2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 06:34:17 +08:00
linux-next/fs/reiserfs/objectid.c
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

207 lines
7.3 KiB
C

/*
* Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
*/
#include <linux/config.h>
#include <linux/string.h>
#include <linux/random.h>
#include <linux/time.h>
#include <linux/reiserfs_fs.h>
#include <linux/reiserfs_fs_sb.h>
// find where objectid map starts
#define objectid_map(s,rs) (old_format_only (s) ? \
(__u32 *)((struct reiserfs_super_block_v1 *)(rs) + 1) :\
(__u32 *)((rs) + 1))
#ifdef CONFIG_REISERFS_CHECK
static void check_objectid_map (struct super_block * s, __u32 * map)
{
if (le32_to_cpu (map[0]) != 1)
reiserfs_panic (s, "vs-15010: check_objectid_map: map corrupted: %lx",
( long unsigned int ) le32_to_cpu (map[0]));
// FIXME: add something else here
}
#else
static void check_objectid_map (struct super_block * s, __u32 * map)
{;}
#endif
/* When we allocate objectids we allocate the first unused objectid.
Each sequence of objectids in use (the odd sequences) is followed
by a sequence of objectids not in use (the even sequences). We
only need to record the last objectid in each of these sequences
(both the odd and even sequences) in order to fully define the
boundaries of the sequences. A consequence of allocating the first
objectid not in use is that under most conditions this scheme is
extremely compact. The exception is immediately after a sequence
of operations which deletes a large number of objects of
non-sequential objectids, and even then it will become compact
again as soon as more objects are created. Note that many
interesting optimizations of layout could result from complicating
objectid assignment, but we have deferred making them for now. */
/* get unique object identifier */
__u32 reiserfs_get_unused_objectid (struct reiserfs_transaction_handle *th)
{
struct super_block * s = th->t_super;
struct reiserfs_super_block * rs = SB_DISK_SUPER_BLOCK (s);
__u32 * map = objectid_map (s, rs);
__u32 unused_objectid;
BUG_ON (!th->t_trans_id);
check_objectid_map (s, map);
reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1) ;
/* comment needed -Hans */
unused_objectid = le32_to_cpu (map[1]);
if (unused_objectid == U32_MAX) {
reiserfs_warning (s, "%s: no more object ids", __FUNCTION__);
reiserfs_restore_prepared_buffer(s, SB_BUFFER_WITH_SB(s)) ;
return 0;
}
/* This incrementation allocates the first unused objectid. That
is to say, the first entry on the objectid map is the first
unused objectid, and by incrementing it we use it. See below
where we check to see if we eliminated a sequence of unused
objectids.... */
map[1] = cpu_to_le32 (unused_objectid + 1);
/* Now we check to see if we eliminated the last remaining member of
the first even sequence (and can eliminate the sequence by
eliminating its last objectid from oids), and can collapse the
first two odd sequences into one sequence. If so, then the net
result is to eliminate a pair of objectids from oids. We do this
by shifting the entire map to the left. */
if (sb_oid_cursize(rs) > 2 && map[1] == map[2]) {
memmove (map + 1, map + 3, (sb_oid_cursize(rs) - 3) * sizeof(__u32));
set_sb_oid_cursize( rs, sb_oid_cursize(rs) - 2 );
}
journal_mark_dirty(th, s, SB_BUFFER_WITH_SB (s));
return unused_objectid;
}
/* makes object identifier unused */
void reiserfs_release_objectid (struct reiserfs_transaction_handle *th,
__u32 objectid_to_release)
{
struct super_block * s = th->t_super;
struct reiserfs_super_block * rs = SB_DISK_SUPER_BLOCK (s);
__u32 * map = objectid_map (s, rs);
int i = 0;
BUG_ON (!th->t_trans_id);
//return;
check_objectid_map (s, map);
reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1) ;
journal_mark_dirty(th, s, SB_BUFFER_WITH_SB (s));
/* start at the beginning of the objectid map (i = 0) and go to
the end of it (i = disk_sb->s_oid_cursize). Linear search is
what we use, though it is possible that binary search would be
more efficient after performing lots of deletions (which is
when oids is large.) We only check even i's. */
while (i < sb_oid_cursize(rs)) {
if (objectid_to_release == le32_to_cpu (map[i])) {
/* This incrementation unallocates the objectid. */
//map[i]++;
map[i] = cpu_to_le32 (le32_to_cpu (map[i]) + 1);
/* Did we unallocate the last member of an odd sequence, and can shrink oids? */
if (map[i] == map[i+1]) {
/* shrink objectid map */
memmove (map + i, map + i + 2,
(sb_oid_cursize(rs) - i - 2) * sizeof (__u32));
//disk_sb->s_oid_cursize -= 2;
set_sb_oid_cursize( rs, sb_oid_cursize(rs) - 2 );
RFALSE( sb_oid_cursize(rs) < 2 ||
sb_oid_cursize(rs) > sb_oid_maxsize(rs),
"vs-15005: objectid map corrupted cur_size == %d (max == %d)",
sb_oid_cursize(rs), sb_oid_maxsize(rs));
}
return;
}
if (objectid_to_release > le32_to_cpu (map[i]) &&
objectid_to_release < le32_to_cpu (map[i + 1])) {
/* size of objectid map is not changed */
if (objectid_to_release + 1 == le32_to_cpu (map[i + 1])) {
//objectid_map[i+1]--;
map[i + 1] = cpu_to_le32 (le32_to_cpu (map[i + 1]) - 1);
return;
}
/* JDM comparing two little-endian values for equality -- safe */
if (sb_oid_cursize(rs) == sb_oid_maxsize(rs)) {
/* objectid map must be expanded, but there is no space */
PROC_INFO_INC( s, leaked_oid );
return;
}
/* expand the objectid map*/
memmove (map + i + 3, map + i + 1,
(sb_oid_cursize(rs) - i - 1) * sizeof(__u32));
map[i + 1] = cpu_to_le32 (objectid_to_release);
map[i + 2] = cpu_to_le32 (objectid_to_release + 1);
set_sb_oid_cursize( rs, sb_oid_cursize(rs) + 2 );
return;
}
i += 2;
}
reiserfs_warning (s, "vs-15011: reiserfs_release_objectid: tried to free free object id (%lu)",
( long unsigned ) objectid_to_release);
}
int reiserfs_convert_objectid_map_v1(struct super_block *s) {
struct reiserfs_super_block *disk_sb = SB_DISK_SUPER_BLOCK (s);
int cur_size = sb_oid_cursize(disk_sb);
int new_size = (s->s_blocksize - SB_SIZE) / sizeof(__u32) / 2 * 2 ;
int old_max = sb_oid_maxsize(disk_sb);
struct reiserfs_super_block_v1 *disk_sb_v1 ;
__u32 *objectid_map, *new_objectid_map ;
int i ;
disk_sb_v1=(struct reiserfs_super_block_v1 *)(SB_BUFFER_WITH_SB(s)->b_data);
objectid_map = (__u32 *)(disk_sb_v1 + 1) ;
new_objectid_map = (__u32 *)(disk_sb + 1) ;
if (cur_size > new_size) {
/* mark everyone used that was listed as free at the end of the objectid
** map
*/
objectid_map[new_size - 1] = objectid_map[cur_size - 1] ;
set_sb_oid_cursize(disk_sb,new_size) ;
}
/* move the smaller objectid map past the end of the new super */
for (i = new_size - 1 ; i >= 0 ; i--) {
objectid_map[i + (old_max - new_size)] = objectid_map[i] ;
}
/* set the max size so we don't overflow later */
set_sb_oid_maxsize(disk_sb,new_size) ;
/* Zero out label and generate random UUID */
memset(disk_sb->s_label, 0, sizeof(disk_sb->s_label)) ;
generate_random_uuid(disk_sb->s_uuid);
/* finally, zero out the unused chunk of the new super */
memset(disk_sb->s_unused, 0, sizeof(disk_sb->s_unused)) ;
return 0 ;
}