2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-26 07:35:44 +08:00
linux-next/drivers/dma/fsldma.h
Thomas Gleixner ea2305f6a8 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 40
Based on 1 normalized pattern(s):

  this is free software you can redistribute it and or modify it under
  the terms of the gnu general public license as published by the free
  software foundation either version 2 of the license or at your
  option any later version

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 14 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190520170857.915677517@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-24 17:27:12 +02:00

266 lines
7.9 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
*
* Author:
* Zhang Wei <wei.zhang@freescale.com>, Jul 2007
* Ebony Zhu <ebony.zhu@freescale.com>, May 2007
*/
#ifndef __DMA_FSLDMA_H
#define __DMA_FSLDMA_H
#include <linux/device.h>
#include <linux/dmapool.h>
#include <linux/dmaengine.h>
/* Define data structures needed by Freescale
* MPC8540 and MPC8349 DMA controller.
*/
#define FSL_DMA_MR_CS 0x00000001
#define FSL_DMA_MR_CC 0x00000002
#define FSL_DMA_MR_CA 0x00000008
#define FSL_DMA_MR_EIE 0x00000040
#define FSL_DMA_MR_XFE 0x00000020
#define FSL_DMA_MR_EOLNIE 0x00000100
#define FSL_DMA_MR_EOLSIE 0x00000080
#define FSL_DMA_MR_EOSIE 0x00000200
#define FSL_DMA_MR_CDSM 0x00000010
#define FSL_DMA_MR_CTM 0x00000004
#define FSL_DMA_MR_EMP_EN 0x00200000
#define FSL_DMA_MR_EMS_EN 0x00040000
#define FSL_DMA_MR_DAHE 0x00002000
#define FSL_DMA_MR_SAHE 0x00001000
#define FSL_DMA_MR_SAHTS_MASK 0x0000C000
#define FSL_DMA_MR_DAHTS_MASK 0x00030000
#define FSL_DMA_MR_BWC_MASK 0x0f000000
/*
* Bandwidth/pause control determines how many bytes a given
* channel is allowed to transfer before the DMA engine pauses
* the current channel and switches to the next channel
*/
#define FSL_DMA_MR_BWC 0x0A000000
/* Special MR definition for MPC8349 */
#define FSL_DMA_MR_EOTIE 0x00000080
#define FSL_DMA_MR_PRC_RM 0x00000800
#define FSL_DMA_SR_CH 0x00000020
#define FSL_DMA_SR_PE 0x00000010
#define FSL_DMA_SR_CB 0x00000004
#define FSL_DMA_SR_TE 0x00000080
#define FSL_DMA_SR_EOSI 0x00000002
#define FSL_DMA_SR_EOLSI 0x00000001
#define FSL_DMA_SR_EOCDI 0x00000001
#define FSL_DMA_SR_EOLNI 0x00000008
#define FSL_DMA_SATR_SBPATMU 0x20000000
#define FSL_DMA_SATR_STRANSINT_RIO 0x00c00000
#define FSL_DMA_SATR_SREADTYPE_SNOOP_READ 0x00050000
#define FSL_DMA_SATR_SREADTYPE_BP_IORH 0x00020000
#define FSL_DMA_SATR_SREADTYPE_BP_NREAD 0x00040000
#define FSL_DMA_SATR_SREADTYPE_BP_MREAD 0x00070000
#define FSL_DMA_DATR_DBPATMU 0x20000000
#define FSL_DMA_DATR_DTRANSINT_RIO 0x00c00000
#define FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE 0x00050000
#define FSL_DMA_DATR_DWRITETYPE_BP_FLUSH 0x00010000
#define FSL_DMA_EOL ((u64)0x1)
#define FSL_DMA_SNEN ((u64)0x10)
#define FSL_DMA_EOSIE 0x8
#define FSL_DMA_NLDA_MASK (~(u64)0x1f)
#define FSL_DMA_BCR_MAX_CNT 0x03ffffffu
#define FSL_DMA_DGSR_TE 0x80
#define FSL_DMA_DGSR_CH 0x20
#define FSL_DMA_DGSR_PE 0x10
#define FSL_DMA_DGSR_EOLNI 0x08
#define FSL_DMA_DGSR_CB 0x04
#define FSL_DMA_DGSR_EOSI 0x02
#define FSL_DMA_DGSR_EOLSI 0x01
#define FSL_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
typedef u64 __bitwise v64;
typedef u32 __bitwise v32;
struct fsl_dma_ld_hw {
v64 src_addr;
v64 dst_addr;
v64 next_ln_addr;
v32 count;
v32 reserve;
} __attribute__((aligned(32)));
struct fsl_desc_sw {
struct fsl_dma_ld_hw hw;
struct list_head node;
struct list_head tx_list;
struct dma_async_tx_descriptor async_tx;
} __attribute__((aligned(32)));
struct fsldma_chan_regs {
u32 mr; /* 0x00 - Mode Register */
u32 sr; /* 0x04 - Status Register */
u64 cdar; /* 0x08 - Current descriptor address register */
u64 sar; /* 0x10 - Source Address Register */
u64 dar; /* 0x18 - Destination Address Register */
u32 bcr; /* 0x20 - Byte Count Register */
u64 ndar; /* 0x24 - Next Descriptor Address Register */
};
struct fsldma_chan;
#define FSL_DMA_MAX_CHANS_PER_DEVICE 8
struct fsldma_device {
void __iomem *regs; /* DGSR register base */
struct device *dev;
struct dma_device common;
struct fsldma_chan *chan[FSL_DMA_MAX_CHANS_PER_DEVICE];
u32 feature; /* The same as DMA channels */
int irq; /* Channel IRQ */
};
/* Define macros for fsldma_chan->feature property */
#define FSL_DMA_LITTLE_ENDIAN 0x00000000
#define FSL_DMA_BIG_ENDIAN 0x00000001
#define FSL_DMA_IP_MASK 0x00000ff0
#define FSL_DMA_IP_85XX 0x00000010
#define FSL_DMA_IP_83XX 0x00000020
#define FSL_DMA_CHAN_PAUSE_EXT 0x00001000
#define FSL_DMA_CHAN_START_EXT 0x00002000
#ifdef CONFIG_PM
struct fsldma_chan_regs_save {
u32 mr;
};
enum fsldma_pm_state {
RUNNING = 0,
SUSPENDED,
};
#endif
struct fsldma_chan {
char name[8]; /* Channel name */
struct fsldma_chan_regs __iomem *regs;
spinlock_t desc_lock; /* Descriptor operation lock */
/*
* Descriptors which are queued to run, but have not yet been
* submitted to the hardware for execution
*/
struct list_head ld_pending;
/*
* Descriptors which are currently being executed by the hardware
*/
struct list_head ld_running;
/*
* Descriptors which have finished execution by the hardware. These
* descriptors have already had their cleanup actions run. They are
* waiting for the ACK bit to be set by the async_tx API.
*/
struct list_head ld_completed; /* Link descriptors queue */
struct dma_chan common; /* DMA common channel */
struct dma_pool *desc_pool; /* Descriptors pool */
struct device *dev; /* Channel device */
int irq; /* Channel IRQ */
int id; /* Raw id of this channel */
struct tasklet_struct tasklet;
u32 feature;
bool idle; /* DMA controller is idle */
#ifdef CONFIG_PM
struct fsldma_chan_regs_save regs_save;
enum fsldma_pm_state pm_state;
#endif
void (*toggle_ext_pause)(struct fsldma_chan *fsl_chan, int enable);
void (*toggle_ext_start)(struct fsldma_chan *fsl_chan, int enable);
void (*set_src_loop_size)(struct fsldma_chan *fsl_chan, int size);
void (*set_dst_loop_size)(struct fsldma_chan *fsl_chan, int size);
void (*set_request_count)(struct fsldma_chan *fsl_chan, int size);
};
#define to_fsl_chan(chan) container_of(chan, struct fsldma_chan, common)
#define to_fsl_desc(lh) container_of(lh, struct fsl_desc_sw, node)
#define tx_to_fsl_desc(tx) container_of(tx, struct fsl_desc_sw, async_tx)
#ifdef CONFIG_PPC
#define fsl_ioread32(p) in_le32(p)
#define fsl_ioread32be(p) in_be32(p)
#define fsl_iowrite32(v, p) out_le32(p, v)
#define fsl_iowrite32be(v, p) out_be32(p, v)
#ifdef __powerpc64__
#define fsl_ioread64(p) in_le64(p)
#define fsl_ioread64be(p) in_be64(p)
#define fsl_iowrite64(v, p) out_le64(p, v)
#define fsl_iowrite64be(v, p) out_be64(p, v)
#else
static u64 fsl_ioread64(const u64 __iomem *addr)
{
u32 fsl_addr = lower_32_bits(addr);
u64 fsl_addr_hi = (u64)in_le32((u32 *)(fsl_addr + 1)) << 32;
return fsl_addr_hi | in_le32((u32 *)fsl_addr);
}
static void fsl_iowrite64(u64 val, u64 __iomem *addr)
{
out_le32((u32 __iomem *)addr + 1, val >> 32);
out_le32((u32 __iomem *)addr, (u32)val);
}
static u64 fsl_ioread64be(const u64 __iomem *addr)
{
u32 fsl_addr = lower_32_bits(addr);
u64 fsl_addr_hi = (u64)in_be32((u32 *)fsl_addr) << 32;
return fsl_addr_hi | in_be32((u32 *)(fsl_addr + 1));
}
static void fsl_iowrite64be(u64 val, u64 __iomem *addr)
{
out_be32((u32 __iomem *)addr, val >> 32);
out_be32((u32 __iomem *)addr + 1, (u32)val);
}
#endif
#endif
#if defined(CONFIG_ARM64) || defined(CONFIG_ARM)
#define fsl_ioread32(p) ioread32(p)
#define fsl_ioread32be(p) ioread32be(p)
#define fsl_iowrite32(v, p) iowrite32(v, p)
#define fsl_iowrite32be(v, p) iowrite32be(v, p)
#define fsl_ioread64(p) ioread64(p)
#define fsl_ioread64be(p) ioread64be(p)
#define fsl_iowrite64(v, p) iowrite64(v, p)
#define fsl_iowrite64be(v, p) iowrite64be(v, p)
#endif
#define FSL_DMA_IN(fsl_dma, addr, width) \
(((fsl_dma)->feature & FSL_DMA_BIG_ENDIAN) ? \
fsl_ioread##width##be(addr) : fsl_ioread##width(addr))
#define FSL_DMA_OUT(fsl_dma, addr, val, width) \
(((fsl_dma)->feature & FSL_DMA_BIG_ENDIAN) ? \
fsl_iowrite##width##be(val, addr) : fsl_iowrite \
##width(val, addr))
#define DMA_TO_CPU(fsl_chan, d, width) \
(((fsl_chan)->feature & FSL_DMA_BIG_ENDIAN) ? \
be##width##_to_cpu((__force __be##width)(v##width)d) : \
le##width##_to_cpu((__force __le##width)(v##width)d))
#define CPU_TO_DMA(fsl_chan, c, width) \
(((fsl_chan)->feature & FSL_DMA_BIG_ENDIAN) ? \
(__force v##width)cpu_to_be##width(c) : \
(__force v##width)cpu_to_le##width(c))
#endif /* __DMA_FSLDMA_H */