2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 22:54:11 +08:00
linux-next/net/xfrm/xfrm_algo.c
Eric Biggers c65058b758 crypto: skcipher - remove the "blkcipher" algorithm type
Now that all "blkcipher" algorithms have been converted to "skcipher",
remove the blkcipher algorithm type.

The skcipher (symmetric key cipher) algorithm type was introduced a few
years ago to replace both blkcipher and ablkcipher (synchronous and
asynchronous block cipher).  The advantages of skcipher include:

  - A much less confusing name, since none of these algorithm types have
    ever actually been for raw block ciphers, but rather for all
    length-preserving encryption modes including block cipher modes of
    operation, stream ciphers, and other length-preserving modes.

  - It unified blkcipher and ablkcipher into a single algorithm type
    which supports both synchronous and asynchronous implementations.
    Note, blkcipher already operated only on scatterlists, so the fact
    that skcipher does too isn't a regression in functionality.

  - Better type safety by using struct skcipher_alg, struct
    crypto_skcipher, etc. instead of crypto_alg, crypto_tfm, etc.

  - It sometimes simplifies the implementations of algorithms.

Also, the blkcipher API was no longer being tested.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-01 13:38:32 +08:00

826 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* xfrm algorithm interface
*
* Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
*/
#include <crypto/hash.h>
#include <crypto/skcipher.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/pfkeyv2.h>
#include <linux/crypto.h>
#include <linux/scatterlist.h>
#include <net/xfrm.h>
#if IS_ENABLED(CONFIG_INET_ESP) || IS_ENABLED(CONFIG_INET6_ESP)
#include <net/esp.h>
#endif
/*
* Algorithms supported by IPsec. These entries contain properties which
* are used in key negotiation and xfrm processing, and are used to verify
* that instantiated crypto transforms have correct parameters for IPsec
* purposes.
*/
static struct xfrm_algo_desc aead_list[] = {
{
.name = "rfc4106(gcm(aes))",
.uinfo = {
.aead = {
.geniv = "seqiv",
.icv_truncbits = 64,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_AES_GCM_ICV8,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 256
}
},
{
.name = "rfc4106(gcm(aes))",
.uinfo = {
.aead = {
.geniv = "seqiv",
.icv_truncbits = 96,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_AES_GCM_ICV12,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 256
}
},
{
.name = "rfc4106(gcm(aes))",
.uinfo = {
.aead = {
.geniv = "seqiv",
.icv_truncbits = 128,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_AES_GCM_ICV16,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 256
}
},
{
.name = "rfc4309(ccm(aes))",
.uinfo = {
.aead = {
.geniv = "seqiv",
.icv_truncbits = 64,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_AES_CCM_ICV8,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 256
}
},
{
.name = "rfc4309(ccm(aes))",
.uinfo = {
.aead = {
.geniv = "seqiv",
.icv_truncbits = 96,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_AES_CCM_ICV12,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 256
}
},
{
.name = "rfc4309(ccm(aes))",
.uinfo = {
.aead = {
.geniv = "seqiv",
.icv_truncbits = 128,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_AES_CCM_ICV16,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 256
}
},
{
.name = "rfc4543(gcm(aes))",
.uinfo = {
.aead = {
.geniv = "seqiv",
.icv_truncbits = 128,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_NULL_AES_GMAC,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 256
}
},
{
.name = "rfc7539esp(chacha20,poly1305)",
.uinfo = {
.aead = {
.geniv = "seqiv",
.icv_truncbits = 128,
}
},
.pfkey_supported = 0,
},
};
static struct xfrm_algo_desc aalg_list[] = {
{
.name = "digest_null",
.uinfo = {
.auth = {
.icv_truncbits = 0,
.icv_fullbits = 0,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_AALG_NULL,
.sadb_alg_ivlen = 0,
.sadb_alg_minbits = 0,
.sadb_alg_maxbits = 0
}
},
{
.name = "hmac(md5)",
.compat = "md5",
.uinfo = {
.auth = {
.icv_truncbits = 96,
.icv_fullbits = 128,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_AALG_MD5HMAC,
.sadb_alg_ivlen = 0,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 128
}
},
{
.name = "hmac(sha1)",
.compat = "sha1",
.uinfo = {
.auth = {
.icv_truncbits = 96,
.icv_fullbits = 160,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_AALG_SHA1HMAC,
.sadb_alg_ivlen = 0,
.sadb_alg_minbits = 160,
.sadb_alg_maxbits = 160
}
},
{
.name = "hmac(sha256)",
.compat = "sha256",
.uinfo = {
.auth = {
.icv_truncbits = 96,
.icv_fullbits = 256,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_AALG_SHA2_256HMAC,
.sadb_alg_ivlen = 0,
.sadb_alg_minbits = 256,
.sadb_alg_maxbits = 256
}
},
{
.name = "hmac(sha384)",
.uinfo = {
.auth = {
.icv_truncbits = 192,
.icv_fullbits = 384,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_AALG_SHA2_384HMAC,
.sadb_alg_ivlen = 0,
.sadb_alg_minbits = 384,
.sadb_alg_maxbits = 384
}
},
{
.name = "hmac(sha512)",
.uinfo = {
.auth = {
.icv_truncbits = 256,
.icv_fullbits = 512,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_AALG_SHA2_512HMAC,
.sadb_alg_ivlen = 0,
.sadb_alg_minbits = 512,
.sadb_alg_maxbits = 512
}
},
{
.name = "hmac(rmd160)",
.compat = "rmd160",
.uinfo = {
.auth = {
.icv_truncbits = 96,
.icv_fullbits = 160,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_AALG_RIPEMD160HMAC,
.sadb_alg_ivlen = 0,
.sadb_alg_minbits = 160,
.sadb_alg_maxbits = 160
}
},
{
.name = "xcbc(aes)",
.uinfo = {
.auth = {
.icv_truncbits = 96,
.icv_fullbits = 128,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_AALG_AES_XCBC_MAC,
.sadb_alg_ivlen = 0,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 128
}
},
{
/* rfc4494 */
.name = "cmac(aes)",
.uinfo = {
.auth = {
.icv_truncbits = 96,
.icv_fullbits = 128,
}
},
.pfkey_supported = 0,
},
};
static struct xfrm_algo_desc ealg_list[] = {
{
.name = "ecb(cipher_null)",
.compat = "cipher_null",
.uinfo = {
.encr = {
.blockbits = 8,
.defkeybits = 0,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_EALG_NULL,
.sadb_alg_ivlen = 0,
.sadb_alg_minbits = 0,
.sadb_alg_maxbits = 0
}
},
{
.name = "cbc(des)",
.compat = "des",
.uinfo = {
.encr = {
.geniv = "echainiv",
.blockbits = 64,
.defkeybits = 64,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_EALG_DESCBC,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 64,
.sadb_alg_maxbits = 64
}
},
{
.name = "cbc(des3_ede)",
.compat = "des3_ede",
.uinfo = {
.encr = {
.geniv = "echainiv",
.blockbits = 64,
.defkeybits = 192,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_EALG_3DESCBC,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 192,
.sadb_alg_maxbits = 192
}
},
{
.name = "cbc(cast5)",
.compat = "cast5",
.uinfo = {
.encr = {
.geniv = "echainiv",
.blockbits = 64,
.defkeybits = 128,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_CASTCBC,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 40,
.sadb_alg_maxbits = 128
}
},
{
.name = "cbc(blowfish)",
.compat = "blowfish",
.uinfo = {
.encr = {
.geniv = "echainiv",
.blockbits = 64,
.defkeybits = 128,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_BLOWFISHCBC,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 40,
.sadb_alg_maxbits = 448
}
},
{
.name = "cbc(aes)",
.compat = "aes",
.uinfo = {
.encr = {
.geniv = "echainiv",
.blockbits = 128,
.defkeybits = 128,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_AESCBC,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 256
}
},
{
.name = "cbc(serpent)",
.compat = "serpent",
.uinfo = {
.encr = {
.geniv = "echainiv",
.blockbits = 128,
.defkeybits = 128,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_SERPENTCBC,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 256,
}
},
{
.name = "cbc(camellia)",
.compat = "camellia",
.uinfo = {
.encr = {
.geniv = "echainiv",
.blockbits = 128,
.defkeybits = 128,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_CAMELLIACBC,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 256
}
},
{
.name = "cbc(twofish)",
.compat = "twofish",
.uinfo = {
.encr = {
.geniv = "echainiv",
.blockbits = 128,
.defkeybits = 128,
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_TWOFISHCBC,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 128,
.sadb_alg_maxbits = 256
}
},
{
.name = "rfc3686(ctr(aes))",
.uinfo = {
.encr = {
.geniv = "seqiv",
.blockbits = 128,
.defkeybits = 160, /* 128-bit key + 32-bit nonce */
}
},
.pfkey_supported = 1,
.desc = {
.sadb_alg_id = SADB_X_EALG_AESCTR,
.sadb_alg_ivlen = 8,
.sadb_alg_minbits = 160,
.sadb_alg_maxbits = 288
}
},
};
static struct xfrm_algo_desc calg_list[] = {
{
.name = "deflate",
.uinfo = {
.comp = {
.threshold = 90,
}
},
.pfkey_supported = 1,
.desc = { .sadb_alg_id = SADB_X_CALG_DEFLATE }
},
{
.name = "lzs",
.uinfo = {
.comp = {
.threshold = 90,
}
},
.pfkey_supported = 1,
.desc = { .sadb_alg_id = SADB_X_CALG_LZS }
},
{
.name = "lzjh",
.uinfo = {
.comp = {
.threshold = 50,
}
},
.pfkey_supported = 1,
.desc = { .sadb_alg_id = SADB_X_CALG_LZJH }
},
};
static inline int aalg_entries(void)
{
return ARRAY_SIZE(aalg_list);
}
static inline int ealg_entries(void)
{
return ARRAY_SIZE(ealg_list);
}
static inline int calg_entries(void)
{
return ARRAY_SIZE(calg_list);
}
struct xfrm_algo_list {
struct xfrm_algo_desc *algs;
int entries;
u32 type;
u32 mask;
};
static const struct xfrm_algo_list xfrm_aead_list = {
.algs = aead_list,
.entries = ARRAY_SIZE(aead_list),
.type = CRYPTO_ALG_TYPE_AEAD,
.mask = CRYPTO_ALG_TYPE_MASK,
};
static const struct xfrm_algo_list xfrm_aalg_list = {
.algs = aalg_list,
.entries = ARRAY_SIZE(aalg_list),
.type = CRYPTO_ALG_TYPE_HASH,
.mask = CRYPTO_ALG_TYPE_HASH_MASK,
};
static const struct xfrm_algo_list xfrm_ealg_list = {
.algs = ealg_list,
.entries = ARRAY_SIZE(ealg_list),
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.mask = CRYPTO_ALG_TYPE_MASK,
};
static const struct xfrm_algo_list xfrm_calg_list = {
.algs = calg_list,
.entries = ARRAY_SIZE(calg_list),
.type = CRYPTO_ALG_TYPE_COMPRESS,
.mask = CRYPTO_ALG_TYPE_MASK,
};
static struct xfrm_algo_desc *xfrm_find_algo(
const struct xfrm_algo_list *algo_list,
int match(const struct xfrm_algo_desc *entry, const void *data),
const void *data, int probe)
{
struct xfrm_algo_desc *list = algo_list->algs;
int i, status;
for (i = 0; i < algo_list->entries; i++) {
if (!match(list + i, data))
continue;
if (list[i].available)
return &list[i];
if (!probe)
break;
status = crypto_has_alg(list[i].name, algo_list->type,
algo_list->mask);
if (!status)
break;
list[i].available = status;
return &list[i];
}
return NULL;
}
static int xfrm_alg_id_match(const struct xfrm_algo_desc *entry,
const void *data)
{
return entry->desc.sadb_alg_id == (unsigned long)data;
}
struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id)
{
return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_id_match,
(void *)(unsigned long)alg_id, 1);
}
EXPORT_SYMBOL_GPL(xfrm_aalg_get_byid);
struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id)
{
return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_id_match,
(void *)(unsigned long)alg_id, 1);
}
EXPORT_SYMBOL_GPL(xfrm_ealg_get_byid);
struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id)
{
return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_id_match,
(void *)(unsigned long)alg_id, 1);
}
EXPORT_SYMBOL_GPL(xfrm_calg_get_byid);
static int xfrm_alg_name_match(const struct xfrm_algo_desc *entry,
const void *data)
{
const char *name = data;
return name && (!strcmp(name, entry->name) ||
(entry->compat && !strcmp(name, entry->compat)));
}
struct xfrm_algo_desc *xfrm_aalg_get_byname(const char *name, int probe)
{
return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_name_match, name,
probe);
}
EXPORT_SYMBOL_GPL(xfrm_aalg_get_byname);
struct xfrm_algo_desc *xfrm_ealg_get_byname(const char *name, int probe)
{
return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_name_match, name,
probe);
}
EXPORT_SYMBOL_GPL(xfrm_ealg_get_byname);
struct xfrm_algo_desc *xfrm_calg_get_byname(const char *name, int probe)
{
return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_name_match, name,
probe);
}
EXPORT_SYMBOL_GPL(xfrm_calg_get_byname);
struct xfrm_aead_name {
const char *name;
int icvbits;
};
static int xfrm_aead_name_match(const struct xfrm_algo_desc *entry,
const void *data)
{
const struct xfrm_aead_name *aead = data;
const char *name = aead->name;
return aead->icvbits == entry->uinfo.aead.icv_truncbits && name &&
!strcmp(name, entry->name);
}
struct xfrm_algo_desc *xfrm_aead_get_byname(const char *name, int icv_len, int probe)
{
struct xfrm_aead_name data = {
.name = name,
.icvbits = icv_len,
};
return xfrm_find_algo(&xfrm_aead_list, xfrm_aead_name_match, &data,
probe);
}
EXPORT_SYMBOL_GPL(xfrm_aead_get_byname);
struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx)
{
if (idx >= aalg_entries())
return NULL;
return &aalg_list[idx];
}
EXPORT_SYMBOL_GPL(xfrm_aalg_get_byidx);
struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx)
{
if (idx >= ealg_entries())
return NULL;
return &ealg_list[idx];
}
EXPORT_SYMBOL_GPL(xfrm_ealg_get_byidx);
/*
* Probe for the availability of crypto algorithms, and set the available
* flag for any algorithms found on the system. This is typically called by
* pfkey during userspace SA add, update or register.
*/
void xfrm_probe_algs(void)
{
int i, status;
BUG_ON(in_softirq());
for (i = 0; i < aalg_entries(); i++) {
status = crypto_has_ahash(aalg_list[i].name, 0, 0);
if (aalg_list[i].available != status)
aalg_list[i].available = status;
}
for (i = 0; i < ealg_entries(); i++) {
status = crypto_has_skcipher(ealg_list[i].name, 0, 0);
if (ealg_list[i].available != status)
ealg_list[i].available = status;
}
for (i = 0; i < calg_entries(); i++) {
status = crypto_has_comp(calg_list[i].name, 0,
CRYPTO_ALG_ASYNC);
if (calg_list[i].available != status)
calg_list[i].available = status;
}
}
EXPORT_SYMBOL_GPL(xfrm_probe_algs);
int xfrm_count_pfkey_auth_supported(void)
{
int i, n;
for (i = 0, n = 0; i < aalg_entries(); i++)
if (aalg_list[i].available && aalg_list[i].pfkey_supported)
n++;
return n;
}
EXPORT_SYMBOL_GPL(xfrm_count_pfkey_auth_supported);
int xfrm_count_pfkey_enc_supported(void)
{
int i, n;
for (i = 0, n = 0; i < ealg_entries(); i++)
if (ealg_list[i].available && ealg_list[i].pfkey_supported)
n++;
return n;
}
EXPORT_SYMBOL_GPL(xfrm_count_pfkey_enc_supported);
MODULE_LICENSE("GPL");