBUG("enabling surveillance\n");
|
|
enable_surveillance(surveillance_timeout);
|
|
DEBUG("surveillance enabled\n");
|
|
}
|
|
|
|
/* Delay should be at least one second since some
|
|
* machines have problems if we call event-scan too
|
|
* quickly. */
|
|
for (;;)
|
|
do_event_scan_all_cpus(30000/rtas_event_scan_rate);
|
|
|
|
error:
|
|
/* Should delete proc entries */
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int __init rtas_init(void)
|
|
{
|
|
struct proc_dir_entry *entry;
|
|
|
|
if (!machine_is(pseries))
|
|
return 0;
|
|
|
|
/* No RTAS */
|
|
if (rtas_token("event-scan") == RTAS_UNKNOWN_SERVICE) {
|
|
printk(KERN_INFO "rtasd: no event-scan on system\n");
|
|
return 1;
|
|
}
|
|
|
|
entry = create_proc_entry("ppc64/rtas/error_log", S_IRUSR, NULL);
|
|
if (entry)
|
|
entry->proc_fops = &proc_rtas_log_operations;
|
|
else
|
|
printk(KERN_ERR "Failed to create error_log proc entry\n");
|
|
|
|
if (kernel_thread(rtasd, NULL, CLONE_FS) < 0)
|
|
printk(KERN_ERR "Failed to start RTAS daemon\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init surveillance_setup(char *str)
|
|
{
|
|
int i;
|
|
|
|
if (get_option(&str,&i)) {
|
|
if (i >= 0 && i <= 255)
|
|
surveillance_timeout = i;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int __init rtasmsgs_setup(char *str)
|
|
{
|
|
if (strcmp(str, "on") == 0)
|
|
full_rtas_msgs = 1;
|
|
else if (strcmp(str, "off") == 0)
|
|
full_rtas_msgs = 0;
|
|
|
|
return 1;
|
|
}
|
|
__initcall(rtas_init);
|
|
__setup("surveillance=", surveillance_setup);
|
|
__setup("rtasmsgs=", rtasmsgs_setup);
|