2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-30 08:04:13 +08:00
linux-next/lib/decompress_unxz.c
Yinghai Lu 2d3862d26e lib/decompressors: use real out buf size for gunzip with kernel
When loading x86 64bit kernel above 4GiB with patched grub2, got kernel
gunzip error.

| early console in decompress_kernel
| decompress_kernel:
|       input: [0x807f2143b4-0x807ff61aee]
|      output: [0x807cc00000-0x807f3ea29b] 0x027ea29c: output_len
| boot via startup_64
| KASLR using RDTSC...
|  new output: [0x46fe000000-0x470138cfff] 0x0338d000: output_run_size
|  decompress: [0x46fe000000-0x47007ea29b] <=== [0x807f2143b4-0x807ff61aee]
|
| Decompressing Linux... gz...
|
| uncompression error
|
| -- System halted

the new buffer is at 0x46fe000000ULL, decompressor_gzip is using
0xffffffb901ffffff as out_len.  gunzip in lib/zlib_inflate/inflate.c cap
that len to 0x01ffffff and decompress fails later.

We could hit this problem with crashkernel booting that uses kexec loading
kernel above 4GiB.

We have decompress_* support:
    1. inbuf[]/outbuf[] for kernel preboot.
    2. inbuf[]/flush() for initramfs
    3. fill()/flush() for initrd.
This bug only affect kernel preboot path that use outbuf[].

Add __decompress and take real out_buf_len for gunzip instead of guessing
wrong buf size.

Fixes: 1431574a1c (lib/decompressors: fix "no limit" output buffer length)
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Alexandre Courbot <acourbot@nvidia.com>
Cc: Jon Medhurst <tixy@linaro.org>
Cc: Stephen Warren <swarren@wwwdotorg.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-10 13:29:01 -07:00

408 lines
11 KiB
C

/*
* Wrapper for decompressing XZ-compressed kernel, initramfs, and initrd
*
* Author: Lasse Collin <lasse.collin@tukaani.org>
*
* This file has been put into the public domain.
* You can do whatever you want with this file.
*/
/*
* Important notes about in-place decompression
*
* At least on x86, the kernel is decompressed in place: the compressed data
* is placed to the end of the output buffer, and the decompressor overwrites
* most of the compressed data. There must be enough safety margin to
* guarantee that the write position is always behind the read position.
*
* The safety margin for XZ with LZMA2 or BCJ+LZMA2 is calculated below.
* Note that the margin with XZ is bigger than with Deflate (gzip)!
*
* The worst case for in-place decompression is that the beginning of
* the file is compressed extremely well, and the rest of the file is
* uncompressible. Thus, we must look for worst-case expansion when the
* compressor is encoding uncompressible data.
*
* The structure of the .xz file in case of a compresed kernel is as follows.
* Sizes (as bytes) of the fields are in parenthesis.
*
* Stream Header (12)
* Block Header:
* Block Header (8-12)
* Compressed Data (N)
* Block Padding (0-3)
* CRC32 (4)
* Index (8-20)
* Stream Footer (12)
*
* Normally there is exactly one Block, but let's assume that there are
* 2-4 Blocks just in case. Because Stream Header and also Block Header
* of the first Block don't make the decompressor produce any uncompressed
* data, we can ignore them from our calculations. Block Headers of possible
* additional Blocks have to be taken into account still. With these
* assumptions, it is safe to assume that the total header overhead is
* less than 128 bytes.
*
* Compressed Data contains LZMA2 or BCJ+LZMA2 encoded data. Since BCJ
* doesn't change the size of the data, it is enough to calculate the
* safety margin for LZMA2.
*
* LZMA2 stores the data in chunks. Each chunk has a header whose size is
* a maximum of 6 bytes, but to get round 2^n numbers, let's assume that
* the maximum chunk header size is 8 bytes. After the chunk header, there
* may be up to 64 KiB of actual payload in the chunk. Often the payload is
* quite a bit smaller though; to be safe, let's assume that an average
* chunk has only 32 KiB of payload.
*
* The maximum uncompressed size of the payload is 2 MiB. The minimum
* uncompressed size of the payload is in practice never less than the
* payload size itself. The LZMA2 format would allow uncompressed size
* to be less than the payload size, but no sane compressor creates such
* files. LZMA2 supports storing uncompressible data in uncompressed form,
* so there's never a need to create payloads whose uncompressed size is
* smaller than the compressed size.
*
* The assumption, that the uncompressed size of the payload is never
* smaller than the payload itself, is valid only when talking about
* the payload as a whole. It is possible that the payload has parts where
* the decompressor consumes more input than it produces output. Calculating
* the worst case for this would be tricky. Instead of trying to do that,
* let's simply make sure that the decompressor never overwrites any bytes
* of the payload which it is currently reading.
*
* Now we have enough information to calculate the safety margin. We need
* - 128 bytes for the .xz file format headers;
* - 8 bytes per every 32 KiB of uncompressed size (one LZMA2 chunk header
* per chunk, each chunk having average payload size of 32 KiB); and
* - 64 KiB (biggest possible LZMA2 chunk payload size) to make sure that
* the decompressor never overwrites anything from the LZMA2 chunk
* payload it is currently reading.
*
* We get the following formula:
*
* safety_margin = 128 + uncompressed_size * 8 / 32768 + 65536
* = 128 + (uncompressed_size >> 12) + 65536
*
* For comparison, according to arch/x86/boot/compressed/misc.c, the
* equivalent formula for Deflate is this:
*
* safety_margin = 18 + (uncompressed_size >> 12) + 32768
*
* Thus, when updating Deflate-only in-place kernel decompressor to
* support XZ, the fixed overhead has to be increased from 18+32768 bytes
* to 128+65536 bytes.
*/
/*
* STATIC is defined to "static" if we are being built for kernel
* decompression (pre-boot code). <linux/decompress/mm.h> will define
* STATIC to empty if it wasn't already defined. Since we will need to
* know later if we are being used for kernel decompression, we define
* XZ_PREBOOT here.
*/
#ifdef STATIC
# define XZ_PREBOOT
#endif
#ifdef __KERNEL__
# include <linux/decompress/mm.h>
#endif
#define XZ_EXTERN STATIC
#ifndef XZ_PREBOOT
# include <linux/slab.h>
# include <linux/xz.h>
#else
/*
* Use the internal CRC32 code instead of kernel's CRC32 module, which
* is not available in early phase of booting.
*/
#define XZ_INTERNAL_CRC32 1
/*
* For boot time use, we enable only the BCJ filter of the current
* architecture or none if no BCJ filter is available for the architecture.
*/
#ifdef CONFIG_X86
# define XZ_DEC_X86
#endif
#ifdef CONFIG_PPC
# define XZ_DEC_POWERPC
#endif
#ifdef CONFIG_ARM
# define XZ_DEC_ARM
#endif
#ifdef CONFIG_IA64
# define XZ_DEC_IA64
#endif
#ifdef CONFIG_SPARC
# define XZ_DEC_SPARC
#endif
/*
* This will get the basic headers so that memeq() and others
* can be defined.
*/
#include "xz/xz_private.h"
/*
* Replace the normal allocation functions with the versions from
* <linux/decompress/mm.h>. vfree() needs to support vfree(NULL)
* when XZ_DYNALLOC is used, but the pre-boot free() doesn't support it.
* Workaround it here because the other decompressors don't need it.
*/
#undef kmalloc
#undef kfree
#undef vmalloc
#undef vfree
#define kmalloc(size, flags) malloc(size)
#define kfree(ptr) free(ptr)
#define vmalloc(size) malloc(size)
#define vfree(ptr) do { if (ptr != NULL) free(ptr); } while (0)
/*
* FIXME: Not all basic memory functions are provided in architecture-specific
* files (yet). We define our own versions here for now, but this should be
* only a temporary solution.
*
* memeq and memzero are not used much and any remotely sane implementation
* is fast enough. memcpy/memmove speed matters in multi-call mode, but
* the kernel image is decompressed in single-call mode, in which only
* memcpy speed can matter and only if there is a lot of uncompressible data
* (LZMA2 stores uncompressible chunks in uncompressed form). Thus, the
* functions below should just be kept small; it's probably not worth
* optimizing for speed.
*/
#ifndef memeq
static bool memeq(const void *a, const void *b, size_t size)
{
const uint8_t *x = a;
const uint8_t *y = b;
size_t i;
for (i = 0; i < size; ++i)
if (x[i] != y[i])
return false;
return true;
}
#endif
#ifndef memzero
static void memzero(void *buf, size_t size)
{
uint8_t *b = buf;
uint8_t *e = b + size;
while (b != e)
*b++ = '\0';
}
#endif
#ifndef memmove
/* Not static to avoid a conflict with the prototype in the Linux headers. */
void *memmove(void *dest, const void *src, size_t size)
{
uint8_t *d = dest;
const uint8_t *s = src;
size_t i;
if (d < s) {
for (i = 0; i < size; ++i)
d[i] = s[i];
} else if (d > s) {
i = size;
while (i-- > 0)
d[i] = s[i];
}
return dest;
}
#endif
/*
* Since we need memmove anyway, would use it as memcpy too.
* Commented out for now to avoid breaking things.
*/
/*
#ifndef memcpy
# define memcpy memmove
#endif
*/
#include "xz/xz_crc32.c"
#include "xz/xz_dec_stream.c"
#include "xz/xz_dec_lzma2.c"
#include "xz/xz_dec_bcj.c"
#endif /* XZ_PREBOOT */
/* Size of the input and output buffers in multi-call mode */
#define XZ_IOBUF_SIZE 4096
/*
* This function implements the API defined in <linux/decompress/generic.h>.
*
* This wrapper will automatically choose single-call or multi-call mode
* of the native XZ decoder API. The single-call mode can be used only when
* both input and output buffers are available as a single chunk, i.e. when
* fill() and flush() won't be used.
*/
STATIC int INIT unxz(unsigned char *in, long in_size,
long (*fill)(void *dest, unsigned long size),
long (*flush)(void *src, unsigned long size),
unsigned char *out, long *in_used,
void (*error)(char *x))
{
struct xz_buf b;
struct xz_dec *s;
enum xz_ret ret;
bool must_free_in = false;
#if XZ_INTERNAL_CRC32
xz_crc32_init();
#endif
if (in_used != NULL)
*in_used = 0;
if (fill == NULL && flush == NULL)
s = xz_dec_init(XZ_SINGLE, 0);
else
s = xz_dec_init(XZ_DYNALLOC, (uint32_t)-1);
if (s == NULL)
goto error_alloc_state;
if (flush == NULL) {
b.out = out;
b.out_size = (size_t)-1;
} else {
b.out_size = XZ_IOBUF_SIZE;
b.out = malloc(XZ_IOBUF_SIZE);
if (b.out == NULL)
goto error_alloc_out;
}
if (in == NULL) {
must_free_in = true;
in = malloc(XZ_IOBUF_SIZE);
if (in == NULL)
goto error_alloc_in;
}
b.in = in;
b.in_pos = 0;
b.in_size = in_size;
b.out_pos = 0;
if (fill == NULL && flush == NULL) {
ret = xz_dec_run(s, &b);
} else {
do {
if (b.in_pos == b.in_size && fill != NULL) {
if (in_used != NULL)
*in_used += b.in_pos;
b.in_pos = 0;
in_size = fill(in, XZ_IOBUF_SIZE);
if (in_size < 0) {
/*
* This isn't an optimal error code
* but it probably isn't worth making
* a new one either.
*/
ret = XZ_BUF_ERROR;
break;
}
b.in_size = in_size;
}
ret = xz_dec_run(s, &b);
if (flush != NULL && (b.out_pos == b.out_size
|| (ret != XZ_OK && b.out_pos > 0))) {
/*
* Setting ret here may hide an error
* returned by xz_dec_run(), but probably
* it's not too bad.
*/
if (flush(b.out, b.out_pos) != (long)b.out_pos)
ret = XZ_BUF_ERROR;
b.out_pos = 0;
}
} while (ret == XZ_OK);
if (must_free_in)
free(in);
if (flush != NULL)
free(b.out);
}
if (in_used != NULL)
*in_used += b.in_pos;
xz_dec_end(s);
switch (ret) {
case XZ_STREAM_END:
return 0;
case XZ_MEM_ERROR:
/* This can occur only in multi-call mode. */
error("XZ decompressor ran out of memory");
break;
case XZ_FORMAT_ERROR:
error("Input is not in the XZ format (wrong magic bytes)");
break;
case XZ_OPTIONS_ERROR:
error("Input was encoded with settings that are not "
"supported by this XZ decoder");
break;
case XZ_DATA_ERROR:
case XZ_BUF_ERROR:
error("XZ-compressed data is corrupt");
break;
default:
error("Bug in the XZ decompressor");
break;
}
return -1;
error_alloc_in:
if (flush != NULL)
free(b.out);
error_alloc_out:
xz_dec_end(s);
error_alloc_state:
error("XZ decompressor ran out of memory");
return -1;
}
/*
* This macro is used by architecture-specific files to decompress
* the kernel image.
*/
#ifdef XZ_PREBOOT
STATIC int INIT __decompress(unsigned char *buf, long len,
long (*fill)(void*, unsigned long),
long (*flush)(void*, unsigned long),
unsigned char *out_buf, long olen,
long *pos,
void (*error)(char *x))
{
return unxz(buf, len, fill, flush, out_buf, pos, error);
}
#endif