2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-25 07:06:40 +08:00
linux-next/sound/soc/codecs/cs4270.c
Mark Brown 5c75848a7c ASoC: Staticise CS4270 DAI
It's not needed with multi-component.

Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Liam Girdwood <lrg@slimlogic.co.uk>
Acked-by: Timur Tabi <timur@freescale.com>
2010-10-07 13:40:44 -07:00

827 lines
24 KiB
C

/*
* CS4270 ALSA SoC (ASoC) codec driver
*
* Author: Timur Tabi <timur@freescale.com>
*
* Copyright 2007-2009 Freescale Semiconductor, Inc. This file is licensed
* under the terms of the GNU General Public License version 2. This
* program is licensed "as is" without any warranty of any kind, whether
* express or implied.
*
* This is an ASoC device driver for the Cirrus Logic CS4270 codec.
*
* Current features/limitations:
*
* - Software mode is supported. Stand-alone mode is not supported.
* - Only I2C is supported, not SPI
* - Support for master and slave mode
* - The machine driver's 'startup' function must call
* cs4270_set_dai_sysclk() with the value of MCLK.
* - Only I2S and left-justified modes are supported
* - Power management is supported
*/
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/soc.h>
#include <sound/initval.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/regulator/consumer.h>
/*
* The codec isn't really big-endian or little-endian, since the I2S
* interface requires data to be sent serially with the MSbit first.
* However, to support BE and LE I2S devices, we specify both here. That
* way, ALSA will always match the bit patterns.
*/
#define CS4270_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE | \
SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \
SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \
SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \
SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE)
/* CS4270 registers addresses */
#define CS4270_CHIPID 0x01 /* Chip ID */
#define CS4270_PWRCTL 0x02 /* Power Control */
#define CS4270_MODE 0x03 /* Mode Control */
#define CS4270_FORMAT 0x04 /* Serial Format, ADC/DAC Control */
#define CS4270_TRANS 0x05 /* Transition Control */
#define CS4270_MUTE 0x06 /* Mute Control */
#define CS4270_VOLA 0x07 /* DAC Channel A Volume Control */
#define CS4270_VOLB 0x08 /* DAC Channel B Volume Control */
#define CS4270_FIRSTREG 0x01
#define CS4270_LASTREG 0x08
#define CS4270_NUMREGS (CS4270_LASTREG - CS4270_FIRSTREG + 1)
#define CS4270_I2C_INCR 0x80
/* Bit masks for the CS4270 registers */
#define CS4270_CHIPID_ID 0xF0
#define CS4270_CHIPID_REV 0x0F
#define CS4270_PWRCTL_FREEZE 0x80
#define CS4270_PWRCTL_PDN_ADC 0x20
#define CS4270_PWRCTL_PDN_DAC 0x02
#define CS4270_PWRCTL_PDN 0x01
#define CS4270_PWRCTL_PDN_ALL \
(CS4270_PWRCTL_PDN_ADC | CS4270_PWRCTL_PDN_DAC | CS4270_PWRCTL_PDN)
#define CS4270_MODE_SPEED_MASK 0x30
#define CS4270_MODE_1X 0x00
#define CS4270_MODE_2X 0x10
#define CS4270_MODE_4X 0x20
#define CS4270_MODE_SLAVE 0x30
#define CS4270_MODE_DIV_MASK 0x0E
#define CS4270_MODE_DIV1 0x00
#define CS4270_MODE_DIV15 0x02
#define CS4270_MODE_DIV2 0x04
#define CS4270_MODE_DIV3 0x06
#define CS4270_MODE_DIV4 0x08
#define CS4270_MODE_POPGUARD 0x01
#define CS4270_FORMAT_FREEZE_A 0x80
#define CS4270_FORMAT_FREEZE_B 0x40
#define CS4270_FORMAT_LOOPBACK 0x20
#define CS4270_FORMAT_DAC_MASK 0x18
#define CS4270_FORMAT_DAC_LJ 0x00
#define CS4270_FORMAT_DAC_I2S 0x08
#define CS4270_FORMAT_DAC_RJ16 0x18
#define CS4270_FORMAT_DAC_RJ24 0x10
#define CS4270_FORMAT_ADC_MASK 0x01
#define CS4270_FORMAT_ADC_LJ 0x00
#define CS4270_FORMAT_ADC_I2S 0x01
#define CS4270_TRANS_ONE_VOL 0x80
#define CS4270_TRANS_SOFT 0x40
#define CS4270_TRANS_ZERO 0x20
#define CS4270_TRANS_INV_ADC_A 0x08
#define CS4270_TRANS_INV_ADC_B 0x10
#define CS4270_TRANS_INV_DAC_A 0x02
#define CS4270_TRANS_INV_DAC_B 0x04
#define CS4270_TRANS_DEEMPH 0x01
#define CS4270_MUTE_AUTO 0x20
#define CS4270_MUTE_ADC_A 0x08
#define CS4270_MUTE_ADC_B 0x10
#define CS4270_MUTE_POLARITY 0x04
#define CS4270_MUTE_DAC_A 0x01
#define CS4270_MUTE_DAC_B 0x02
static const char *supply_names[] = {
"va", "vd", "vlc"
};
/* Private data for the CS4270 */
struct cs4270_private {
enum snd_soc_control_type control_type;
void *control_data;
u8 reg_cache[CS4270_NUMREGS];
unsigned int mclk; /* Input frequency of the MCLK pin */
unsigned int mode; /* The mode (I2S or left-justified) */
unsigned int slave_mode;
unsigned int manual_mute;
/* power domain regulators */
struct regulator_bulk_data supplies[ARRAY_SIZE(supply_names)];
};
/**
* struct cs4270_mode_ratios - clock ratio tables
* @ratio: the ratio of MCLK to the sample rate
* @speed_mode: the Speed Mode bits to set in the Mode Control register for
* this ratio
* @mclk: the Ratio Select bits to set in the Mode Control register for this
* ratio
*
* The data for this chart is taken from Table 5 of the CS4270 reference
* manual.
*
* This table is used to determine how to program the Mode Control register.
* It is also used by cs4270_set_dai_sysclk() to tell ALSA which sampling
* rates the CS4270 currently supports.
*
* @speed_mode is the corresponding bit pattern to be written to the
* MODE bits of the Mode Control Register
*
* @mclk is the corresponding bit pattern to be wirten to the MCLK bits of
* the Mode Control Register.
*
* In situations where a single ratio is represented by multiple speed
* modes, we favor the slowest speed. E.g, for a ratio of 128, we pick
* double-speed instead of quad-speed. However, the CS4270 errata states
* that divide-By-1.5 can cause failures, so we avoid that mode where
* possible.
*
* Errata: There is an errata for the CS4270 where divide-by-1.5 does not
* work if Vd is 3.3V. If this effects you, select the
* CONFIG_SND_SOC_CS4270_VD33_ERRATA Kconfig option, and the driver will
* never select any sample rates that require divide-by-1.5.
*/
struct cs4270_mode_ratios {
unsigned int ratio;
u8 speed_mode;
u8 mclk;
};
static struct cs4270_mode_ratios cs4270_mode_ratios[] = {
{64, CS4270_MODE_4X, CS4270_MODE_DIV1},
#ifndef CONFIG_SND_SOC_CS4270_VD33_ERRATA
{96, CS4270_MODE_4X, CS4270_MODE_DIV15},
#endif
{128, CS4270_MODE_2X, CS4270_MODE_DIV1},
{192, CS4270_MODE_4X, CS4270_MODE_DIV3},
{256, CS4270_MODE_1X, CS4270_MODE_DIV1},
{384, CS4270_MODE_2X, CS4270_MODE_DIV3},
{512, CS4270_MODE_1X, CS4270_MODE_DIV2},
{768, CS4270_MODE_1X, CS4270_MODE_DIV3},
{1024, CS4270_MODE_1X, CS4270_MODE_DIV4}
};
/* The number of MCLK/LRCK ratios supported by the CS4270 */
#define NUM_MCLK_RATIOS ARRAY_SIZE(cs4270_mode_ratios)
/**
* cs4270_set_dai_sysclk - determine the CS4270 samples rates.
* @codec_dai: the codec DAI
* @clk_id: the clock ID (ignored)
* @freq: the MCLK input frequency
* @dir: the clock direction (ignored)
*
* This function is used to tell the codec driver what the input MCLK
* frequency is.
*
* The value of MCLK is used to determine which sample rates are supported
* by the CS4270. The ratio of MCLK / Fs must be equal to one of nine
* supported values - 64, 96, 128, 192, 256, 384, 512, 768, and 1024.
*
* This function calculates the nine ratios and determines which ones match
* a standard sample rate. If there's a match, then it is added to the list
* of supported sample rates.
*
* This function must be called by the machine driver's 'startup' function,
* otherwise the list of supported sample rates will not be available in
* time for ALSA.
*
* For setups with variable MCLKs, pass 0 as 'freq' argument. This will cause
* theoretically possible sample rates to be enabled. Call it again with a
* proper value set one the external clock is set (most probably you would do
* that from a machine's driver 'hw_param' hook.
*/
static int cs4270_set_dai_sysclk(struct snd_soc_dai *codec_dai,
int clk_id, unsigned int freq, int dir)
{
struct snd_soc_codec *codec = codec_dai->codec;
struct cs4270_private *cs4270 = snd_soc_codec_get_drvdata(codec);
cs4270->mclk = freq;
return 0;
}
/**
* cs4270_set_dai_fmt - configure the codec for the selected audio format
* @codec_dai: the codec DAI
* @format: a SND_SOC_DAIFMT_x value indicating the data format
*
* This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
* codec accordingly.
*
* Currently, this function only supports SND_SOC_DAIFMT_I2S and
* SND_SOC_DAIFMT_LEFT_J. The CS4270 codec also supports right-justified
* data for playback only, but ASoC currently does not support different
* formats for playback vs. record.
*/
static int cs4270_set_dai_fmt(struct snd_soc_dai *codec_dai,
unsigned int format)
{
struct snd_soc_codec *codec = codec_dai->codec;
struct cs4270_private *cs4270 = snd_soc_codec_get_drvdata(codec);
int ret = 0;
/* set DAI format */
switch (format & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
case SND_SOC_DAIFMT_LEFT_J:
cs4270->mode = format & SND_SOC_DAIFMT_FORMAT_MASK;
break;
default:
dev_err(codec->dev, "invalid dai format\n");
ret = -EINVAL;
}
/* set master/slave audio interface */
switch (format & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFS:
cs4270->slave_mode = 1;
break;
case SND_SOC_DAIFMT_CBM_CFM:
cs4270->slave_mode = 0;
break;
default:
/* all other modes are unsupported by the hardware */
ret = -EINVAL;
}
return ret;
}
/**
* cs4270_fill_cache - pre-fill the CS4270 register cache.
* @codec: the codec for this CS4270
*
* This function fills in the CS4270 register cache by reading the register
* values from the hardware.
*
* This CS4270 registers are cached to avoid excessive I2C I/O operations.
* After the initial read to pre-fill the cache, the CS4270 never updates
* the register values, so we won't have a cache coherency problem.
*
* We use the auto-increment feature of the CS4270 to read all registers in
* one shot.
*/
static int cs4270_fill_cache(struct snd_soc_codec *codec)
{
u8 *cache = codec->reg_cache;
struct i2c_client *i2c_client = codec->control_data;
s32 length;
length = i2c_smbus_read_i2c_block_data(i2c_client,
CS4270_FIRSTREG | CS4270_I2C_INCR, CS4270_NUMREGS, cache);
if (length != CS4270_NUMREGS) {
dev_err(codec->dev, "i2c read failure, addr=0x%x\n",
i2c_client->addr);
return -EIO;
}
return 0;
}
/**
* cs4270_read_reg_cache - read from the CS4270 register cache.
* @codec: the codec for this CS4270
* @reg: the register to read
*
* This function returns the value for a given register. It reads only from
* the register cache, not the hardware itself.
*
* This CS4270 registers are cached to avoid excessive I2C I/O operations.
* After the initial read to pre-fill the cache, the CS4270 never updates
* the register values, so we won't have a cache coherency problem.
*/
static unsigned int cs4270_read_reg_cache(struct snd_soc_codec *codec,
unsigned int reg)
{
u8 *cache = codec->reg_cache;
if ((reg < CS4270_FIRSTREG) || (reg > CS4270_LASTREG))
return -EIO;
return cache[reg - CS4270_FIRSTREG];
}
/**
* cs4270_i2c_write - write to a CS4270 register via the I2C bus.
* @codec: the codec for this CS4270
* @reg: the register to write
* @value: the value to write to the register
*
* This function writes the given value to the given CS4270 register, and
* also updates the register cache.
*
* Note that we don't use the hw_write function pointer of snd_soc_codec.
* That's because it's too clunky: the hw_write_t prototype does not match
* i2c_smbus_write_byte_data(), and it's just another layer of overhead.
*/
static int cs4270_i2c_write(struct snd_soc_codec *codec, unsigned int reg,
unsigned int value)
{
u8 *cache = codec->reg_cache;
if ((reg < CS4270_FIRSTREG) || (reg > CS4270_LASTREG))
return -EIO;
/* Only perform an I2C operation if the new value is different */
if (cache[reg - CS4270_FIRSTREG] != value) {
struct i2c_client *client = codec->control_data;
if (i2c_smbus_write_byte_data(client, reg, value)) {
dev_err(codec->dev, "i2c write failed\n");
return -EIO;
}
/* We've written to the hardware, so update the cache */
cache[reg - CS4270_FIRSTREG] = value;
}
return 0;
}
/**
* cs4270_hw_params - program the CS4270 with the given hardware parameters.
* @substream: the audio stream
* @params: the hardware parameters to set
* @dai: the SOC DAI (ignored)
*
* This function programs the hardware with the values provided.
* Specifically, the sample rate and the data format.
*
* The .ops functions are used to provide board-specific data, like input
* frequencies, to this driver. This function takes that information,
* combines it with the hardware parameters provided, and programs the
* hardware accordingly.
*/
static int cs4270_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_codec *codec = rtd->codec;
struct cs4270_private *cs4270 = snd_soc_codec_get_drvdata(codec);
int ret;
unsigned int i;
unsigned int rate;
unsigned int ratio;
int reg;
/* Figure out which MCLK/LRCK ratio to use */
rate = params_rate(params); /* Sampling rate, in Hz */
ratio = cs4270->mclk / rate; /* MCLK/LRCK ratio */
for (i = 0; i < NUM_MCLK_RATIOS; i++) {
if (cs4270_mode_ratios[i].ratio == ratio)
break;
}
if (i == NUM_MCLK_RATIOS) {
/* We did not find a matching ratio */
dev_err(codec->dev, "could not find matching ratio\n");
return -EINVAL;
}
/* Set the sample rate */
reg = snd_soc_read(codec, CS4270_MODE);
reg &= ~(CS4270_MODE_SPEED_MASK | CS4270_MODE_DIV_MASK);
reg |= cs4270_mode_ratios[i].mclk;
if (cs4270->slave_mode)
reg |= CS4270_MODE_SLAVE;
else
reg |= cs4270_mode_ratios[i].speed_mode;
ret = snd_soc_write(codec, CS4270_MODE, reg);
if (ret < 0) {
dev_err(codec->dev, "i2c write failed\n");
return ret;
}
/* Set the DAI format */
reg = snd_soc_read(codec, CS4270_FORMAT);
reg &= ~(CS4270_FORMAT_DAC_MASK | CS4270_FORMAT_ADC_MASK);
switch (cs4270->mode) {
case SND_SOC_DAIFMT_I2S:
reg |= CS4270_FORMAT_DAC_I2S | CS4270_FORMAT_ADC_I2S;
break;
case SND_SOC_DAIFMT_LEFT_J:
reg |= CS4270_FORMAT_DAC_LJ | CS4270_FORMAT_ADC_LJ;
break;
default:
dev_err(codec->dev, "unknown dai format\n");
return -EINVAL;
}
ret = snd_soc_write(codec, CS4270_FORMAT, reg);
if (ret < 0) {
dev_err(codec->dev, "i2c write failed\n");
return ret;
}
return ret;
}
/**
* cs4270_dai_mute - enable/disable the CS4270 external mute
* @dai: the SOC DAI
* @mute: 0 = disable mute, 1 = enable mute
*
* This function toggles the mute bits in the MUTE register. The CS4270's
* mute capability is intended for external muting circuitry, so if the
* board does not have the MUTEA or MUTEB pins connected to such circuitry,
* then this function will do nothing.
*/
static int cs4270_dai_mute(struct snd_soc_dai *dai, int mute)
{
struct snd_soc_codec *codec = dai->codec;
struct cs4270_private *cs4270 = snd_soc_codec_get_drvdata(codec);
int reg6;
reg6 = snd_soc_read(codec, CS4270_MUTE);
if (mute)
reg6 |= CS4270_MUTE_DAC_A | CS4270_MUTE_DAC_B;
else {
reg6 &= ~(CS4270_MUTE_DAC_A | CS4270_MUTE_DAC_B);
reg6 |= cs4270->manual_mute;
}
return snd_soc_write(codec, CS4270_MUTE, reg6);
}
/**
* cs4270_soc_put_mute - put callback for the 'Master Playback switch'
* alsa control.
* @kcontrol: mixer control
* @ucontrol: control element information
*
* This function basically passes the arguments on to the generic
* snd_soc_put_volsw() function and saves the mute information in
* our private data structure. This is because we want to prevent
* cs4270_dai_mute() neglecting the user's decision to manually
* mute the codec's output.
*
* Returns 0 for success.
*/
static int cs4270_soc_put_mute(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct cs4270_private *cs4270 = snd_soc_codec_get_drvdata(codec);
int left = !ucontrol->value.integer.value[0];
int right = !ucontrol->value.integer.value[1];
cs4270->manual_mute = (left ? CS4270_MUTE_DAC_A : 0) |
(right ? CS4270_MUTE_DAC_B : 0);
return snd_soc_put_volsw(kcontrol, ucontrol);
}
/* A list of non-DAPM controls that the CS4270 supports */
static const struct snd_kcontrol_new cs4270_snd_controls[] = {
SOC_DOUBLE_R("Master Playback Volume",
CS4270_VOLA, CS4270_VOLB, 0, 0xFF, 1),
SOC_SINGLE("Digital Sidetone Switch", CS4270_FORMAT, 5, 1, 0),
SOC_SINGLE("Soft Ramp Switch", CS4270_TRANS, 6, 1, 0),
SOC_SINGLE("Zero Cross Switch", CS4270_TRANS, 5, 1, 0),
SOC_SINGLE("De-emphasis filter", CS4270_TRANS, 0, 1, 0),
SOC_SINGLE("Popguard Switch", CS4270_MODE, 0, 1, 1),
SOC_SINGLE("Auto-Mute Switch", CS4270_MUTE, 5, 1, 0),
SOC_DOUBLE("Master Capture Switch", CS4270_MUTE, 3, 4, 1, 1),
SOC_DOUBLE_EXT("Master Playback Switch", CS4270_MUTE, 0, 1, 1, 1,
snd_soc_get_volsw, cs4270_soc_put_mute),
};
static struct snd_soc_dai_ops cs4270_dai_ops = {
.hw_params = cs4270_hw_params,
.set_sysclk = cs4270_set_dai_sysclk,
.set_fmt = cs4270_set_dai_fmt,
.digital_mute = cs4270_dai_mute,
};
static struct snd_soc_dai_driver cs4270_dai = {
.name = "cs4270-hifi",
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_CONTINUOUS,
.rate_min = 4000,
.rate_max = 216000,
.formats = CS4270_FORMATS,
},
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_CONTINUOUS,
.rate_min = 4000,
.rate_max = 216000,
.formats = CS4270_FORMATS,
},
.ops = &cs4270_dai_ops,
};
/**
* cs4270_probe - ASoC probe function
* @pdev: platform device
*
* This function is called when ASoC has all the pieces it needs to
* instantiate a sound driver.
*/
static int cs4270_probe(struct snd_soc_codec *codec)
{
struct cs4270_private *cs4270 = snd_soc_codec_get_drvdata(codec);
int i, ret, reg;
codec->control_data = cs4270->control_data;
/* The I2C interface is set up, so pre-fill our register cache */
ret = cs4270_fill_cache(codec);
if (ret < 0) {
dev_err(codec->dev, "failed to fill register cache\n");
return ret;
}
/* Disable auto-mute. This feature appears to be buggy. In some
* situations, auto-mute will not deactivate when it should, so we want
* this feature disabled by default. An application (e.g. alsactl) can
* re-enabled it by using the controls.
*/
reg = cs4270_read_reg_cache(codec, CS4270_MUTE);
reg &= ~CS4270_MUTE_AUTO;
ret = cs4270_i2c_write(codec, CS4270_MUTE, reg);
if (ret < 0) {
dev_err(codec->dev, "i2c write failed\n");
return ret;
}
/* Disable automatic volume control. The hardware enables, and it
* causes volume change commands to be delayed, sometimes until after
* playback has started. An application (e.g. alsactl) can
* re-enabled it by using the controls.
*/
reg = cs4270_read_reg_cache(codec, CS4270_TRANS);
reg &= ~(CS4270_TRANS_SOFT | CS4270_TRANS_ZERO);
ret = cs4270_i2c_write(codec, CS4270_TRANS, reg);
if (ret < 0) {
dev_err(codec->dev, "i2c write failed\n");
return ret;
}
/* Add the non-DAPM controls */
ret = snd_soc_add_controls(codec, cs4270_snd_controls,
ARRAY_SIZE(cs4270_snd_controls));
if (ret < 0) {
dev_err(codec->dev, "failed to add controls\n");
return ret;
}
/* get the power supply regulators */
for (i = 0; i < ARRAY_SIZE(supply_names); i++)
cs4270->supplies[i].supply = supply_names[i];
ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(cs4270->supplies),
cs4270->supplies);
if (ret < 0)
return ret;
ret = regulator_bulk_enable(ARRAY_SIZE(cs4270->supplies),
cs4270->supplies);
if (ret < 0)
goto error_free_regulators;
return 0;
error_free_regulators:
regulator_bulk_free(ARRAY_SIZE(cs4270->supplies),
cs4270->supplies);
return ret;
}
/**
* cs4270_remove - ASoC remove function
* @pdev: platform device
*
* This function is the counterpart to cs4270_probe().
*/
static int cs4270_remove(struct snd_soc_codec *codec)
{
struct cs4270_private *cs4270 = snd_soc_codec_get_drvdata(codec);
regulator_bulk_disable(ARRAY_SIZE(cs4270->supplies), cs4270->supplies);
regulator_bulk_free(ARRAY_SIZE(cs4270->supplies), cs4270->supplies);
return 0;
};
#ifdef CONFIG_PM
/* This suspend/resume implementation can handle both - a simple standby
* where the codec remains powered, and a full suspend, where the voltage
* domain the codec is connected to is teared down and/or any other hardware
* reset condition is asserted.
*
* The codec's own power saving features are enabled in the suspend callback,
* and all registers are written back to the hardware when resuming.
*/
static int cs4270_soc_suspend(struct snd_soc_codec *codec, pm_message_t mesg)
{
struct cs4270_private *cs4270 = snd_soc_codec_get_drvdata(codec);
int reg, ret;
reg = snd_soc_read(codec, CS4270_PWRCTL) | CS4270_PWRCTL_PDN_ALL;
if (reg < 0)
return reg;
ret = snd_soc_write(codec, CS4270_PWRCTL, reg);
if (ret < 0)
return ret;
regulator_bulk_disable(ARRAY_SIZE(cs4270->supplies),
cs4270->supplies);
return 0;
}
static int cs4270_soc_resume(struct snd_soc_codec *codec)
{
struct cs4270_private *cs4270 = snd_soc_codec_get_drvdata(codec);
struct i2c_client *i2c_client = codec->control_data;
int reg;
regulator_bulk_enable(ARRAY_SIZE(cs4270->supplies),
cs4270->supplies);
/* In case the device was put to hard reset during sleep, we need to
* wait 500ns here before any I2C communication. */
ndelay(500);
/* first restore the entire register cache ... */
for (reg = CS4270_FIRSTREG; reg <= CS4270_LASTREG; reg++) {
u8 val = snd_soc_read(codec, reg);
if (i2c_smbus_write_byte_data(i2c_client, reg, val)) {
dev_err(codec->dev, "i2c write failed\n");
return -EIO;
}
}
/* ... then disable the power-down bits */
reg = snd_soc_read(codec, CS4270_PWRCTL);
reg &= ~CS4270_PWRCTL_PDN_ALL;
return snd_soc_write(codec, CS4270_PWRCTL, reg);
}
#else
#define cs4270_soc_suspend NULL
#define cs4270_soc_resume NULL
#endif /* CONFIG_PM */
/*
* ASoC codec device structure
*
* Assign this variable to the codec_dev field of the machine driver's
* snd_soc_device structure.
*/
static struct snd_soc_codec_driver soc_codec_device_cs4270 = {
.probe = cs4270_probe,
.remove = cs4270_remove,
.suspend = cs4270_soc_suspend,
.resume = cs4270_soc_resume,
.read = cs4270_read_reg_cache,
.write = cs4270_i2c_write,
.reg_cache_size = CS4270_NUMREGS,
.reg_word_size = sizeof(u8),
};
/**
* cs4270_i2c_probe - initialize the I2C interface of the CS4270
* @i2c_client: the I2C client object
* @id: the I2C device ID (ignored)
*
* This function is called whenever the I2C subsystem finds a device that
* matches the device ID given via a prior call to i2c_add_driver().
*/
static int cs4270_i2c_probe(struct i2c_client *i2c_client,
const struct i2c_device_id *id)
{
struct cs4270_private *cs4270;
int ret;
/* Verify that we have a CS4270 */
ret = i2c_smbus_read_byte_data(i2c_client, CS4270_CHIPID);
if (ret < 0) {
dev_err(&i2c_client->dev, "failed to read i2c at addr %X\n",
i2c_client->addr);
return ret;
}
/* The top four bits of the chip ID should be 1100. */
if ((ret & 0xF0) != 0xC0) {
dev_err(&i2c_client->dev, "device at addr %X is not a CS4270\n",
i2c_client->addr);
return -ENODEV;
}
dev_info(&i2c_client->dev, "found device at i2c address %X\n",
i2c_client->addr);
dev_info(&i2c_client->dev, "hardware revision %X\n", ret & 0xF);
cs4270 = kzalloc(sizeof(struct cs4270_private), GFP_KERNEL);
if (!cs4270) {
dev_err(&i2c_client->dev, "could not allocate codec\n");
return -ENOMEM;
}
i2c_set_clientdata(i2c_client, cs4270);
cs4270->control_data = i2c_client;
cs4270->control_type = SND_SOC_I2C;
ret = snd_soc_register_codec(&i2c_client->dev,
&soc_codec_device_cs4270, &cs4270_dai, 1);
if (ret < 0)
kfree(cs4270);
return ret;
}
/**
* cs4270_i2c_remove - remove an I2C device
* @i2c_client: the I2C client object
*
* This function is the counterpart to cs4270_i2c_probe().
*/
static int cs4270_i2c_remove(struct i2c_client *i2c_client)
{
snd_soc_unregister_codec(&i2c_client->dev);
kfree(i2c_get_clientdata(i2c_client));
return 0;
}
/*
* cs4270_id - I2C device IDs supported by this driver
*/
static struct i2c_device_id cs4270_id[] = {
{"cs4270", 0},
{}
};
MODULE_DEVICE_TABLE(i2c, cs4270_id);
/*
* cs4270_i2c_driver - I2C device identification
*
* This structure tells the I2C subsystem how to identify and support a
* given I2C device type.
*/
static struct i2c_driver cs4270_i2c_driver = {
.driver = {
.name = "cs4270-codec",
.owner = THIS_MODULE,
},
.id_table = cs4270_id,
.probe = cs4270_i2c_probe,
.remove = cs4270_i2c_remove,
};
static int __init cs4270_init(void)
{
pr_info("Cirrus Logic CS4270 ALSA SoC Codec Driver\n");
return i2c_add_driver(&cs4270_i2c_driver);
}
module_init(cs4270_init);
static void __exit cs4270_exit(void)
{
i2c_del_driver(&cs4270_i2c_driver);
}
module_exit(cs4270_exit);
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_DESCRIPTION("Cirrus Logic CS4270 ALSA SoC Codec Driver");
MODULE_LICENSE("GPL");