2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-25 21:54:06 +08:00
linux-next/drivers/phy/phy-qcom-ufs.c
Yaniv Gardi adaafaa393 phy: qcom-ufs: add support for QUALCOMM Technologies UFS PHY drivers
This change adds a generic and common API support for ufs phy QUALCOMM
Technologies. This support provides common code and also points
to specific phy callbacks to differentiate between different behaviors
of frequent use-cases (like power on, power off, phy calibration etc).

Signed-off-by: Yaniv Gardi <ygardi@codeaurora.org>
Reviewed-by: Dov Levenglick <dovl@codeaurora.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
2015-01-20 19:43:24 +01:00

746 lines
18 KiB
C

/*
* Copyright (c) 2013-2015, Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include "phy-qcom-ufs-i.h"
#define MAX_PROP_NAME 32
#define VDDA_PHY_MIN_UV 1000000
#define VDDA_PHY_MAX_UV 1000000
#define VDDA_PLL_MIN_UV 1800000
#define VDDA_PLL_MAX_UV 1800000
#define VDDP_REF_CLK_MIN_UV 1200000
#define VDDP_REF_CLK_MAX_UV 1200000
static int __ufs_qcom_phy_init_vreg(struct phy *, struct ufs_qcom_phy_vreg *,
const char *, bool);
static int ufs_qcom_phy_init_vreg(struct phy *, struct ufs_qcom_phy_vreg *,
const char *);
static int ufs_qcom_phy_base_init(struct platform_device *pdev,
struct ufs_qcom_phy *phy_common);
int ufs_qcom_phy_calibrate(struct ufs_qcom_phy *ufs_qcom_phy,
struct ufs_qcom_phy_calibration *tbl_A,
int tbl_size_A,
struct ufs_qcom_phy_calibration *tbl_B,
int tbl_size_B, bool is_rate_B)
{
int i;
int ret = 0;
if (!tbl_A) {
dev_err(ufs_qcom_phy->dev, "%s: tbl_A is NULL", __func__);
ret = EINVAL;
goto out;
}
for (i = 0; i < tbl_size_A; i++)
writel_relaxed(tbl_A[i].cfg_value,
ufs_qcom_phy->mmio + tbl_A[i].reg_offset);
/*
* In case we would like to work in rate B, we need
* to override a registers that were configured in rate A table
* with registers of rate B table.
* table.
*/
if (is_rate_B) {
if (!tbl_B) {
dev_err(ufs_qcom_phy->dev, "%s: tbl_B is NULL",
__func__);
ret = EINVAL;
goto out;
}
for (i = 0; i < tbl_size_B; i++)
writel_relaxed(tbl_B[i].cfg_value,
ufs_qcom_phy->mmio + tbl_B[i].reg_offset);
}
/* flush buffered writes */
mb();
out:
return ret;
}
struct phy *ufs_qcom_phy_generic_probe(struct platform_device *pdev,
struct ufs_qcom_phy *common_cfg,
struct phy_ops *ufs_qcom_phy_gen_ops,
struct ufs_qcom_phy_specific_ops *phy_spec_ops)
{
int err;
struct device *dev = &pdev->dev;
struct phy *generic_phy = NULL;
struct phy_provider *phy_provider;
err = ufs_qcom_phy_base_init(pdev, common_cfg);
if (err) {
dev_err(dev, "%s: phy base init failed %d\n", __func__, err);
goto out;
}
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(phy_provider)) {
err = PTR_ERR(phy_provider);
dev_err(dev, "%s: failed to register phy %d\n", __func__, err);
goto out;
}
generic_phy = devm_phy_create(dev, NULL, ufs_qcom_phy_gen_ops);
if (IS_ERR(generic_phy)) {
err = PTR_ERR(generic_phy);
dev_err(dev, "%s: failed to create phy %d\n", __func__, err);
goto out;
}
common_cfg->phy_spec_ops = phy_spec_ops;
common_cfg->dev = dev;
out:
return generic_phy;
}
/*
* This assumes the embedded phy structure inside generic_phy is of type
* struct ufs_qcom_phy. In order to function properly it's crucial
* to keep the embedded struct "struct ufs_qcom_phy common_cfg"
* as the first inside generic_phy.
*/
struct ufs_qcom_phy *get_ufs_qcom_phy(struct phy *generic_phy)
{
return (struct ufs_qcom_phy *)phy_get_drvdata(generic_phy);
}
static
int ufs_qcom_phy_base_init(struct platform_device *pdev,
struct ufs_qcom_phy *phy_common)
{
struct device *dev = &pdev->dev;
struct resource *res;
int err = 0;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "phy_mem");
if (!res) {
dev_err(dev, "%s: phy_mem resource not found\n", __func__);
err = -ENOMEM;
goto out;
}
phy_common->mmio = devm_ioremap_resource(dev, res);
if (IS_ERR((void const *)phy_common->mmio)) {
err = PTR_ERR((void const *)phy_common->mmio);
phy_common->mmio = NULL;
dev_err(dev, "%s: ioremap for phy_mem resource failed %d\n",
__func__, err);
goto out;
}
/* "dev_ref_clk_ctrl_mem" is optional resource */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"dev_ref_clk_ctrl_mem");
if (!res) {
dev_dbg(dev, "%s: dev_ref_clk_ctrl_mem resource not found\n",
__func__);
goto out;
}
phy_common->dev_ref_clk_ctrl_mmio = devm_ioremap_resource(dev, res);
if (IS_ERR((void const *)phy_common->dev_ref_clk_ctrl_mmio)) {
err = PTR_ERR((void const *)phy_common->dev_ref_clk_ctrl_mmio);
phy_common->dev_ref_clk_ctrl_mmio = NULL;
dev_err(dev, "%s: ioremap for dev_ref_clk_ctrl_mem resource failed %d\n",
__func__, err);
}
out:
return err;
}
static int __ufs_qcom_phy_clk_get(struct phy *phy,
const char *name, struct clk **clk_out, bool err_print)
{
struct clk *clk;
int err = 0;
struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(phy);
struct device *dev = ufs_qcom_phy->dev;
clk = devm_clk_get(dev, name);
if (IS_ERR(clk)) {
err = PTR_ERR(clk);
if (err_print)
dev_err(dev, "failed to get %s err %d", name, err);
} else {
*clk_out = clk;
}
return err;
}
static
int ufs_qcom_phy_clk_get(struct phy *phy,
const char *name, struct clk **clk_out)
{
return __ufs_qcom_phy_clk_get(phy, name, clk_out, true);
}
int
ufs_qcom_phy_init_clks(struct phy *generic_phy,
struct ufs_qcom_phy *phy_common)
{
int err;
err = ufs_qcom_phy_clk_get(generic_phy, "tx_iface_clk",
&phy_common->tx_iface_clk);
if (err)
goto out;
err = ufs_qcom_phy_clk_get(generic_phy, "rx_iface_clk",
&phy_common->rx_iface_clk);
if (err)
goto out;
err = ufs_qcom_phy_clk_get(generic_phy, "ref_clk_src",
&phy_common->ref_clk_src);
if (err)
goto out;
/*
* "ref_clk_parent" is optional hence don't abort init if it's not
* found.
*/
__ufs_qcom_phy_clk_get(generic_phy, "ref_clk_parent",
&phy_common->ref_clk_parent, false);
err = ufs_qcom_phy_clk_get(generic_phy, "ref_clk",
&phy_common->ref_clk);
out:
return err;
}
int
ufs_qcom_phy_init_vregulators(struct phy *generic_phy,
struct ufs_qcom_phy *phy_common)
{
int err;
err = ufs_qcom_phy_init_vreg(generic_phy, &phy_common->vdda_pll,
"vdda-pll");
if (err)
goto out;
err = ufs_qcom_phy_init_vreg(generic_phy, &phy_common->vdda_phy,
"vdda-phy");
if (err)
goto out;
/* vddp-ref-clk-* properties are optional */
__ufs_qcom_phy_init_vreg(generic_phy, &phy_common->vddp_ref_clk,
"vddp-ref-clk", true);
out:
return err;
}
static int __ufs_qcom_phy_init_vreg(struct phy *phy,
struct ufs_qcom_phy_vreg *vreg, const char *name, bool optional)
{
int err = 0;
struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(phy);
struct device *dev = ufs_qcom_phy->dev;
char prop_name[MAX_PROP_NAME];
vreg->name = kstrdup(name, GFP_KERNEL);
if (!vreg->name) {
err = -ENOMEM;
goto out;
}
vreg->reg = devm_regulator_get(dev, name);
if (IS_ERR(vreg->reg)) {
err = PTR_ERR(vreg->reg);
vreg->reg = NULL;
if (!optional)
dev_err(dev, "failed to get %s, %d\n", name, err);
goto out;
}
if (dev->of_node) {
snprintf(prop_name, MAX_PROP_NAME, "%s-max-microamp", name);
err = of_property_read_u32(dev->of_node,
prop_name, &vreg->max_uA);
if (err && err != -EINVAL) {
dev_err(dev, "%s: failed to read %s\n",
__func__, prop_name);
goto out;
} else if (err == -EINVAL || !vreg->max_uA) {
if (regulator_count_voltages(vreg->reg) > 0) {
dev_err(dev, "%s: %s is mandatory\n",
__func__, prop_name);
goto out;
}
err = 0;
}
snprintf(prop_name, MAX_PROP_NAME, "%s-always-on", name);
if (of_get_property(dev->of_node, prop_name, NULL))
vreg->is_always_on = true;
else
vreg->is_always_on = false;
}
if (!strcmp(name, "vdda-pll")) {
vreg->max_uV = VDDA_PLL_MAX_UV;
vreg->min_uV = VDDA_PLL_MIN_UV;
} else if (!strcmp(name, "vdda-phy")) {
vreg->max_uV = VDDA_PHY_MAX_UV;
vreg->min_uV = VDDA_PHY_MIN_UV;
} else if (!strcmp(name, "vddp-ref-clk")) {
vreg->max_uV = VDDP_REF_CLK_MAX_UV;
vreg->min_uV = VDDP_REF_CLK_MIN_UV;
}
out:
if (err)
kfree(vreg->name);
return err;
}
static int ufs_qcom_phy_init_vreg(struct phy *phy,
struct ufs_qcom_phy_vreg *vreg, const char *name)
{
return __ufs_qcom_phy_init_vreg(phy, vreg, name, false);
}
static
int ufs_qcom_phy_cfg_vreg(struct phy *phy,
struct ufs_qcom_phy_vreg *vreg, bool on)
{
int ret = 0;
struct regulator *reg = vreg->reg;
const char *name = vreg->name;
int min_uV;
int uA_load;
struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(phy);
struct device *dev = ufs_qcom_phy->dev;
BUG_ON(!vreg);
if (regulator_count_voltages(reg) > 0) {
min_uV = on ? vreg->min_uV : 0;
ret = regulator_set_voltage(reg, min_uV, vreg->max_uV);
if (ret) {
dev_err(dev, "%s: %s set voltage failed, err=%d\n",
__func__, name, ret);
goto out;
}
uA_load = on ? vreg->max_uA : 0;
ret = regulator_set_optimum_mode(reg, uA_load);
if (ret >= 0) {
/*
* regulator_set_optimum_mode() returns new regulator
* mode upon success.
*/
ret = 0;
} else {
dev_err(dev, "%s: %s set optimum mode(uA_load=%d) failed, err=%d\n",
__func__, name, uA_load, ret);
goto out;
}
}
out:
return ret;
}
static
int ufs_qcom_phy_enable_vreg(struct phy *phy,
struct ufs_qcom_phy_vreg *vreg)
{
struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(phy);
struct device *dev = ufs_qcom_phy->dev;
int ret = 0;
if (!vreg || vreg->enabled)
goto out;
ret = ufs_qcom_phy_cfg_vreg(phy, vreg, true);
if (ret) {
dev_err(dev, "%s: ufs_qcom_phy_cfg_vreg() failed, err=%d\n",
__func__, ret);
goto out;
}
ret = regulator_enable(vreg->reg);
if (ret) {
dev_err(dev, "%s: enable failed, err=%d\n",
__func__, ret);
goto out;
}
vreg->enabled = true;
out:
return ret;
}
int ufs_qcom_phy_enable_ref_clk(struct phy *generic_phy)
{
int ret = 0;
struct ufs_qcom_phy *phy = get_ufs_qcom_phy(generic_phy);
if (phy->is_ref_clk_enabled)
goto out;
/*
* reference clock is propagated in a daisy-chained manner from
* source to phy, so ungate them at each stage.
*/
ret = clk_prepare_enable(phy->ref_clk_src);
if (ret) {
dev_err(phy->dev, "%s: ref_clk_src enable failed %d\n",
__func__, ret);
goto out;
}
/*
* "ref_clk_parent" is optional clock hence make sure that clk reference
* is available before trying to enable the clock.
*/
if (phy->ref_clk_parent) {
ret = clk_prepare_enable(phy->ref_clk_parent);
if (ret) {
dev_err(phy->dev, "%s: ref_clk_parent enable failed %d\n",
__func__, ret);
goto out_disable_src;
}
}
ret = clk_prepare_enable(phy->ref_clk);
if (ret) {
dev_err(phy->dev, "%s: ref_clk enable failed %d\n",
__func__, ret);
goto out_disable_parent;
}
phy->is_ref_clk_enabled = true;
goto out;
out_disable_parent:
if (phy->ref_clk_parent)
clk_disable_unprepare(phy->ref_clk_parent);
out_disable_src:
clk_disable_unprepare(phy->ref_clk_src);
out:
return ret;
}
static
int ufs_qcom_phy_disable_vreg(struct phy *phy,
struct ufs_qcom_phy_vreg *vreg)
{
struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(phy);
struct device *dev = ufs_qcom_phy->dev;
int ret = 0;
if (!vreg || !vreg->enabled || vreg->is_always_on)
goto out;
ret = regulator_disable(vreg->reg);
if (!ret) {
/* ignore errors on applying disable config */
ufs_qcom_phy_cfg_vreg(phy, vreg, false);
vreg->enabled = false;
} else {
dev_err(dev, "%s: %s disable failed, err=%d\n",
__func__, vreg->name, ret);
}
out:
return ret;
}
void ufs_qcom_phy_disable_ref_clk(struct phy *generic_phy)
{
struct ufs_qcom_phy *phy = get_ufs_qcom_phy(generic_phy);
if (phy->is_ref_clk_enabled) {
clk_disable_unprepare(phy->ref_clk);
/*
* "ref_clk_parent" is optional clock hence make sure that clk
* reference is available before trying to disable the clock.
*/
if (phy->ref_clk_parent)
clk_disable_unprepare(phy->ref_clk_parent);
clk_disable_unprepare(phy->ref_clk_src);
phy->is_ref_clk_enabled = false;
}
}
#define UFS_REF_CLK_EN (1 << 5)
static void ufs_qcom_phy_dev_ref_clk_ctrl(struct phy *generic_phy, bool enable)
{
struct ufs_qcom_phy *phy = get_ufs_qcom_phy(generic_phy);
if (phy->dev_ref_clk_ctrl_mmio &&
(enable ^ phy->is_dev_ref_clk_enabled)) {
u32 temp = readl_relaxed(phy->dev_ref_clk_ctrl_mmio);
if (enable)
temp |= UFS_REF_CLK_EN;
else
temp &= ~UFS_REF_CLK_EN;
/*
* If we are here to disable this clock immediately after
* entering into hibern8, we need to make sure that device
* ref_clk is active atleast 1us after the hibern8 enter.
*/
if (!enable)
udelay(1);
writel_relaxed(temp, phy->dev_ref_clk_ctrl_mmio);
/* ensure that ref_clk is enabled/disabled before we return */
wmb();
/*
* If we call hibern8 exit after this, we need to make sure that
* device ref_clk is stable for atleast 1us before the hibern8
* exit command.
*/
if (enable)
udelay(1);
phy->is_dev_ref_clk_enabled = enable;
}
}
void ufs_qcom_phy_enable_dev_ref_clk(struct phy *generic_phy)
{
ufs_qcom_phy_dev_ref_clk_ctrl(generic_phy, true);
}
void ufs_qcom_phy_disable_dev_ref_clk(struct phy *generic_phy)
{
ufs_qcom_phy_dev_ref_clk_ctrl(generic_phy, false);
}
/* Turn ON M-PHY RMMI interface clocks */
int ufs_qcom_phy_enable_iface_clk(struct phy *generic_phy)
{
struct ufs_qcom_phy *phy = get_ufs_qcom_phy(generic_phy);
int ret = 0;
if (phy->is_iface_clk_enabled)
goto out;
ret = clk_prepare_enable(phy->tx_iface_clk);
if (ret) {
dev_err(phy->dev, "%s: tx_iface_clk enable failed %d\n",
__func__, ret);
goto out;
}
ret = clk_prepare_enable(phy->rx_iface_clk);
if (ret) {
clk_disable_unprepare(phy->tx_iface_clk);
dev_err(phy->dev, "%s: rx_iface_clk enable failed %d. disabling also tx_iface_clk\n",
__func__, ret);
goto out;
}
phy->is_iface_clk_enabled = true;
out:
return ret;
}
/* Turn OFF M-PHY RMMI interface clocks */
void ufs_qcom_phy_disable_iface_clk(struct phy *generic_phy)
{
struct ufs_qcom_phy *phy = get_ufs_qcom_phy(generic_phy);
if (phy->is_iface_clk_enabled) {
clk_disable_unprepare(phy->tx_iface_clk);
clk_disable_unprepare(phy->rx_iface_clk);
phy->is_iface_clk_enabled = false;
}
}
int ufs_qcom_phy_start_serdes(struct phy *generic_phy)
{
struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(generic_phy);
int ret = 0;
if (!ufs_qcom_phy->phy_spec_ops->start_serdes) {
dev_err(ufs_qcom_phy->dev, "%s: start_serdes() callback is not supported\n",
__func__);
ret = -ENOTSUPP;
} else {
ufs_qcom_phy->phy_spec_ops->start_serdes(ufs_qcom_phy);
}
return ret;
}
int ufs_qcom_phy_set_tx_lane_enable(struct phy *generic_phy, u32 tx_lanes)
{
struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(generic_phy);
int ret = 0;
if (!ufs_qcom_phy->phy_spec_ops->set_tx_lane_enable) {
dev_err(ufs_qcom_phy->dev, "%s: set_tx_lane_enable() callback is not supported\n",
__func__);
ret = -ENOTSUPP;
} else {
ufs_qcom_phy->phy_spec_ops->set_tx_lane_enable(ufs_qcom_phy,
tx_lanes);
}
return ret;
}
void ufs_qcom_phy_save_controller_version(struct phy *generic_phy,
u8 major, u16 minor, u16 step)
{
struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(generic_phy);
ufs_qcom_phy->host_ctrl_rev_major = major;
ufs_qcom_phy->host_ctrl_rev_minor = minor;
ufs_qcom_phy->host_ctrl_rev_step = step;
}
int ufs_qcom_phy_calibrate_phy(struct phy *generic_phy, bool is_rate_B)
{
struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(generic_phy);
int ret = 0;
if (!ufs_qcom_phy->phy_spec_ops->calibrate_phy) {
dev_err(ufs_qcom_phy->dev, "%s: calibrate_phy() callback is not supported\n",
__func__);
ret = -ENOTSUPP;
} else {
ret = ufs_qcom_phy->phy_spec_ops->
calibrate_phy(ufs_qcom_phy, is_rate_B);
if (ret)
dev_err(ufs_qcom_phy->dev, "%s: calibrate_phy() failed %d\n",
__func__, ret);
}
return ret;
}
int ufs_qcom_phy_remove(struct phy *generic_phy,
struct ufs_qcom_phy *ufs_qcom_phy)
{
phy_power_off(generic_phy);
kfree(ufs_qcom_phy->vdda_pll.name);
kfree(ufs_qcom_phy->vdda_phy.name);
return 0;
}
int ufs_qcom_phy_exit(struct phy *generic_phy)
{
struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(generic_phy);
if (ufs_qcom_phy->is_powered_on)
phy_power_off(generic_phy);
return 0;
}
int ufs_qcom_phy_is_pcs_ready(struct phy *generic_phy)
{
struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(generic_phy);
if (!ufs_qcom_phy->phy_spec_ops->is_physical_coding_sublayer_ready) {
dev_err(ufs_qcom_phy->dev, "%s: is_physical_coding_sublayer_ready() callback is not supported\n",
__func__);
return -ENOTSUPP;
}
return ufs_qcom_phy->phy_spec_ops->
is_physical_coding_sublayer_ready(ufs_qcom_phy);
}
int ufs_qcom_phy_power_on(struct phy *generic_phy)
{
struct ufs_qcom_phy *phy_common = get_ufs_qcom_phy(generic_phy);
struct device *dev = phy_common->dev;
int err;
err = ufs_qcom_phy_enable_vreg(generic_phy, &phy_common->vdda_phy);
if (err) {
dev_err(dev, "%s enable vdda_phy failed, err=%d\n",
__func__, err);
goto out;
}
phy_common->phy_spec_ops->power_control(phy_common, true);
/* vdda_pll also enables ref clock LDOs so enable it first */
err = ufs_qcom_phy_enable_vreg(generic_phy, &phy_common->vdda_pll);
if (err) {
dev_err(dev, "%s enable vdda_pll failed, err=%d\n",
__func__, err);
goto out_disable_phy;
}
err = ufs_qcom_phy_enable_ref_clk(generic_phy);
if (err) {
dev_err(dev, "%s enable phy ref clock failed, err=%d\n",
__func__, err);
goto out_disable_pll;
}
/* enable device PHY ref_clk pad rail */
if (phy_common->vddp_ref_clk.reg) {
err = ufs_qcom_phy_enable_vreg(generic_phy,
&phy_common->vddp_ref_clk);
if (err) {
dev_err(dev, "%s enable vddp_ref_clk failed, err=%d\n",
__func__, err);
goto out_disable_ref_clk;
}
}
phy_common->is_powered_on = true;
goto out;
out_disable_ref_clk:
ufs_qcom_phy_disable_ref_clk(generic_phy);
out_disable_pll:
ufs_qcom_phy_disable_vreg(generic_phy, &phy_common->vdda_pll);
out_disable_phy:
ufs_qcom_phy_disable_vreg(generic_phy, &phy_common->vdda_phy);
out:
return err;
}
int ufs_qcom_phy_power_off(struct phy *generic_phy)
{
struct ufs_qcom_phy *phy_common = get_ufs_qcom_phy(generic_phy);
phy_common->phy_spec_ops->power_control(phy_common, false);
if (phy_common->vddp_ref_clk.reg)
ufs_qcom_phy_disable_vreg(generic_phy,
&phy_common->vddp_ref_clk);
ufs_qcom_phy_disable_ref_clk(generic_phy);
ufs_qcom_phy_disable_vreg(generic_phy, &phy_common->vdda_pll);
ufs_qcom_phy_disable_vreg(generic_phy, &phy_common->vdda_phy);
phy_common->is_powered_on = false;
return 0;
}