mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-21 11:44:01 +08:00
8346c416d1
Commit 46c043ede4
("mm: take i_mmap_lock in unmap_mapping_range() for
DAX") moved some code in __dax_pmd_fault() that was responsible for
zeroing newly allocated PMD pages. The new location didn't properly set
up 'kaddr', so when run this code resulted in a NULL pointer BUG.
Fix this by getting the correct 'kaddr' via bdev_direct_access().
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reported-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
782 lines
22 KiB
C
782 lines
22 KiB
C
/*
|
|
* fs/dax.c - Direct Access filesystem code
|
|
* Copyright (c) 2013-2014 Intel Corporation
|
|
* Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
|
|
* Author: Ross Zwisler <ross.zwisler@linux.intel.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
|
|
#include <linux/atomic.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/dax.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/genhd.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/pmem.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/vmstat.h>
|
|
|
|
int dax_clear_blocks(struct inode *inode, sector_t block, long size)
|
|
{
|
|
struct block_device *bdev = inode->i_sb->s_bdev;
|
|
sector_t sector = block << (inode->i_blkbits - 9);
|
|
|
|
might_sleep();
|
|
do {
|
|
void __pmem *addr;
|
|
unsigned long pfn;
|
|
long count;
|
|
|
|
count = bdev_direct_access(bdev, sector, &addr, &pfn, size);
|
|
if (count < 0)
|
|
return count;
|
|
BUG_ON(size < count);
|
|
while (count > 0) {
|
|
unsigned pgsz = PAGE_SIZE - offset_in_page(addr);
|
|
if (pgsz > count)
|
|
pgsz = count;
|
|
clear_pmem(addr, pgsz);
|
|
addr += pgsz;
|
|
size -= pgsz;
|
|
count -= pgsz;
|
|
BUG_ON(pgsz & 511);
|
|
sector += pgsz / 512;
|
|
cond_resched();
|
|
}
|
|
} while (size);
|
|
|
|
wmb_pmem();
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_clear_blocks);
|
|
|
|
static long dax_get_addr(struct buffer_head *bh, void __pmem **addr,
|
|
unsigned blkbits)
|
|
{
|
|
unsigned long pfn;
|
|
sector_t sector = bh->b_blocknr << (blkbits - 9);
|
|
return bdev_direct_access(bh->b_bdev, sector, addr, &pfn, bh->b_size);
|
|
}
|
|
|
|
/* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
|
|
static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
|
|
loff_t pos, loff_t end)
|
|
{
|
|
loff_t final = end - pos + first; /* The final byte of the buffer */
|
|
|
|
if (first > 0)
|
|
clear_pmem(addr, first);
|
|
if (final < size)
|
|
clear_pmem(addr + final, size - final);
|
|
}
|
|
|
|
static bool buffer_written(struct buffer_head *bh)
|
|
{
|
|
return buffer_mapped(bh) && !buffer_unwritten(bh);
|
|
}
|
|
|
|
/*
|
|
* When ext4 encounters a hole, it returns without modifying the buffer_head
|
|
* which means that we can't trust b_size. To cope with this, we set b_state
|
|
* to 0 before calling get_block and, if any bit is set, we know we can trust
|
|
* b_size. Unfortunate, really, since ext4 knows precisely how long a hole is
|
|
* and would save us time calling get_block repeatedly.
|
|
*/
|
|
static bool buffer_size_valid(struct buffer_head *bh)
|
|
{
|
|
return bh->b_state != 0;
|
|
}
|
|
|
|
static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
|
|
loff_t start, loff_t end, get_block_t get_block,
|
|
struct buffer_head *bh)
|
|
{
|
|
ssize_t retval = 0;
|
|
loff_t pos = start;
|
|
loff_t max = start;
|
|
loff_t bh_max = start;
|
|
void __pmem *addr;
|
|
bool hole = false;
|
|
bool need_wmb = false;
|
|
|
|
if (iov_iter_rw(iter) != WRITE)
|
|
end = min(end, i_size_read(inode));
|
|
|
|
while (pos < end) {
|
|
size_t len;
|
|
if (pos == max) {
|
|
unsigned blkbits = inode->i_blkbits;
|
|
long page = pos >> PAGE_SHIFT;
|
|
sector_t block = page << (PAGE_SHIFT - blkbits);
|
|
unsigned first = pos - (block << blkbits);
|
|
long size;
|
|
|
|
if (pos == bh_max) {
|
|
bh->b_size = PAGE_ALIGN(end - pos);
|
|
bh->b_state = 0;
|
|
retval = get_block(inode, block, bh,
|
|
iov_iter_rw(iter) == WRITE);
|
|
if (retval)
|
|
break;
|
|
if (!buffer_size_valid(bh))
|
|
bh->b_size = 1 << blkbits;
|
|
bh_max = pos - first + bh->b_size;
|
|
} else {
|
|
unsigned done = bh->b_size -
|
|
(bh_max - (pos - first));
|
|
bh->b_blocknr += done >> blkbits;
|
|
bh->b_size -= done;
|
|
}
|
|
|
|
hole = iov_iter_rw(iter) != WRITE && !buffer_written(bh);
|
|
if (hole) {
|
|
addr = NULL;
|
|
size = bh->b_size - first;
|
|
} else {
|
|
retval = dax_get_addr(bh, &addr, blkbits);
|
|
if (retval < 0)
|
|
break;
|
|
if (buffer_unwritten(bh) || buffer_new(bh)) {
|
|
dax_new_buf(addr, retval, first, pos,
|
|
end);
|
|
need_wmb = true;
|
|
}
|
|
addr += first;
|
|
size = retval - first;
|
|
}
|
|
max = min(pos + size, end);
|
|
}
|
|
|
|
if (iov_iter_rw(iter) == WRITE) {
|
|
len = copy_from_iter_pmem(addr, max - pos, iter);
|
|
need_wmb = true;
|
|
} else if (!hole)
|
|
len = copy_to_iter((void __force *)addr, max - pos,
|
|
iter);
|
|
else
|
|
len = iov_iter_zero(max - pos, iter);
|
|
|
|
if (!len)
|
|
break;
|
|
|
|
pos += len;
|
|
addr += len;
|
|
}
|
|
|
|
if (need_wmb)
|
|
wmb_pmem();
|
|
|
|
return (pos == start) ? retval : pos - start;
|
|
}
|
|
|
|
/**
|
|
* dax_do_io - Perform I/O to a DAX file
|
|
* @iocb: The control block for this I/O
|
|
* @inode: The file which the I/O is directed at
|
|
* @iter: The addresses to do I/O from or to
|
|
* @pos: The file offset where the I/O starts
|
|
* @get_block: The filesystem method used to translate file offsets to blocks
|
|
* @end_io: A filesystem callback for I/O completion
|
|
* @flags: See below
|
|
*
|
|
* This function uses the same locking scheme as do_blockdev_direct_IO:
|
|
* If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
|
|
* caller for writes. For reads, we take and release the i_mutex ourselves.
|
|
* If DIO_LOCKING is not set, the filesystem takes care of its own locking.
|
|
* As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
|
|
* is in progress.
|
|
*/
|
|
ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
|
|
struct iov_iter *iter, loff_t pos, get_block_t get_block,
|
|
dio_iodone_t end_io, int flags)
|
|
{
|
|
struct buffer_head bh;
|
|
ssize_t retval = -EINVAL;
|
|
loff_t end = pos + iov_iter_count(iter);
|
|
|
|
memset(&bh, 0, sizeof(bh));
|
|
|
|
if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
|
|
struct address_space *mapping = inode->i_mapping;
|
|
mutex_lock(&inode->i_mutex);
|
|
retval = filemap_write_and_wait_range(mapping, pos, end - 1);
|
|
if (retval) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* Protects against truncate */
|
|
if (!(flags & DIO_SKIP_DIO_COUNT))
|
|
inode_dio_begin(inode);
|
|
|
|
retval = dax_io(inode, iter, pos, end, get_block, &bh);
|
|
|
|
if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
|
|
mutex_unlock(&inode->i_mutex);
|
|
|
|
if ((retval > 0) && end_io)
|
|
end_io(iocb, pos, retval, bh.b_private);
|
|
|
|
if (!(flags & DIO_SKIP_DIO_COUNT))
|
|
inode_dio_end(inode);
|
|
out:
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_do_io);
|
|
|
|
/*
|
|
* The user has performed a load from a hole in the file. Allocating
|
|
* a new page in the file would cause excessive storage usage for
|
|
* workloads with sparse files. We allocate a page cache page instead.
|
|
* We'll kick it out of the page cache if it's ever written to,
|
|
* otherwise it will simply fall out of the page cache under memory
|
|
* pressure without ever having been dirtied.
|
|
*/
|
|
static int dax_load_hole(struct address_space *mapping, struct page *page,
|
|
struct vm_fault *vmf)
|
|
{
|
|
unsigned long size;
|
|
struct inode *inode = mapping->host;
|
|
if (!page)
|
|
page = find_or_create_page(mapping, vmf->pgoff,
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
if (!page)
|
|
return VM_FAULT_OOM;
|
|
/* Recheck i_size under page lock to avoid truncate race */
|
|
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
if (vmf->pgoff >= size) {
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
|
|
vmf->page = page;
|
|
return VM_FAULT_LOCKED;
|
|
}
|
|
|
|
static int copy_user_bh(struct page *to, struct buffer_head *bh,
|
|
unsigned blkbits, unsigned long vaddr)
|
|
{
|
|
void __pmem *vfrom;
|
|
void *vto;
|
|
|
|
if (dax_get_addr(bh, &vfrom, blkbits) < 0)
|
|
return -EIO;
|
|
vto = kmap_atomic(to);
|
|
copy_user_page(vto, (void __force *)vfrom, vaddr, to);
|
|
kunmap_atomic(vto);
|
|
return 0;
|
|
}
|
|
|
|
static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
|
|
struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
|
|
unsigned long vaddr = (unsigned long)vmf->virtual_address;
|
|
void __pmem *addr;
|
|
unsigned long pfn;
|
|
pgoff_t size;
|
|
int error;
|
|
|
|
/*
|
|
* Check truncate didn't happen while we were allocating a block.
|
|
* If it did, this block may or may not be still allocated to the
|
|
* file. We can't tell the filesystem to free it because we can't
|
|
* take i_mutex here. In the worst case, the file still has blocks
|
|
* allocated past the end of the file.
|
|
*/
|
|
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
if (unlikely(vmf->pgoff >= size)) {
|
|
error = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
error = bdev_direct_access(bh->b_bdev, sector, &addr, &pfn, bh->b_size);
|
|
if (error < 0)
|
|
goto out;
|
|
if (error < PAGE_SIZE) {
|
|
error = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
if (buffer_unwritten(bh) || buffer_new(bh)) {
|
|
clear_pmem(addr, PAGE_SIZE);
|
|
wmb_pmem();
|
|
}
|
|
|
|
error = vm_insert_mixed(vma, vaddr, pfn);
|
|
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* __dax_fault - handle a page fault on a DAX file
|
|
* @vma: The virtual memory area where the fault occurred
|
|
* @vmf: The description of the fault
|
|
* @get_block: The filesystem method used to translate file offsets to blocks
|
|
* @complete_unwritten: The filesystem method used to convert unwritten blocks
|
|
* to written so the data written to them is exposed. This is required for
|
|
* required by write faults for filesystems that will return unwritten
|
|
* extent mappings from @get_block, but it is optional for reads as
|
|
* dax_insert_mapping() will always zero unwritten blocks. If the fs does
|
|
* not support unwritten extents, the it should pass NULL.
|
|
*
|
|
* When a page fault occurs, filesystems may call this helper in their
|
|
* fault handler for DAX files. __dax_fault() assumes the caller has done all
|
|
* the necessary locking for the page fault to proceed successfully.
|
|
*/
|
|
int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
|
|
get_block_t get_block, dax_iodone_t complete_unwritten)
|
|
{
|
|
struct file *file = vma->vm_file;
|
|
struct address_space *mapping = file->f_mapping;
|
|
struct inode *inode = mapping->host;
|
|
struct page *page;
|
|
struct buffer_head bh;
|
|
unsigned long vaddr = (unsigned long)vmf->virtual_address;
|
|
unsigned blkbits = inode->i_blkbits;
|
|
sector_t block;
|
|
pgoff_t size;
|
|
int error;
|
|
int major = 0;
|
|
|
|
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
if (vmf->pgoff >= size)
|
|
return VM_FAULT_SIGBUS;
|
|
|
|
memset(&bh, 0, sizeof(bh));
|
|
block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
|
|
bh.b_size = PAGE_SIZE;
|
|
|
|
repeat:
|
|
page = find_get_page(mapping, vmf->pgoff);
|
|
if (page) {
|
|
if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
|
|
page_cache_release(page);
|
|
return VM_FAULT_RETRY;
|
|
}
|
|
if (unlikely(page->mapping != mapping)) {
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
goto repeat;
|
|
}
|
|
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
if (unlikely(vmf->pgoff >= size)) {
|
|
/*
|
|
* We have a struct page covering a hole in the file
|
|
* from a read fault and we've raced with a truncate
|
|
*/
|
|
error = -EIO;
|
|
goto unlock;
|
|
}
|
|
} else {
|
|
i_mmap_lock_write(mapping);
|
|
}
|
|
|
|
error = get_block(inode, block, &bh, 0);
|
|
if (!error && (bh.b_size < PAGE_SIZE))
|
|
error = -EIO; /* fs corruption? */
|
|
if (error)
|
|
goto unlock;
|
|
|
|
if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
|
|
if (vmf->flags & FAULT_FLAG_WRITE) {
|
|
error = get_block(inode, block, &bh, 1);
|
|
count_vm_event(PGMAJFAULT);
|
|
mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
|
|
major = VM_FAULT_MAJOR;
|
|
if (!error && (bh.b_size < PAGE_SIZE))
|
|
error = -EIO;
|
|
if (error)
|
|
goto unlock;
|
|
} else {
|
|
i_mmap_unlock_write(mapping);
|
|
return dax_load_hole(mapping, page, vmf);
|
|
}
|
|
}
|
|
|
|
if (vmf->cow_page) {
|
|
struct page *new_page = vmf->cow_page;
|
|
if (buffer_written(&bh))
|
|
error = copy_user_bh(new_page, &bh, blkbits, vaddr);
|
|
else
|
|
clear_user_highpage(new_page, vaddr);
|
|
if (error)
|
|
goto unlock;
|
|
vmf->page = page;
|
|
if (!page) {
|
|
/* Check we didn't race with truncate */
|
|
size = (i_size_read(inode) + PAGE_SIZE - 1) >>
|
|
PAGE_SHIFT;
|
|
if (vmf->pgoff >= size) {
|
|
error = -EIO;
|
|
goto unlock;
|
|
}
|
|
}
|
|
return VM_FAULT_LOCKED;
|
|
}
|
|
|
|
/* Check we didn't race with a read fault installing a new page */
|
|
if (!page && major)
|
|
page = find_lock_page(mapping, vmf->pgoff);
|
|
|
|
if (page) {
|
|
unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
|
|
PAGE_CACHE_SIZE, 0);
|
|
delete_from_page_cache(page);
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
}
|
|
|
|
/*
|
|
* If we successfully insert the new mapping over an unwritten extent,
|
|
* we need to ensure we convert the unwritten extent. If there is an
|
|
* error inserting the mapping, the filesystem needs to leave it as
|
|
* unwritten to prevent exposure of the stale underlying data to
|
|
* userspace, but we still need to call the completion function so
|
|
* the private resources on the mapping buffer can be released. We
|
|
* indicate what the callback should do via the uptodate variable, same
|
|
* as for normal BH based IO completions.
|
|
*/
|
|
error = dax_insert_mapping(inode, &bh, vma, vmf);
|
|
if (buffer_unwritten(&bh)) {
|
|
if (complete_unwritten)
|
|
complete_unwritten(&bh, !error);
|
|
else
|
|
WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
|
|
}
|
|
|
|
if (!page)
|
|
i_mmap_unlock_write(mapping);
|
|
out:
|
|
if (error == -ENOMEM)
|
|
return VM_FAULT_OOM | major;
|
|
/* -EBUSY is fine, somebody else faulted on the same PTE */
|
|
if ((error < 0) && (error != -EBUSY))
|
|
return VM_FAULT_SIGBUS | major;
|
|
return VM_FAULT_NOPAGE | major;
|
|
|
|
unlock:
|
|
if (page) {
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
} else {
|
|
i_mmap_unlock_write(mapping);
|
|
}
|
|
|
|
goto out;
|
|
}
|
|
EXPORT_SYMBOL(__dax_fault);
|
|
|
|
/**
|
|
* dax_fault - handle a page fault on a DAX file
|
|
* @vma: The virtual memory area where the fault occurred
|
|
* @vmf: The description of the fault
|
|
* @get_block: The filesystem method used to translate file offsets to blocks
|
|
*
|
|
* When a page fault occurs, filesystems may call this helper in their
|
|
* fault handler for DAX files.
|
|
*/
|
|
int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
|
|
get_block_t get_block, dax_iodone_t complete_unwritten)
|
|
{
|
|
int result;
|
|
struct super_block *sb = file_inode(vma->vm_file)->i_sb;
|
|
|
|
if (vmf->flags & FAULT_FLAG_WRITE) {
|
|
sb_start_pagefault(sb);
|
|
file_update_time(vma->vm_file);
|
|
}
|
|
result = __dax_fault(vma, vmf, get_block, complete_unwritten);
|
|
if (vmf->flags & FAULT_FLAG_WRITE)
|
|
sb_end_pagefault(sb);
|
|
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_fault);
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
/*
|
|
* The 'colour' (ie low bits) within a PMD of a page offset. This comes up
|
|
* more often than one might expect in the below function.
|
|
*/
|
|
#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
|
|
|
|
int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
|
|
pmd_t *pmd, unsigned int flags, get_block_t get_block,
|
|
dax_iodone_t complete_unwritten)
|
|
{
|
|
struct file *file = vma->vm_file;
|
|
struct address_space *mapping = file->f_mapping;
|
|
struct inode *inode = mapping->host;
|
|
struct buffer_head bh;
|
|
unsigned blkbits = inode->i_blkbits;
|
|
unsigned long pmd_addr = address & PMD_MASK;
|
|
bool write = flags & FAULT_FLAG_WRITE;
|
|
long length;
|
|
void __pmem *kaddr;
|
|
pgoff_t size, pgoff;
|
|
sector_t block, sector;
|
|
unsigned long pfn;
|
|
int result = 0;
|
|
|
|
/* Fall back to PTEs if we're going to COW */
|
|
if (write && !(vma->vm_flags & VM_SHARED))
|
|
return VM_FAULT_FALLBACK;
|
|
/* If the PMD would extend outside the VMA */
|
|
if (pmd_addr < vma->vm_start)
|
|
return VM_FAULT_FALLBACK;
|
|
if ((pmd_addr + PMD_SIZE) > vma->vm_end)
|
|
return VM_FAULT_FALLBACK;
|
|
|
|
pgoff = linear_page_index(vma, pmd_addr);
|
|
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
if (pgoff >= size)
|
|
return VM_FAULT_SIGBUS;
|
|
/* If the PMD would cover blocks out of the file */
|
|
if ((pgoff | PG_PMD_COLOUR) >= size)
|
|
return VM_FAULT_FALLBACK;
|
|
|
|
memset(&bh, 0, sizeof(bh));
|
|
block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
|
|
|
|
bh.b_size = PMD_SIZE;
|
|
i_mmap_lock_write(mapping);
|
|
length = get_block(inode, block, &bh, write);
|
|
if (length)
|
|
return VM_FAULT_SIGBUS;
|
|
|
|
/*
|
|
* If the filesystem isn't willing to tell us the length of a hole,
|
|
* just fall back to PTEs. Calling get_block 512 times in a loop
|
|
* would be silly.
|
|
*/
|
|
if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE)
|
|
goto fallback;
|
|
|
|
sector = bh.b_blocknr << (blkbits - 9);
|
|
|
|
if (buffer_unwritten(&bh) || buffer_new(&bh)) {
|
|
int i;
|
|
|
|
length = bdev_direct_access(bh.b_bdev, sector, &kaddr, &pfn,
|
|
bh.b_size);
|
|
if (length < 0) {
|
|
result = VM_FAULT_SIGBUS;
|
|
goto out;
|
|
}
|
|
if ((length < PMD_SIZE) || (pfn & PG_PMD_COLOUR))
|
|
goto fallback;
|
|
|
|
for (i = 0; i < PTRS_PER_PMD; i++)
|
|
clear_pmem(kaddr + i * PAGE_SIZE, PAGE_SIZE);
|
|
wmb_pmem();
|
|
count_vm_event(PGMAJFAULT);
|
|
mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
|
|
result |= VM_FAULT_MAJOR;
|
|
}
|
|
|
|
/*
|
|
* If we allocated new storage, make sure no process has any
|
|
* zero pages covering this hole
|
|
*/
|
|
if (buffer_new(&bh)) {
|
|
i_mmap_unlock_write(mapping);
|
|
unmap_mapping_range(mapping, pgoff << PAGE_SHIFT, PMD_SIZE, 0);
|
|
i_mmap_lock_write(mapping);
|
|
}
|
|
|
|
/*
|
|
* If a truncate happened while we were allocating blocks, we may
|
|
* leave blocks allocated to the file that are beyond EOF. We can't
|
|
* take i_mutex here, so just leave them hanging; they'll be freed
|
|
* when the file is deleted.
|
|
*/
|
|
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
if (pgoff >= size) {
|
|
result = VM_FAULT_SIGBUS;
|
|
goto out;
|
|
}
|
|
if ((pgoff | PG_PMD_COLOUR) >= size)
|
|
goto fallback;
|
|
|
|
if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
|
|
spinlock_t *ptl;
|
|
pmd_t entry;
|
|
struct page *zero_page = get_huge_zero_page();
|
|
|
|
if (unlikely(!zero_page))
|
|
goto fallback;
|
|
|
|
ptl = pmd_lock(vma->vm_mm, pmd);
|
|
if (!pmd_none(*pmd)) {
|
|
spin_unlock(ptl);
|
|
goto fallback;
|
|
}
|
|
|
|
entry = mk_pmd(zero_page, vma->vm_page_prot);
|
|
entry = pmd_mkhuge(entry);
|
|
set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
|
|
result = VM_FAULT_NOPAGE;
|
|
spin_unlock(ptl);
|
|
} else {
|
|
length = bdev_direct_access(bh.b_bdev, sector, &kaddr, &pfn,
|
|
bh.b_size);
|
|
if (length < 0) {
|
|
result = VM_FAULT_SIGBUS;
|
|
goto out;
|
|
}
|
|
if ((length < PMD_SIZE) || (pfn & PG_PMD_COLOUR))
|
|
goto fallback;
|
|
|
|
result |= vmf_insert_pfn_pmd(vma, address, pmd, pfn, write);
|
|
}
|
|
|
|
out:
|
|
if (buffer_unwritten(&bh))
|
|
complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
|
|
|
|
i_mmap_unlock_write(mapping);
|
|
|
|
return result;
|
|
|
|
fallback:
|
|
count_vm_event(THP_FAULT_FALLBACK);
|
|
result = VM_FAULT_FALLBACK;
|
|
goto out;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__dax_pmd_fault);
|
|
|
|
/**
|
|
* dax_pmd_fault - handle a PMD fault on a DAX file
|
|
* @vma: The virtual memory area where the fault occurred
|
|
* @vmf: The description of the fault
|
|
* @get_block: The filesystem method used to translate file offsets to blocks
|
|
*
|
|
* When a page fault occurs, filesystems may call this helper in their
|
|
* pmd_fault handler for DAX files.
|
|
*/
|
|
int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
|
|
pmd_t *pmd, unsigned int flags, get_block_t get_block,
|
|
dax_iodone_t complete_unwritten)
|
|
{
|
|
int result;
|
|
struct super_block *sb = file_inode(vma->vm_file)->i_sb;
|
|
|
|
if (flags & FAULT_FLAG_WRITE) {
|
|
sb_start_pagefault(sb);
|
|
file_update_time(vma->vm_file);
|
|
}
|
|
result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
|
|
complete_unwritten);
|
|
if (flags & FAULT_FLAG_WRITE)
|
|
sb_end_pagefault(sb);
|
|
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_pmd_fault);
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
/**
|
|
* dax_pfn_mkwrite - handle first write to DAX page
|
|
* @vma: The virtual memory area where the fault occurred
|
|
* @vmf: The description of the fault
|
|
*
|
|
*/
|
|
int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
struct super_block *sb = file_inode(vma->vm_file)->i_sb;
|
|
|
|
sb_start_pagefault(sb);
|
|
file_update_time(vma->vm_file);
|
|
sb_end_pagefault(sb);
|
|
return VM_FAULT_NOPAGE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
|
|
|
|
/**
|
|
* dax_zero_page_range - zero a range within a page of a DAX file
|
|
* @inode: The file being truncated
|
|
* @from: The file offset that is being truncated to
|
|
* @length: The number of bytes to zero
|
|
* @get_block: The filesystem method used to translate file offsets to blocks
|
|
*
|
|
* This function can be called by a filesystem when it is zeroing part of a
|
|
* page in a DAX file. This is intended for hole-punch operations. If
|
|
* you are truncating a file, the helper function dax_truncate_page() may be
|
|
* more convenient.
|
|
*
|
|
* We work in terms of PAGE_CACHE_SIZE here for commonality with
|
|
* block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
|
|
* took care of disposing of the unnecessary blocks. Even if the filesystem
|
|
* block size is smaller than PAGE_SIZE, we have to zero the rest of the page
|
|
* since the file might be mmapped.
|
|
*/
|
|
int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
|
|
get_block_t get_block)
|
|
{
|
|
struct buffer_head bh;
|
|
pgoff_t index = from >> PAGE_CACHE_SHIFT;
|
|
unsigned offset = from & (PAGE_CACHE_SIZE-1);
|
|
int err;
|
|
|
|
/* Block boundary? Nothing to do */
|
|
if (!length)
|
|
return 0;
|
|
BUG_ON((offset + length) > PAGE_CACHE_SIZE);
|
|
|
|
memset(&bh, 0, sizeof(bh));
|
|
bh.b_size = PAGE_CACHE_SIZE;
|
|
err = get_block(inode, index, &bh, 0);
|
|
if (err < 0)
|
|
return err;
|
|
if (buffer_written(&bh)) {
|
|
void __pmem *addr;
|
|
err = dax_get_addr(&bh, &addr, inode->i_blkbits);
|
|
if (err < 0)
|
|
return err;
|
|
clear_pmem(addr + offset, length);
|
|
wmb_pmem();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_zero_page_range);
|
|
|
|
/**
|
|
* dax_truncate_page - handle a partial page being truncated in a DAX file
|
|
* @inode: The file being truncated
|
|
* @from: The file offset that is being truncated to
|
|
* @get_block: The filesystem method used to translate file offsets to blocks
|
|
*
|
|
* Similar to block_truncate_page(), this function can be called by a
|
|
* filesystem when it is truncating a DAX file to handle the partial page.
|
|
*
|
|
* We work in terms of PAGE_CACHE_SIZE here for commonality with
|
|
* block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
|
|
* took care of disposing of the unnecessary blocks. Even if the filesystem
|
|
* block size is smaller than PAGE_SIZE, we have to zero the rest of the page
|
|
* since the file might be mmapped.
|
|
*/
|
|
int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
|
|
{
|
|
unsigned length = PAGE_CACHE_ALIGN(from) - from;
|
|
return dax_zero_page_range(inode, from, length, get_block);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_truncate_page);
|