2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-05 04:04:01 +08:00
linux-next/net/iucv/iucv.c
Eric Dumazet bc10502dba net: use __packed annotation
cleanup patch.

Use new __packed annotation in net/ and include/
(except netfilter)

Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-06-03 03:21:52 -07:00

2095 lines
52 KiB
C

/*
* IUCV base infrastructure.
*
* Copyright IBM Corp. 2001, 2009
*
* Author(s):
* Original source:
* Alan Altmark (Alan_Altmark@us.ibm.com) Sept. 2000
* Xenia Tkatschow (xenia@us.ibm.com)
* 2Gb awareness and general cleanup:
* Fritz Elfert (elfert@de.ibm.com, felfert@millenux.com)
* Rewritten for af_iucv:
* Martin Schwidefsky <schwidefsky@de.ibm.com>
* PM functions:
* Ursula Braun (ursula.braun@de.ibm.com)
*
* Documentation used:
* The original source
* CP Programming Service, IBM document # SC24-5760
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#define KMSG_COMPONENT "iucv"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/device.h>
#include <linux/cpu.h>
#include <linux/reboot.h>
#include <net/iucv/iucv.h>
#include <asm/atomic.h>
#include <asm/ebcdic.h>
#include <asm/io.h>
#include <asm/s390_ext.h>
#include <asm/smp.h>
/*
* FLAGS:
* All flags are defined in the field IPFLAGS1 of each function
* and can be found in CP Programming Services.
* IPSRCCLS - Indicates you have specified a source class.
* IPTRGCLS - Indicates you have specified a target class.
* IPFGPID - Indicates you have specified a pathid.
* IPFGMID - Indicates you have specified a message ID.
* IPNORPY - Indicates a one-way message. No reply expected.
* IPALL - Indicates that all paths are affected.
*/
#define IUCV_IPSRCCLS 0x01
#define IUCV_IPTRGCLS 0x01
#define IUCV_IPFGPID 0x02
#define IUCV_IPFGMID 0x04
#define IUCV_IPNORPY 0x10
#define IUCV_IPALL 0x80
static int iucv_bus_match(struct device *dev, struct device_driver *drv)
{
return 0;
}
enum iucv_pm_states {
IUCV_PM_INITIAL = 0,
IUCV_PM_FREEZING = 1,
IUCV_PM_THAWING = 2,
IUCV_PM_RESTORING = 3,
};
static enum iucv_pm_states iucv_pm_state;
static int iucv_pm_prepare(struct device *);
static void iucv_pm_complete(struct device *);
static int iucv_pm_freeze(struct device *);
static int iucv_pm_thaw(struct device *);
static int iucv_pm_restore(struct device *);
static const struct dev_pm_ops iucv_pm_ops = {
.prepare = iucv_pm_prepare,
.complete = iucv_pm_complete,
.freeze = iucv_pm_freeze,
.thaw = iucv_pm_thaw,
.restore = iucv_pm_restore,
};
struct bus_type iucv_bus = {
.name = "iucv",
.match = iucv_bus_match,
.pm = &iucv_pm_ops,
};
EXPORT_SYMBOL(iucv_bus);
struct device *iucv_root;
EXPORT_SYMBOL(iucv_root);
static int iucv_available;
/* General IUCV interrupt structure */
struct iucv_irq_data {
u16 ippathid;
u8 ipflags1;
u8 iptype;
u32 res2[8];
};
struct iucv_irq_list {
struct list_head list;
struct iucv_irq_data data;
};
static struct iucv_irq_data *iucv_irq_data[NR_CPUS];
static cpumask_t iucv_buffer_cpumask = CPU_MASK_NONE;
static cpumask_t iucv_irq_cpumask = CPU_MASK_NONE;
/*
* Queue of interrupt buffers lock for delivery via the tasklet
* (fast but can't call smp_call_function).
*/
static LIST_HEAD(iucv_task_queue);
/*
* The tasklet for fast delivery of iucv interrupts.
*/
static void iucv_tasklet_fn(unsigned long);
static DECLARE_TASKLET(iucv_tasklet, iucv_tasklet_fn,0);
/*
* Queue of interrupt buffers for delivery via a work queue
* (slower but can call smp_call_function).
*/
static LIST_HEAD(iucv_work_queue);
/*
* The work element to deliver path pending interrupts.
*/
static void iucv_work_fn(struct work_struct *work);
static DECLARE_WORK(iucv_work, iucv_work_fn);
/*
* Spinlock protecting task and work queue.
*/
static DEFINE_SPINLOCK(iucv_queue_lock);
enum iucv_command_codes {
IUCV_QUERY = 0,
IUCV_RETRIEVE_BUFFER = 2,
IUCV_SEND = 4,
IUCV_RECEIVE = 5,
IUCV_REPLY = 6,
IUCV_REJECT = 8,
IUCV_PURGE = 9,
IUCV_ACCEPT = 10,
IUCV_CONNECT = 11,
IUCV_DECLARE_BUFFER = 12,
IUCV_QUIESCE = 13,
IUCV_RESUME = 14,
IUCV_SEVER = 15,
IUCV_SETMASK = 16,
IUCV_SETCONTROLMASK = 17,
};
/*
* Error messages that are used with the iucv_sever function. They get
* converted to EBCDIC.
*/
static char iucv_error_no_listener[16] = "NO LISTENER";
static char iucv_error_no_memory[16] = "NO MEMORY";
static char iucv_error_pathid[16] = "INVALID PATHID";
/*
* iucv_handler_list: List of registered handlers.
*/
static LIST_HEAD(iucv_handler_list);
/*
* iucv_path_table: an array of iucv_path structures.
*/
static struct iucv_path **iucv_path_table;
static unsigned long iucv_max_pathid;
/*
* iucv_lock: spinlock protecting iucv_handler_list and iucv_pathid_table
*/
static DEFINE_SPINLOCK(iucv_table_lock);
/*
* iucv_active_cpu: contains the number of the cpu executing the tasklet
* or the work handler. Needed for iucv_path_sever called from tasklet.
*/
static int iucv_active_cpu = -1;
/*
* Mutex and wait queue for iucv_register/iucv_unregister.
*/
static DEFINE_MUTEX(iucv_register_mutex);
/*
* Counter for number of non-smp capable handlers.
*/
static int iucv_nonsmp_handler;
/*
* IUCV control data structure. Used by iucv_path_accept, iucv_path_connect,
* iucv_path_quiesce and iucv_path_sever.
*/
struct iucv_cmd_control {
u16 ippathid;
u8 ipflags1;
u8 iprcode;
u16 ipmsglim;
u16 res1;
u8 ipvmid[8];
u8 ipuser[16];
u8 iptarget[8];
} __attribute__ ((packed,aligned(8)));
/*
* Data in parameter list iucv structure. Used by iucv_message_send,
* iucv_message_send2way and iucv_message_reply.
*/
struct iucv_cmd_dpl {
u16 ippathid;
u8 ipflags1;
u8 iprcode;
u32 ipmsgid;
u32 iptrgcls;
u8 iprmmsg[8];
u32 ipsrccls;
u32 ipmsgtag;
u32 ipbfadr2;
u32 ipbfln2f;
u32 res;
} __attribute__ ((packed,aligned(8)));
/*
* Data in buffer iucv structure. Used by iucv_message_receive,
* iucv_message_reject, iucv_message_send, iucv_message_send2way
* and iucv_declare_cpu.
*/
struct iucv_cmd_db {
u16 ippathid;
u8 ipflags1;
u8 iprcode;
u32 ipmsgid;
u32 iptrgcls;
u32 ipbfadr1;
u32 ipbfln1f;
u32 ipsrccls;
u32 ipmsgtag;
u32 ipbfadr2;
u32 ipbfln2f;
u32 res;
} __attribute__ ((packed,aligned(8)));
/*
* Purge message iucv structure. Used by iucv_message_purge.
*/
struct iucv_cmd_purge {
u16 ippathid;
u8 ipflags1;
u8 iprcode;
u32 ipmsgid;
u8 ipaudit[3];
u8 res1[5];
u32 res2;
u32 ipsrccls;
u32 ipmsgtag;
u32 res3[3];
} __attribute__ ((packed,aligned(8)));
/*
* Set mask iucv structure. Used by iucv_enable_cpu.
*/
struct iucv_cmd_set_mask {
u8 ipmask;
u8 res1[2];
u8 iprcode;
u32 res2[9];
} __attribute__ ((packed,aligned(8)));
union iucv_param {
struct iucv_cmd_control ctrl;
struct iucv_cmd_dpl dpl;
struct iucv_cmd_db db;
struct iucv_cmd_purge purge;
struct iucv_cmd_set_mask set_mask;
};
/*
* Anchor for per-cpu IUCV command parameter block.
*/
static union iucv_param *iucv_param[NR_CPUS];
static union iucv_param *iucv_param_irq[NR_CPUS];
/**
* iucv_call_b2f0
* @code: identifier of IUCV call to CP.
* @parm: pointer to a struct iucv_parm block
*
* Calls CP to execute IUCV commands.
*
* Returns the result of the CP IUCV call.
*/
static inline int iucv_call_b2f0(int command, union iucv_param *parm)
{
register unsigned long reg0 asm ("0");
register unsigned long reg1 asm ("1");
int ccode;
reg0 = command;
reg1 = virt_to_phys(parm);
asm volatile(
" .long 0xb2f01000\n"
" ipm %0\n"
" srl %0,28\n"
: "=d" (ccode), "=m" (*parm), "+d" (reg0), "+a" (reg1)
: "m" (*parm) : "cc");
return (ccode == 1) ? parm->ctrl.iprcode : ccode;
}
/**
* iucv_query_maxconn
*
* Determines the maximum number of connections that may be established.
*
* Returns the maximum number of connections or -EPERM is IUCV is not
* available.
*/
static int iucv_query_maxconn(void)
{
register unsigned long reg0 asm ("0");
register unsigned long reg1 asm ("1");
void *param;
int ccode;
param = kzalloc(sizeof(union iucv_param), GFP_KERNEL|GFP_DMA);
if (!param)
return -ENOMEM;
reg0 = IUCV_QUERY;
reg1 = (unsigned long) param;
asm volatile (
" .long 0xb2f01000\n"
" ipm %0\n"
" srl %0,28\n"
: "=d" (ccode), "+d" (reg0), "+d" (reg1) : : "cc");
if (ccode == 0)
iucv_max_pathid = reg1;
kfree(param);
return ccode ? -EPERM : 0;
}
/**
* iucv_allow_cpu
* @data: unused
*
* Allow iucv interrupts on this cpu.
*/
static void iucv_allow_cpu(void *data)
{
int cpu = smp_processor_id();
union iucv_param *parm;
/*
* Enable all iucv interrupts.
* ipmask contains bits for the different interrupts
* 0x80 - Flag to allow nonpriority message pending interrupts
* 0x40 - Flag to allow priority message pending interrupts
* 0x20 - Flag to allow nonpriority message completion interrupts
* 0x10 - Flag to allow priority message completion interrupts
* 0x08 - Flag to allow IUCV control interrupts
*/
parm = iucv_param_irq[cpu];
memset(parm, 0, sizeof(union iucv_param));
parm->set_mask.ipmask = 0xf8;
iucv_call_b2f0(IUCV_SETMASK, parm);
/*
* Enable all iucv control interrupts.
* ipmask contains bits for the different interrupts
* 0x80 - Flag to allow pending connections interrupts
* 0x40 - Flag to allow connection complete interrupts
* 0x20 - Flag to allow connection severed interrupts
* 0x10 - Flag to allow connection quiesced interrupts
* 0x08 - Flag to allow connection resumed interrupts
*/
memset(parm, 0, sizeof(union iucv_param));
parm->set_mask.ipmask = 0xf8;
iucv_call_b2f0(IUCV_SETCONTROLMASK, parm);
/* Set indication that iucv interrupts are allowed for this cpu. */
cpu_set(cpu, iucv_irq_cpumask);
}
/**
* iucv_block_cpu
* @data: unused
*
* Block iucv interrupts on this cpu.
*/
static void iucv_block_cpu(void *data)
{
int cpu = smp_processor_id();
union iucv_param *parm;
/* Disable all iucv interrupts. */
parm = iucv_param_irq[cpu];
memset(parm, 0, sizeof(union iucv_param));
iucv_call_b2f0(IUCV_SETMASK, parm);
/* Clear indication that iucv interrupts are allowed for this cpu. */
cpu_clear(cpu, iucv_irq_cpumask);
}
/**
* iucv_block_cpu_almost
* @data: unused
*
* Allow connection-severed interrupts only on this cpu.
*/
static void iucv_block_cpu_almost(void *data)
{
int cpu = smp_processor_id();
union iucv_param *parm;
/* Allow iucv control interrupts only */
parm = iucv_param_irq[cpu];
memset(parm, 0, sizeof(union iucv_param));
parm->set_mask.ipmask = 0x08;
iucv_call_b2f0(IUCV_SETMASK, parm);
/* Allow iucv-severed interrupt only */
memset(parm, 0, sizeof(union iucv_param));
parm->set_mask.ipmask = 0x20;
iucv_call_b2f0(IUCV_SETCONTROLMASK, parm);
/* Clear indication that iucv interrupts are allowed for this cpu. */
cpu_clear(cpu, iucv_irq_cpumask);
}
/**
* iucv_declare_cpu
* @data: unused
*
* Declare a interrupt buffer on this cpu.
*/
static void iucv_declare_cpu(void *data)
{
int cpu = smp_processor_id();
union iucv_param *parm;
int rc;
if (cpu_isset(cpu, iucv_buffer_cpumask))
return;
/* Declare interrupt buffer. */
parm = iucv_param_irq[cpu];
memset(parm, 0, sizeof(union iucv_param));
parm->db.ipbfadr1 = virt_to_phys(iucv_irq_data[cpu]);
rc = iucv_call_b2f0(IUCV_DECLARE_BUFFER, parm);
if (rc) {
char *err = "Unknown";
switch (rc) {
case 0x03:
err = "Directory error";
break;
case 0x0a:
err = "Invalid length";
break;
case 0x13:
err = "Buffer already exists";
break;
case 0x3e:
err = "Buffer overlap";
break;
case 0x5c:
err = "Paging or storage error";
break;
}
pr_warning("Defining an interrupt buffer on CPU %i"
" failed with 0x%02x (%s)\n", cpu, rc, err);
return;
}
/* Set indication that an iucv buffer exists for this cpu. */
cpu_set(cpu, iucv_buffer_cpumask);
if (iucv_nonsmp_handler == 0 || cpus_empty(iucv_irq_cpumask))
/* Enable iucv interrupts on this cpu. */
iucv_allow_cpu(NULL);
else
/* Disable iucv interrupts on this cpu. */
iucv_block_cpu(NULL);
}
/**
* iucv_retrieve_cpu
* @data: unused
*
* Retrieve interrupt buffer on this cpu.
*/
static void iucv_retrieve_cpu(void *data)
{
int cpu = smp_processor_id();
union iucv_param *parm;
if (!cpu_isset(cpu, iucv_buffer_cpumask))
return;
/* Block iucv interrupts. */
iucv_block_cpu(NULL);
/* Retrieve interrupt buffer. */
parm = iucv_param_irq[cpu];
iucv_call_b2f0(IUCV_RETRIEVE_BUFFER, parm);
/* Clear indication that an iucv buffer exists for this cpu. */
cpu_clear(cpu, iucv_buffer_cpumask);
}
/**
* iucv_setmask_smp
*
* Allow iucv interrupts on all cpus.
*/
static void iucv_setmask_mp(void)
{
int cpu;
get_online_cpus();
for_each_online_cpu(cpu)
/* Enable all cpus with a declared buffer. */
if (cpu_isset(cpu, iucv_buffer_cpumask) &&
!cpu_isset(cpu, iucv_irq_cpumask))
smp_call_function_single(cpu, iucv_allow_cpu,
NULL, 1);
put_online_cpus();
}
/**
* iucv_setmask_up
*
* Allow iucv interrupts on a single cpu.
*/
static void iucv_setmask_up(void)
{
cpumask_t cpumask;
int cpu;
/* Disable all cpu but the first in cpu_irq_cpumask. */
cpumask = iucv_irq_cpumask;
cpu_clear(first_cpu(iucv_irq_cpumask), cpumask);
for_each_cpu_mask_nr(cpu, cpumask)
smp_call_function_single(cpu, iucv_block_cpu, NULL, 1);
}
/**
* iucv_enable
*
* This function makes iucv ready for use. It allocates the pathid
* table, declares an iucv interrupt buffer and enables the iucv
* interrupts. Called when the first user has registered an iucv
* handler.
*/
static int iucv_enable(void)
{
size_t alloc_size;
int cpu, rc;
get_online_cpus();
rc = -ENOMEM;
alloc_size = iucv_max_pathid * sizeof(struct iucv_path);
iucv_path_table = kzalloc(alloc_size, GFP_KERNEL);
if (!iucv_path_table)
goto out;
/* Declare per cpu buffers. */
rc = -EIO;
for_each_online_cpu(cpu)
smp_call_function_single(cpu, iucv_declare_cpu, NULL, 1);
if (cpus_empty(iucv_buffer_cpumask))
/* No cpu could declare an iucv buffer. */
goto out;
put_online_cpus();
return 0;
out:
kfree(iucv_path_table);
iucv_path_table = NULL;
put_online_cpus();
return rc;
}
/**
* iucv_disable
*
* This function shuts down iucv. It disables iucv interrupts, retrieves
* the iucv interrupt buffer and frees the pathid table. Called after the
* last user unregister its iucv handler.
*/
static void iucv_disable(void)
{
get_online_cpus();
on_each_cpu(iucv_retrieve_cpu, NULL, 1);
kfree(iucv_path_table);
iucv_path_table = NULL;
put_online_cpus();
}
static int __cpuinit iucv_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
{
cpumask_t cpumask;
long cpu = (long) hcpu;
switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
iucv_irq_data[cpu] = kmalloc_node(sizeof(struct iucv_irq_data),
GFP_KERNEL|GFP_DMA, cpu_to_node(cpu));
if (!iucv_irq_data[cpu])
return notifier_from_errno(-ENOMEM);
iucv_param[cpu] = kmalloc_node(sizeof(union iucv_param),
GFP_KERNEL|GFP_DMA, cpu_to_node(cpu));
if (!iucv_param[cpu]) {
kfree(iucv_irq_data[cpu]);
iucv_irq_data[cpu] = NULL;
return notifier_from_errno(-ENOMEM);
}
iucv_param_irq[cpu] = kmalloc_node(sizeof(union iucv_param),
GFP_KERNEL|GFP_DMA, cpu_to_node(cpu));
if (!iucv_param_irq[cpu]) {
kfree(iucv_param[cpu]);
iucv_param[cpu] = NULL;
kfree(iucv_irq_data[cpu]);
iucv_irq_data[cpu] = NULL;
return notifier_from_errno(-ENOMEM);
}
break;
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
case CPU_DEAD:
case CPU_DEAD_FROZEN:
kfree(iucv_param_irq[cpu]);
iucv_param_irq[cpu] = NULL;
kfree(iucv_param[cpu]);
iucv_param[cpu] = NULL;
kfree(iucv_irq_data[cpu]);
iucv_irq_data[cpu] = NULL;
break;
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
case CPU_DOWN_FAILED:
case CPU_DOWN_FAILED_FROZEN:
if (!iucv_path_table)
break;
smp_call_function_single(cpu, iucv_declare_cpu, NULL, 1);
break;
case CPU_DOWN_PREPARE:
case CPU_DOWN_PREPARE_FROZEN:
if (!iucv_path_table)
break;
cpumask = iucv_buffer_cpumask;
cpu_clear(cpu, cpumask);
if (cpus_empty(cpumask))
/* Can't offline last IUCV enabled cpu. */
return notifier_from_errno(-EINVAL);
smp_call_function_single(cpu, iucv_retrieve_cpu, NULL, 1);
if (cpus_empty(iucv_irq_cpumask))
smp_call_function_single(first_cpu(iucv_buffer_cpumask),
iucv_allow_cpu, NULL, 1);
break;
}
return NOTIFY_OK;
}
static struct notifier_block __refdata iucv_cpu_notifier = {
.notifier_call = iucv_cpu_notify,
};
/**
* iucv_sever_pathid
* @pathid: path identification number.
* @userdata: 16-bytes of user data.
*
* Sever an iucv path to free up the pathid. Used internally.
*/
static int iucv_sever_pathid(u16 pathid, u8 userdata[16])
{
union iucv_param *parm;
parm = iucv_param_irq[smp_processor_id()];
memset(parm, 0, sizeof(union iucv_param));
if (userdata)
memcpy(parm->ctrl.ipuser, userdata, sizeof(parm->ctrl.ipuser));
parm->ctrl.ippathid = pathid;
return iucv_call_b2f0(IUCV_SEVER, parm);
}
/**
* __iucv_cleanup_queue
* @dummy: unused dummy argument
*
* Nop function called via smp_call_function to force work items from
* pending external iucv interrupts to the work queue.
*/
static void __iucv_cleanup_queue(void *dummy)
{
}
/**
* iucv_cleanup_queue
*
* Function called after a path has been severed to find all remaining
* work items for the now stale pathid. The caller needs to hold the
* iucv_table_lock.
*/
static void iucv_cleanup_queue(void)
{
struct iucv_irq_list *p, *n;
/*
* When a path is severed, the pathid can be reused immediatly
* on a iucv connect or a connection pending interrupt. Remove
* all entries from the task queue that refer to a stale pathid
* (iucv_path_table[ix] == NULL). Only then do the iucv connect
* or deliver the connection pending interrupt. To get all the
* pending interrupts force them to the work queue by calling
* an empty function on all cpus.
*/
smp_call_function(__iucv_cleanup_queue, NULL, 1);
spin_lock_irq(&iucv_queue_lock);
list_for_each_entry_safe(p, n, &iucv_task_queue, list) {
/* Remove stale work items from the task queue. */
if (iucv_path_table[p->data.ippathid] == NULL) {
list_del(&p->list);
kfree(p);
}
}
spin_unlock_irq(&iucv_queue_lock);
}
/**
* iucv_register:
* @handler: address of iucv handler structure
* @smp: != 0 indicates that the handler can deal with out of order messages
*
* Registers a driver with IUCV.
*
* Returns 0 on success, -ENOMEM if the memory allocation for the pathid
* table failed, or -EIO if IUCV_DECLARE_BUFFER failed on all cpus.
*/
int iucv_register(struct iucv_handler *handler, int smp)
{
int rc;
if (!iucv_available)
return -ENOSYS;
mutex_lock(&iucv_register_mutex);
if (!smp)
iucv_nonsmp_handler++;
if (list_empty(&iucv_handler_list)) {
rc = iucv_enable();
if (rc)
goto out_mutex;
} else if (!smp && iucv_nonsmp_handler == 1)
iucv_setmask_up();
INIT_LIST_HEAD(&handler->paths);
spin_lock_bh(&iucv_table_lock);
list_add_tail(&handler->list, &iucv_handler_list);
spin_unlock_bh(&iucv_table_lock);
rc = 0;
out_mutex:
mutex_unlock(&iucv_register_mutex);
return rc;
}
EXPORT_SYMBOL(iucv_register);
/**
* iucv_unregister
* @handler: address of iucv handler structure
* @smp: != 0 indicates that the handler can deal with out of order messages
*
* Unregister driver from IUCV.
*/
void iucv_unregister(struct iucv_handler *handler, int smp)
{
struct iucv_path *p, *n;
mutex_lock(&iucv_register_mutex);
spin_lock_bh(&iucv_table_lock);
/* Remove handler from the iucv_handler_list. */
list_del_init(&handler->list);
/* Sever all pathids still refering to the handler. */
list_for_each_entry_safe(p, n, &handler->paths, list) {
iucv_sever_pathid(p->pathid, NULL);
iucv_path_table[p->pathid] = NULL;
list_del(&p->list);
iucv_path_free(p);
}
spin_unlock_bh(&iucv_table_lock);
if (!smp)
iucv_nonsmp_handler--;
if (list_empty(&iucv_handler_list))
iucv_disable();
else if (!smp && iucv_nonsmp_handler == 0)
iucv_setmask_mp();
mutex_unlock(&iucv_register_mutex);
}
EXPORT_SYMBOL(iucv_unregister);
static int iucv_reboot_event(struct notifier_block *this,
unsigned long event, void *ptr)
{
int i, rc;
get_online_cpus();
on_each_cpu(iucv_block_cpu, NULL, 1);
preempt_disable();
for (i = 0; i < iucv_max_pathid; i++) {
if (iucv_path_table[i])
rc = iucv_sever_pathid(i, NULL);
}
preempt_enable();
put_online_cpus();
iucv_disable();
return NOTIFY_DONE;
}
static struct notifier_block iucv_reboot_notifier = {
.notifier_call = iucv_reboot_event,
};
/**
* iucv_path_accept
* @path: address of iucv path structure
* @handler: address of iucv handler structure
* @userdata: 16 bytes of data reflected to the communication partner
* @private: private data passed to interrupt handlers for this path
*
* This function is issued after the user received a connection pending
* external interrupt and now wishes to complete the IUCV communication path.
*
* Returns the result of the CP IUCV call.
*/
int iucv_path_accept(struct iucv_path *path, struct iucv_handler *handler,
u8 userdata[16], void *private)
{
union iucv_param *parm;
int rc;
local_bh_disable();
if (cpus_empty(iucv_buffer_cpumask)) {
rc = -EIO;
goto out;
}
/* Prepare parameter block. */
parm = iucv_param[smp_processor_id()];
memset(parm, 0, sizeof(union iucv_param));
parm->ctrl.ippathid = path->pathid;
parm->ctrl.ipmsglim = path->msglim;
if (userdata)
memcpy(parm->ctrl.ipuser, userdata, sizeof(parm->ctrl.ipuser));
parm->ctrl.ipflags1 = path->flags;
rc = iucv_call_b2f0(IUCV_ACCEPT, parm);
if (!rc) {
path->private = private;
path->msglim = parm->ctrl.ipmsglim;
path->flags = parm->ctrl.ipflags1;
}
out:
local_bh_enable();
return rc;
}
EXPORT_SYMBOL(iucv_path_accept);
/**
* iucv_path_connect
* @path: address of iucv path structure
* @handler: address of iucv handler structure
* @userid: 8-byte user identification
* @system: 8-byte target system identification
* @userdata: 16 bytes of data reflected to the communication partner
* @private: private data passed to interrupt handlers for this path
*
* This function establishes an IUCV path. Although the connect may complete
* successfully, you are not able to use the path until you receive an IUCV
* Connection Complete external interrupt.
*
* Returns the result of the CP IUCV call.
*/
int iucv_path_connect(struct iucv_path *path, struct iucv_handler *handler,
u8 userid[8], u8 system[8], u8 userdata[16],
void *private)
{
union iucv_param *parm;
int rc;
spin_lock_bh(&iucv_table_lock);
iucv_cleanup_queue();
if (cpus_empty(iucv_buffer_cpumask)) {
rc = -EIO;
goto out;
}
parm = iucv_param[smp_processor_id()];
memset(parm, 0, sizeof(union iucv_param));
parm->ctrl.ipmsglim = path->msglim;
parm->ctrl.ipflags1 = path->flags;
if (userid) {
memcpy(parm->ctrl.ipvmid, userid, sizeof(parm->ctrl.ipvmid));
ASCEBC(parm->ctrl.ipvmid, sizeof(parm->ctrl.ipvmid));
EBC_TOUPPER(parm->ctrl.ipvmid, sizeof(parm->ctrl.ipvmid));
}
if (system) {
memcpy(parm->ctrl.iptarget, system,
sizeof(parm->ctrl.iptarget));
ASCEBC(parm->ctrl.iptarget, sizeof(parm->ctrl.iptarget));
EBC_TOUPPER(parm->ctrl.iptarget, sizeof(parm->ctrl.iptarget));
}
if (userdata)
memcpy(parm->ctrl.ipuser, userdata, sizeof(parm->ctrl.ipuser));
rc = iucv_call_b2f0(IUCV_CONNECT, parm);
if (!rc) {
if (parm->ctrl.ippathid < iucv_max_pathid) {
path->pathid = parm->ctrl.ippathid;
path->msglim = parm->ctrl.ipmsglim;
path->flags = parm->ctrl.ipflags1;
path->handler = handler;
path->private = private;
list_add_tail(&path->list, &handler->paths);
iucv_path_table[path->pathid] = path;
} else {
iucv_sever_pathid(parm->ctrl.ippathid,
iucv_error_pathid);
rc = -EIO;
}
}
out:
spin_unlock_bh(&iucv_table_lock);
return rc;
}
EXPORT_SYMBOL(iucv_path_connect);
/**
* iucv_path_quiesce:
* @path: address of iucv path structure
* @userdata: 16 bytes of data reflected to the communication partner
*
* This function temporarily suspends incoming messages on an IUCV path.
* You can later reactivate the path by invoking the iucv_resume function.
*
* Returns the result from the CP IUCV call.
*/
int iucv_path_quiesce(struct iucv_path *path, u8 userdata[16])
{
union iucv_param *parm;
int rc;
local_bh_disable();
if (cpus_empty(iucv_buffer_cpumask)) {
rc = -EIO;
goto out;
}
parm = iucv_param[smp_processor_id()];
memset(parm, 0, sizeof(union iucv_param));
if (userdata)
memcpy(parm->ctrl.ipuser, userdata, sizeof(parm->ctrl.ipuser));
parm->ctrl.ippathid = path->pathid;
rc = iucv_call_b2f0(IUCV_QUIESCE, parm);
out:
local_bh_enable();
return rc;
}
EXPORT_SYMBOL(iucv_path_quiesce);
/**
* iucv_path_resume:
* @path: address of iucv path structure
* @userdata: 16 bytes of data reflected to the communication partner
*
* This function resumes incoming messages on an IUCV path that has
* been stopped with iucv_path_quiesce.
*
* Returns the result from the CP IUCV call.
*/
int iucv_path_resume(struct iucv_path *path, u8 userdata[16])
{
union iucv_param *parm;
int rc;
local_bh_disable();
if (cpus_empty(iucv_buffer_cpumask)) {
rc = -EIO;
goto out;
}
parm = iucv_param[smp_processor_id()];
memset(parm, 0, sizeof(union iucv_param));
if (userdata)
memcpy(parm->ctrl.ipuser, userdata, sizeof(parm->ctrl.ipuser));
parm->ctrl.ippathid = path->pathid;
rc = iucv_call_b2f0(IUCV_RESUME, parm);
out:
local_bh_enable();
return rc;
}
/**
* iucv_path_sever
* @path: address of iucv path structure
* @userdata: 16 bytes of data reflected to the communication partner
*
* This function terminates an IUCV path.
*
* Returns the result from the CP IUCV call.
*/
int iucv_path_sever(struct iucv_path *path, u8 userdata[16])
{
int rc;
preempt_disable();
if (cpus_empty(iucv_buffer_cpumask)) {
rc = -EIO;
goto out;
}
if (iucv_active_cpu != smp_processor_id())
spin_lock_bh(&iucv_table_lock);
rc = iucv_sever_pathid(path->pathid, userdata);
iucv_path_table[path->pathid] = NULL;
list_del_init(&path->list);
if (iucv_active_cpu != smp_processor_id())
spin_unlock_bh(&iucv_table_lock);
out:
preempt_enable();
return rc;
}
EXPORT_SYMBOL(iucv_path_sever);
/**
* iucv_message_purge
* @path: address of iucv path structure
* @msg: address of iucv msg structure
* @srccls: source class of message
*
* Cancels a message you have sent.
*
* Returns the result from the CP IUCV call.
*/
int iucv_message_purge(struct iucv_path *path, struct iucv_message *msg,
u32 srccls)
{
union iucv_param *parm;
int rc;
local_bh_disable();
if (cpus_empty(iucv_buffer_cpumask)) {
rc = -EIO;
goto out;
}
parm = iucv_param[smp_processor_id()];
memset(parm, 0, sizeof(union iucv_param));
parm->purge.ippathid = path->pathid;
parm->purge.ipmsgid = msg->id;
parm->purge.ipsrccls = srccls;
parm->purge.ipflags1 = IUCV_IPSRCCLS | IUCV_IPFGMID | IUCV_IPFGPID;
rc = iucv_call_b2f0(IUCV_PURGE, parm);
if (!rc) {
msg->audit = (*(u32 *) &parm->purge.ipaudit) >> 8;
msg->tag = parm->purge.ipmsgtag;
}
out:
local_bh_enable();
return rc;
}
EXPORT_SYMBOL(iucv_message_purge);
/**
* iucv_message_receive_iprmdata
* @path: address of iucv path structure
* @msg: address of iucv msg structure
* @flags: how the message is received (IUCV_IPBUFLST)
* @buffer: address of data buffer or address of struct iucv_array
* @size: length of data buffer
* @residual:
*
* Internal function used by iucv_message_receive and __iucv_message_receive
* to receive RMDATA data stored in struct iucv_message.
*/
static int iucv_message_receive_iprmdata(struct iucv_path *path,
struct iucv_message *msg,
u8 flags, void *buffer,
size_t size, size_t *residual)
{
struct iucv_array *array;
u8 *rmmsg;
size_t copy;
/*
* Message is 8 bytes long and has been stored to the
* message descriptor itself.
*/
if (residual)
*residual = abs(size - 8);
rmmsg = msg->rmmsg;
if (flags & IUCV_IPBUFLST) {
/* Copy to struct iucv_array. */
size = (size < 8) ? size : 8;
for (array = buffer; size > 0; array++) {
copy = min_t(size_t, size, array->length);
memcpy((u8 *)(addr_t) array->address,
rmmsg, copy);
rmmsg += copy;
size -= copy;
}
} else {
/* Copy to direct buffer. */
memcpy(buffer, rmmsg, min_t(size_t, size, 8));
}
return 0;
}
/**
* __iucv_message_receive
* @path: address of iucv path structure
* @msg: address of iucv msg structure
* @flags: how the message is received (IUCV_IPBUFLST)
* @buffer: address of data buffer or address of struct iucv_array
* @size: length of data buffer
* @residual:
*
* This function receives messages that are being sent to you over
* established paths. This function will deal with RMDATA messages
* embedded in struct iucv_message as well.
*
* Locking: no locking
*
* Returns the result from the CP IUCV call.
*/
int __iucv_message_receive(struct iucv_path *path, struct iucv_message *msg,
u8 flags, void *buffer, size_t size, size_t *residual)
{
union iucv_param *parm;
int rc;
if (msg->flags & IUCV_IPRMDATA)
return iucv_message_receive_iprmdata(path, msg, flags,
buffer, size, residual);
if (cpus_empty(iucv_buffer_cpumask)) {
rc = -EIO;
goto out;
}
parm = iucv_param[smp_processor_id()];
memset(parm, 0, sizeof(union iucv_param));
parm->db.ipbfadr1 = (u32)(addr_t) buffer;
parm->db.ipbfln1f = (u32) size;
parm->db.ipmsgid = msg->id;
parm->db.ippathid = path->pathid;
parm->db.iptrgcls = msg->class;
parm->db.ipflags1 = (flags | IUCV_IPFGPID |
IUCV_IPFGMID | IUCV_IPTRGCLS);
rc = iucv_call_b2f0(IUCV_RECEIVE, parm);
if (!rc || rc == 5) {
msg->flags = parm->db.ipflags1;
if (residual)
*residual = parm->db.ipbfln1f;
}
out:
return rc;
}
EXPORT_SYMBOL(__iucv_message_receive);
/**
* iucv_message_receive
* @path: address of iucv path structure
* @msg: address of iucv msg structure
* @flags: how the message is received (IUCV_IPBUFLST)
* @buffer: address of data buffer or address of struct iucv_array
* @size: length of data buffer
* @residual:
*
* This function receives messages that are being sent to you over
* established paths. This function will deal with RMDATA messages
* embedded in struct iucv_message as well.
*
* Locking: local_bh_enable/local_bh_disable
*
* Returns the result from the CP IUCV call.
*/
int iucv_message_receive(struct iucv_path *path, struct iucv_message *msg,
u8 flags, void *buffer, size_t size, size_t *residual)
{
int rc;
if (msg->flags & IUCV_IPRMDATA)
return iucv_message_receive_iprmdata(path, msg, flags,
buffer, size, residual);
local_bh_disable();
rc = __iucv_message_receive(path, msg, flags, buffer, size, residual);
local_bh_enable();
return rc;
}
EXPORT_SYMBOL(iucv_message_receive);
/**
* iucv_message_reject
* @path: address of iucv path structure
* @msg: address of iucv msg structure
*
* The reject function refuses a specified message. Between the time you
* are notified of a message and the time that you complete the message,
* the message may be rejected.
*
* Returns the result from the CP IUCV call.
*/
int iucv_message_reject(struct iucv_path *path, struct iucv_message *msg)
{
union iucv_param *parm;
int rc;
local_bh_disable();
if (cpus_empty(iucv_buffer_cpumask)) {
rc = -EIO;
goto out;
}
parm = iucv_param[smp_processor_id()];
memset(parm, 0, sizeof(union iucv_param));
parm->db.ippathid = path->pathid;
parm->db.ipmsgid = msg->id;
parm->db.iptrgcls = msg->class;
parm->db.ipflags1 = (IUCV_IPTRGCLS | IUCV_IPFGMID | IUCV_IPFGPID);
rc = iucv_call_b2f0(IUCV_REJECT, parm);
out:
local_bh_enable();
return rc;
}
EXPORT_SYMBOL(iucv_message_reject);
/**
* iucv_message_reply
* @path: address of iucv path structure
* @msg: address of iucv msg structure
* @flags: how the reply is sent (IUCV_IPRMDATA, IUCV_IPPRTY, IUCV_IPBUFLST)
* @reply: address of reply data buffer or address of struct iucv_array
* @size: length of reply data buffer
*
* This function responds to the two-way messages that you receive. You
* must identify completely the message to which you wish to reply. ie,
* pathid, msgid, and trgcls. Prmmsg signifies the data is moved into
* the parameter list.
*
* Returns the result from the CP IUCV call.
*/
int iucv_message_reply(struct iucv_path *path, struct iucv_message *msg,
u8 flags, void *reply, size_t size)
{
union iucv_param *parm;
int rc;
local_bh_disable();
if (cpus_empty(iucv_buffer_cpumask)) {
rc = -EIO;
goto out;
}
parm = iucv_param[smp_processor_id()];
memset(parm, 0, sizeof(union iucv_param));
if (flags & IUCV_IPRMDATA) {
parm->dpl.ippathid = path->pathid;
parm->dpl.ipflags1 = flags;
parm->dpl.ipmsgid = msg->id;
parm->dpl.iptrgcls = msg->class;
memcpy(parm->dpl.iprmmsg, reply, min_t(size_t, size, 8));
} else {
parm->db.ipbfadr1 = (u32)(addr_t) reply;
parm->db.ipbfln1f = (u32) size;
parm->db.ippathid = path->pathid;
parm->db.ipflags1 = flags;
parm->db.ipmsgid = msg->id;
parm->db.iptrgcls = msg->class;
}
rc = iucv_call_b2f0(IUCV_REPLY, parm);
out:
local_bh_enable();
return rc;
}
EXPORT_SYMBOL(iucv_message_reply);
/**
* __iucv_message_send
* @path: address of iucv path structure
* @msg: address of iucv msg structure
* @flags: how the message is sent (IUCV_IPRMDATA, IUCV_IPPRTY, IUCV_IPBUFLST)
* @srccls: source class of message
* @buffer: address of send buffer or address of struct iucv_array
* @size: length of send buffer
*
* This function transmits data to another application. Data to be
* transmitted is in a buffer and this is a one-way message and the
* receiver will not reply to the message.
*
* Locking: no locking
*
* Returns the result from the CP IUCV call.
*/
int __iucv_message_send(struct iucv_path *path, struct iucv_message *msg,
u8 flags, u32 srccls, void *buffer, size_t size)
{
union iucv_param *parm;
int rc;
if (cpus_empty(iucv_buffer_cpumask)) {
rc = -EIO;
goto out;
}
parm = iucv_param[smp_processor_id()];
memset(parm, 0, sizeof(union iucv_param));
if (flags & IUCV_IPRMDATA) {
/* Message of 8 bytes can be placed into the parameter list. */
parm->dpl.ippathid = path->pathid;
parm->dpl.ipflags1 = flags | IUCV_IPNORPY;
parm->dpl.iptrgcls = msg->class;
parm->dpl.ipsrccls = srccls;
parm->dpl.ipmsgtag = msg->tag;
memcpy(parm->dpl.iprmmsg, buffer, 8);
} else {
parm->db.ipbfadr1 = (u32)(addr_t) buffer;
parm->db.ipbfln1f = (u32) size;
parm->db.ippathid = path->pathid;
parm->db.ipflags1 = flags | IUCV_IPNORPY;
parm->db.iptrgcls = msg->class;
parm->db.ipsrccls = srccls;
parm->db.ipmsgtag = msg->tag;
}
rc = iucv_call_b2f0(IUCV_SEND, parm);
if (!rc)
msg->id = parm->db.ipmsgid;
out:
return rc;
}
EXPORT_SYMBOL(__iucv_message_send);
/**
* iucv_message_send
* @path: address of iucv path structure
* @msg: address of iucv msg structure
* @flags: how the message is sent (IUCV_IPRMDATA, IUCV_IPPRTY, IUCV_IPBUFLST)
* @srccls: source class of message
* @buffer: address of send buffer or address of struct iucv_array
* @size: length of send buffer
*
* This function transmits data to another application. Data to be
* transmitted is in a buffer and this is a one-way message and the
* receiver will not reply to the message.
*
* Locking: local_bh_enable/local_bh_disable
*
* Returns the result from the CP IUCV call.
*/
int iucv_message_send(struct iucv_path *path, struct iucv_message *msg,
u8 flags, u32 srccls, void *buffer, size_t size)
{
int rc;
local_bh_disable();
rc = __iucv_message_send(path, msg, flags, srccls, buffer, size);
local_bh_enable();
return rc;
}
EXPORT_SYMBOL(iucv_message_send);
/**
* iucv_message_send2way
* @path: address of iucv path structure
* @msg: address of iucv msg structure
* @flags: how the message is sent and the reply is received
* (IUCV_IPRMDATA, IUCV_IPBUFLST, IUCV_IPPRTY, IUCV_ANSLST)
* @srccls: source class of message
* @buffer: address of send buffer or address of struct iucv_array
* @size: length of send buffer
* @ansbuf: address of answer buffer or address of struct iucv_array
* @asize: size of reply buffer
*
* This function transmits data to another application. Data to be
* transmitted is in a buffer. The receiver of the send is expected to
* reply to the message and a buffer is provided into which IUCV moves
* the reply to this message.
*
* Returns the result from the CP IUCV call.
*/
int iucv_message_send2way(struct iucv_path *path, struct iucv_message *msg,
u8 flags, u32 srccls, void *buffer, size_t size,
void *answer, size_t asize, size_t *residual)
{
union iucv_param *parm;
int rc;
local_bh_disable();
if (cpus_empty(iucv_buffer_cpumask)) {
rc = -EIO;
goto out;
}
parm = iucv_param[smp_processor_id()];
memset(parm, 0, sizeof(union iucv_param));
if (flags & IUCV_IPRMDATA) {
parm->dpl.ippathid = path->pathid;
parm->dpl.ipflags1 = path->flags; /* priority message */
parm->dpl.iptrgcls = msg->class;
parm->dpl.ipsrccls = srccls;
parm->dpl.ipmsgtag = msg->tag;
parm->dpl.ipbfadr2 = (u32)(addr_t) answer;
parm->dpl.ipbfln2f = (u32) asize;
memcpy(parm->dpl.iprmmsg, buffer, 8);
} else {
parm->db.ippathid = path->pathid;
parm->db.ipflags1 = path->flags; /* priority message */
parm->db.iptrgcls = msg->class;
parm->db.ipsrccls = srccls;
parm->db.ipmsgtag = msg->tag;
parm->db.ipbfadr1 = (u32)(addr_t) buffer;
parm->db.ipbfln1f = (u32) size;
parm->db.ipbfadr2 = (u32)(addr_t) answer;
parm->db.ipbfln2f = (u32) asize;
}
rc = iucv_call_b2f0(IUCV_SEND, parm);
if (!rc)
msg->id = parm->db.ipmsgid;
out:
local_bh_enable();
return rc;
}
EXPORT_SYMBOL(iucv_message_send2way);
/**
* iucv_path_pending
* @data: Pointer to external interrupt buffer
*
* Process connection pending work item. Called from tasklet while holding
* iucv_table_lock.
*/
struct iucv_path_pending {
u16 ippathid;
u8 ipflags1;
u8 iptype;
u16 ipmsglim;
u16 res1;
u8 ipvmid[8];
u8 ipuser[16];
u32 res3;
u8 ippollfg;
u8 res4[3];
} __packed;
static void iucv_path_pending(struct iucv_irq_data *data)
{
struct iucv_path_pending *ipp = (void *) data;
struct iucv_handler *handler;
struct iucv_path *path;
char *error;
BUG_ON(iucv_path_table[ipp->ippathid]);
/* New pathid, handler found. Create a new path struct. */
error = iucv_error_no_memory;
path = iucv_path_alloc(ipp->ipmsglim, ipp->ipflags1, GFP_ATOMIC);
if (!path)
goto out_sever;
path->pathid = ipp->ippathid;
iucv_path_table[path->pathid] = path;
EBCASC(ipp->ipvmid, 8);
/* Call registered handler until one is found that wants the path. */
list_for_each_entry(handler, &iucv_handler_list, list) {
if (!handler->path_pending)
continue;
/*
* Add path to handler to allow a call to iucv_path_sever
* inside the path_pending function. If the handler returns
* an error remove the path from the handler again.
*/
list_add(&path->list, &handler->paths);
path->handler = handler;
if (!handler->path_pending(path, ipp->ipvmid, ipp->ipuser))
return;
list_del(&path->list);
path->handler = NULL;
}
/* No handler wanted the path. */
iucv_path_table[path->pathid] = NULL;
iucv_path_free(path);
error = iucv_error_no_listener;
out_sever:
iucv_sever_pathid(ipp->ippathid, error);
}
/**
* iucv_path_complete
* @data: Pointer to external interrupt buffer
*
* Process connection complete work item. Called from tasklet while holding
* iucv_table_lock.
*/
struct iucv_path_complete {
u16 ippathid;
u8 ipflags1;
u8 iptype;
u16 ipmsglim;
u16 res1;
u8 res2[8];
u8 ipuser[16];
u32 res3;
u8 ippollfg;
u8 res4[3];
} __packed;
static void iucv_path_complete(struct iucv_irq_data *data)
{
struct iucv_path_complete *ipc = (void *) data;
struct iucv_path *path = iucv_path_table[ipc->ippathid];
if (path)
path->flags = ipc->ipflags1;
if (path && path->handler && path->handler->path_complete)
path->handler->path_complete(path, ipc->ipuser);
}
/**
* iucv_path_severed
* @data: Pointer to external interrupt buffer
*
* Process connection severed work item. Called from tasklet while holding
* iucv_table_lock.
*/
struct iucv_path_severed {
u16 ippathid;
u8 res1;
u8 iptype;
u32 res2;
u8 res3[8];
u8 ipuser[16];
u32 res4;
u8 ippollfg;
u8 res5[3];
} __packed;
static void iucv_path_severed(struct iucv_irq_data *data)
{
struct iucv_path_severed *ips = (void *) data;
struct iucv_path *path = iucv_path_table[ips->ippathid];
if (!path || !path->handler) /* Already severed */
return;
if (path->handler->path_severed)
path->handler->path_severed(path, ips->ipuser);
else {
iucv_sever_pathid(path->pathid, NULL);
iucv_path_table[path->pathid] = NULL;
list_del(&path->list);
iucv_path_free(path);
}
}
/**
* iucv_path_quiesced
* @data: Pointer to external interrupt buffer
*
* Process connection quiesced work item. Called from tasklet while holding
* iucv_table_lock.
*/
struct iucv_path_quiesced {
u16 ippathid;
u8 res1;
u8 iptype;
u32 res2;
u8 res3[8];
u8 ipuser[16];
u32 res4;
u8 ippollfg;
u8 res5[3];
} __packed;
static void iucv_path_quiesced(struct iucv_irq_data *data)
{
struct iucv_path_quiesced *ipq = (void *) data;
struct iucv_path *path = iucv_path_table[ipq->ippathid];
if (path && path->handler && path->handler->path_quiesced)
path->handler->path_quiesced(path, ipq->ipuser);
}
/**
* iucv_path_resumed
* @data: Pointer to external interrupt buffer
*
* Process connection resumed work item. Called from tasklet while holding
* iucv_table_lock.
*/
struct iucv_path_resumed {
u16 ippathid;
u8 res1;
u8 iptype;
u32 res2;
u8 res3[8];
u8 ipuser[16];
u32 res4;
u8 ippollfg;
u8 res5[3];
} __packed;
static void iucv_path_resumed(struct iucv_irq_data *data)
{
struct iucv_path_resumed *ipr = (void *) data;
struct iucv_path *path = iucv_path_table[ipr->ippathid];
if (path && path->handler && path->handler->path_resumed)
path->handler->path_resumed(path, ipr->ipuser);
}
/**
* iucv_message_complete
* @data: Pointer to external interrupt buffer
*
* Process message complete work item. Called from tasklet while holding
* iucv_table_lock.
*/
struct iucv_message_complete {
u16 ippathid;
u8 ipflags1;
u8 iptype;
u32 ipmsgid;
u32 ipaudit;
u8 iprmmsg[8];
u32 ipsrccls;
u32 ipmsgtag;
u32 res;
u32 ipbfln2f;
u8 ippollfg;
u8 res2[3];
} __packed;
static void iucv_message_complete(struct iucv_irq_data *data)
{
struct iucv_message_complete *imc = (void *) data;
struct iucv_path *path = iucv_path_table[imc->ippathid];
struct iucv_message msg;
if (path && path->handler && path->handler->message_complete) {
msg.flags = imc->ipflags1;
msg.id = imc->ipmsgid;
msg.audit = imc->ipaudit;
memcpy(msg.rmmsg, imc->iprmmsg, 8);
msg.class = imc->ipsrccls;
msg.tag = imc->ipmsgtag;
msg.length = imc->ipbfln2f;
path->handler->message_complete(path, &msg);
}
}
/**
* iucv_message_pending
* @data: Pointer to external interrupt buffer
*
* Process message pending work item. Called from tasklet while holding
* iucv_table_lock.
*/
struct iucv_message_pending {
u16 ippathid;
u8 ipflags1;
u8 iptype;
u32 ipmsgid;
u32 iptrgcls;
union {
u32 iprmmsg1_u32;
u8 iprmmsg1[4];
} ln1msg1;
union {
u32 ipbfln1f;
u8 iprmmsg2[4];
} ln1msg2;
u32 res1[3];
u32 ipbfln2f;
u8 ippollfg;
u8 res2[3];
} __packed;
static void iucv_message_pending(struct iucv_irq_data *data)
{
struct iucv_message_pending *imp = (void *) data;
struct iucv_path *path = iucv_path_table[imp->ippathid];
struct iucv_message msg;
if (path && path->handler && path->handler->message_pending) {
msg.flags = imp->ipflags1;
msg.id = imp->ipmsgid;
msg.class = imp->iptrgcls;
if (imp->ipflags1 & IUCV_IPRMDATA) {
memcpy(msg.rmmsg, imp->ln1msg1.iprmmsg1, 8);
msg.length = 8;
} else
msg.length = imp->ln1msg2.ipbfln1f;
msg.reply_size = imp->ipbfln2f;
path->handler->message_pending(path, &msg);
}
}
/**
* iucv_tasklet_fn:
*
* This tasklet loops over the queue of irq buffers created by
* iucv_external_interrupt, calls the appropriate action handler
* and then frees the buffer.
*/
static void iucv_tasklet_fn(unsigned long ignored)
{
typedef void iucv_irq_fn(struct iucv_irq_data *);
static iucv_irq_fn *irq_fn[] = {
[0x02] = iucv_path_complete,
[0x03] = iucv_path_severed,
[0x04] = iucv_path_quiesced,
[0x05] = iucv_path_resumed,
[0x06] = iucv_message_complete,
[0x07] = iucv_message_complete,
[0x08] = iucv_message_pending,
[0x09] = iucv_message_pending,
};
LIST_HEAD(task_queue);
struct iucv_irq_list *p, *n;
/* Serialize tasklet, iucv_path_sever and iucv_path_connect. */
if (!spin_trylock(&iucv_table_lock)) {
tasklet_schedule(&iucv_tasklet);
return;
}
iucv_active_cpu = smp_processor_id();
spin_lock_irq(&iucv_queue_lock);
list_splice_init(&iucv_task_queue, &task_queue);
spin_unlock_irq(&iucv_queue_lock);
list_for_each_entry_safe(p, n, &task_queue, list) {
list_del_init(&p->list);
irq_fn[p->data.iptype](&p->data);
kfree(p);
}
iucv_active_cpu = -1;
spin_unlock(&iucv_table_lock);
}
/**
* iucv_work_fn:
*
* This work function loops over the queue of path pending irq blocks
* created by iucv_external_interrupt, calls the appropriate action
* handler and then frees the buffer.
*/
static void iucv_work_fn(struct work_struct *work)
{
LIST_HEAD(work_queue);
struct iucv_irq_list *p, *n;
/* Serialize tasklet, iucv_path_sever and iucv_path_connect. */
spin_lock_bh(&iucv_table_lock);
iucv_active_cpu = smp_processor_id();
spin_lock_irq(&iucv_queue_lock);
list_splice_init(&iucv_work_queue, &work_queue);
spin_unlock_irq(&iucv_queue_lock);
iucv_cleanup_queue();
list_for_each_entry_safe(p, n, &work_queue, list) {
list_del_init(&p->list);
iucv_path_pending(&p->data);
kfree(p);
}
iucv_active_cpu = -1;
spin_unlock_bh(&iucv_table_lock);
}
/**
* iucv_external_interrupt
* @code: irq code
*
* Handles external interrupts coming in from CP.
* Places the interrupt buffer on a queue and schedules iucv_tasklet_fn().
*/
static void iucv_external_interrupt(u16 code)
{
struct iucv_irq_data *p;
struct iucv_irq_list *work;
p = iucv_irq_data[smp_processor_id()];
if (p->ippathid >= iucv_max_pathid) {
WARN_ON(p->ippathid >= iucv_max_pathid);
iucv_sever_pathid(p->ippathid, iucv_error_no_listener);
return;
}
BUG_ON(p->iptype < 0x01 || p->iptype > 0x09);
work = kmalloc(sizeof(struct iucv_irq_list), GFP_ATOMIC);
if (!work) {
pr_warning("iucv_external_interrupt: out of memory\n");
return;
}
memcpy(&work->data, p, sizeof(work->data));
spin_lock(&iucv_queue_lock);
if (p->iptype == 0x01) {
/* Path pending interrupt. */
list_add_tail(&work->list, &iucv_work_queue);
schedule_work(&iucv_work);
} else {
/* The other interrupts. */
list_add_tail(&work->list, &iucv_task_queue);
tasklet_schedule(&iucv_tasklet);
}
spin_unlock(&iucv_queue_lock);
}
static int iucv_pm_prepare(struct device *dev)
{
int rc = 0;
#ifdef CONFIG_PM_DEBUG
printk(KERN_INFO "iucv_pm_prepare\n");
#endif
if (dev->driver && dev->driver->pm && dev->driver->pm->prepare)
rc = dev->driver->pm->prepare(dev);
return rc;
}
static void iucv_pm_complete(struct device *dev)
{
#ifdef CONFIG_PM_DEBUG
printk(KERN_INFO "iucv_pm_complete\n");
#endif
if (dev->driver && dev->driver->pm && dev->driver->pm->complete)
dev->driver->pm->complete(dev);
}
/**
* iucv_path_table_empty() - determine if iucv path table is empty
*
* Returns 0 if there are still iucv pathes defined
* 1 if there are no iucv pathes defined
*/
int iucv_path_table_empty(void)
{
int i;
for (i = 0; i < iucv_max_pathid; i++) {
if (iucv_path_table[i])
return 0;
}
return 1;
}
/**
* iucv_pm_freeze() - Freeze PM callback
* @dev: iucv-based device
*
* disable iucv interrupts
* invoke callback function of the iucv-based driver
* shut down iucv, if no iucv-pathes are established anymore
*/
static int iucv_pm_freeze(struct device *dev)
{
int cpu;
struct iucv_irq_list *p, *n;
int rc = 0;
#ifdef CONFIG_PM_DEBUG
printk(KERN_WARNING "iucv_pm_freeze\n");
#endif
if (iucv_pm_state != IUCV_PM_FREEZING) {
for_each_cpu_mask_nr(cpu, iucv_irq_cpumask)
smp_call_function_single(cpu, iucv_block_cpu_almost,
NULL, 1);
cancel_work_sync(&iucv_work);
list_for_each_entry_safe(p, n, &iucv_work_queue, list) {
list_del_init(&p->list);
iucv_sever_pathid(p->data.ippathid,
iucv_error_no_listener);
kfree(p);
}
}
iucv_pm_state = IUCV_PM_FREEZING;
if (dev->driver && dev->driver->pm && dev->driver->pm->freeze)
rc = dev->driver->pm->freeze(dev);
if (iucv_path_table_empty())
iucv_disable();
return rc;
}
/**
* iucv_pm_thaw() - Thaw PM callback
* @dev: iucv-based device
*
* make iucv ready for use again: allocate path table, declare interrupt buffers
* and enable iucv interrupts
* invoke callback function of the iucv-based driver
*/
static int iucv_pm_thaw(struct device *dev)
{
int rc = 0;
#ifdef CONFIG_PM_DEBUG
printk(KERN_WARNING "iucv_pm_thaw\n");
#endif
iucv_pm_state = IUCV_PM_THAWING;
if (!iucv_path_table) {
rc = iucv_enable();
if (rc)
goto out;
}
if (cpus_empty(iucv_irq_cpumask)) {
if (iucv_nonsmp_handler)
/* enable interrupts on one cpu */
iucv_allow_cpu(NULL);
else
/* enable interrupts on all cpus */
iucv_setmask_mp();
}
if (dev->driver && dev->driver->pm && dev->driver->pm->thaw)
rc = dev->driver->pm->thaw(dev);
out:
return rc;
}
/**
* iucv_pm_restore() - Restore PM callback
* @dev: iucv-based device
*
* make iucv ready for use again: allocate path table, declare interrupt buffers
* and enable iucv interrupts
* invoke callback function of the iucv-based driver
*/
static int iucv_pm_restore(struct device *dev)
{
int rc = 0;
#ifdef CONFIG_PM_DEBUG
printk(KERN_WARNING "iucv_pm_restore %p\n", iucv_path_table);
#endif
if ((iucv_pm_state != IUCV_PM_RESTORING) && iucv_path_table)
pr_warning("Suspending Linux did not completely close all IUCV "
"connections\n");
iucv_pm_state = IUCV_PM_RESTORING;
if (cpus_empty(iucv_irq_cpumask)) {
rc = iucv_query_maxconn();
rc = iucv_enable();
if (rc)
goto out;
}
if (dev->driver && dev->driver->pm && dev->driver->pm->restore)
rc = dev->driver->pm->restore(dev);
out:
return rc;
}
/**
* iucv_init
*
* Allocates and initializes various data structures.
*/
static int __init iucv_init(void)
{
int rc;
int cpu;
if (!MACHINE_IS_VM) {
rc = -EPROTONOSUPPORT;
goto out;
}
rc = iucv_query_maxconn();
if (rc)
goto out;
rc = register_external_interrupt(0x4000, iucv_external_interrupt);
if (rc)
goto out;
iucv_root = root_device_register("iucv");
if (IS_ERR(iucv_root)) {
rc = PTR_ERR(iucv_root);
goto out_int;
}
for_each_online_cpu(cpu) {
/* Note: GFP_DMA used to get memory below 2G */
iucv_irq_data[cpu] = kmalloc_node(sizeof(struct iucv_irq_data),
GFP_KERNEL|GFP_DMA, cpu_to_node(cpu));
if (!iucv_irq_data[cpu]) {
rc = -ENOMEM;
goto out_free;
}
/* Allocate parameter blocks. */
iucv_param[cpu] = kmalloc_node(sizeof(union iucv_param),
GFP_KERNEL|GFP_DMA, cpu_to_node(cpu));
if (!iucv_param[cpu]) {
rc = -ENOMEM;
goto out_free;
}
iucv_param_irq[cpu] = kmalloc_node(sizeof(union iucv_param),
GFP_KERNEL|GFP_DMA, cpu_to_node(cpu));
if (!iucv_param_irq[cpu]) {
rc = -ENOMEM;
goto out_free;
}
}
rc = register_hotcpu_notifier(&iucv_cpu_notifier);
if (rc)
goto out_free;
rc = register_reboot_notifier(&iucv_reboot_notifier);
if (rc)
goto out_cpu;
ASCEBC(iucv_error_no_listener, 16);
ASCEBC(iucv_error_no_memory, 16);
ASCEBC(iucv_error_pathid, 16);
iucv_available = 1;
rc = bus_register(&iucv_bus);
if (rc)
goto out_reboot;
return 0;
out_reboot:
unregister_reboot_notifier(&iucv_reboot_notifier);
out_cpu:
unregister_hotcpu_notifier(&iucv_cpu_notifier);
out_free:
for_each_possible_cpu(cpu) {
kfree(iucv_param_irq[cpu]);
iucv_param_irq[cpu] = NULL;
kfree(iucv_param[cpu]);
iucv_param[cpu] = NULL;
kfree(iucv_irq_data[cpu]);
iucv_irq_data[cpu] = NULL;
}
root_device_unregister(iucv_root);
out_int:
unregister_external_interrupt(0x4000, iucv_external_interrupt);
out:
return rc;
}
/**
* iucv_exit
*
* Frees everything allocated from iucv_init.
*/
static void __exit iucv_exit(void)
{
struct iucv_irq_list *p, *n;
int cpu;
spin_lock_irq(&iucv_queue_lock);
list_for_each_entry_safe(p, n, &iucv_task_queue, list)
kfree(p);
list_for_each_entry_safe(p, n, &iucv_work_queue, list)
kfree(p);
spin_unlock_irq(&iucv_queue_lock);
unregister_reboot_notifier(&iucv_reboot_notifier);
unregister_hotcpu_notifier(&iucv_cpu_notifier);
for_each_possible_cpu(cpu) {
kfree(iucv_param_irq[cpu]);
iucv_param_irq[cpu] = NULL;
kfree(iucv_param[cpu]);
iucv_param[cpu] = NULL;
kfree(iucv_irq_data[cpu]);
iucv_irq_data[cpu] = NULL;
}
root_device_unregister(iucv_root);
bus_unregister(&iucv_bus);
unregister_external_interrupt(0x4000, iucv_external_interrupt);
}
subsys_initcall(iucv_init);
module_exit(iucv_exit);
MODULE_AUTHOR("(C) 2001 IBM Corp. by Fritz Elfert (felfert@millenux.com)");
MODULE_DESCRIPTION("Linux for S/390 IUCV lowlevel driver");
MODULE_LICENSE("GPL");