mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-27 22:53:55 +08:00
6ab3d5624e
Signed-off-by: Jörn Engel <joern@wohnheim.fh-wedel.de> Signed-off-by: Adrian Bunk <bunk@stusta.de>
511 lines
12 KiB
C
511 lines
12 KiB
C
/*
|
|
* Generic library functions for the microengines found on the Intel
|
|
* IXP2000 series of network processors.
|
|
*
|
|
* Copyright (C) 2004, 2005 Lennert Buytenhek <buytenh@wantstofly.org>
|
|
* Dedicated to Marija Kulikova.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as
|
|
* published by the Free Software Foundation; either version 2.1 of the
|
|
* License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <linux/string.h>
|
|
#include <asm/hardware.h>
|
|
#include <asm/arch/hardware.h>
|
|
#include <asm/hardware/uengine.h>
|
|
#include <asm/io.h>
|
|
|
|
#if defined(CONFIG_ARCH_IXP2000)
|
|
#define IXP_UENGINE_CSR_VIRT_BASE IXP2000_UENGINE_CSR_VIRT_BASE
|
|
#define IXP_PRODUCT_ID IXP2000_PRODUCT_ID
|
|
#define IXP_MISC_CONTROL IXP2000_MISC_CONTROL
|
|
#define IXP_RESET1 IXP2000_RESET1
|
|
#else
|
|
#if defined(CONFIG_ARCH_IXP23XX)
|
|
#define IXP_UENGINE_CSR_VIRT_BASE IXP23XX_UENGINE_CSR_VIRT_BASE
|
|
#define IXP_PRODUCT_ID IXP23XX_PRODUCT_ID
|
|
#define IXP_MISC_CONTROL IXP23XX_MISC_CONTROL
|
|
#define IXP_RESET1 IXP23XX_RESET1
|
|
#else
|
|
#error unknown platform
|
|
#endif
|
|
#endif
|
|
|
|
#define USTORE_ADDRESS 0x000
|
|
#define USTORE_DATA_LOWER 0x004
|
|
#define USTORE_DATA_UPPER 0x008
|
|
#define CTX_ENABLES 0x018
|
|
#define CC_ENABLE 0x01c
|
|
#define CSR_CTX_POINTER 0x020
|
|
#define INDIRECT_CTX_STS 0x040
|
|
#define ACTIVE_CTX_STS 0x044
|
|
#define INDIRECT_CTX_SIG_EVENTS 0x048
|
|
#define INDIRECT_CTX_WAKEUP_EVENTS 0x050
|
|
#define NN_PUT 0x080
|
|
#define NN_GET 0x084
|
|
#define TIMESTAMP_LOW 0x0c0
|
|
#define TIMESTAMP_HIGH 0x0c4
|
|
#define T_INDEX_BYTE_INDEX 0x0f4
|
|
#define LOCAL_CSR_STATUS 0x180
|
|
|
|
u32 ixp2000_uengine_mask;
|
|
|
|
static void *ixp2000_uengine_csr_area(int uengine)
|
|
{
|
|
return ((void *)IXP_UENGINE_CSR_VIRT_BASE) + (uengine << 10);
|
|
}
|
|
|
|
/*
|
|
* LOCAL_CSR_STATUS=1 after a read or write to a microengine's CSR
|
|
* space means that the microengine we tried to access was also trying
|
|
* to access its own CSR space on the same clock cycle as we did. When
|
|
* this happens, we lose the arbitration process by default, and the
|
|
* read or write we tried to do was not actually performed, so we try
|
|
* again until it succeeds.
|
|
*/
|
|
u32 ixp2000_uengine_csr_read(int uengine, int offset)
|
|
{
|
|
void *uebase;
|
|
u32 *local_csr_status;
|
|
u32 *reg;
|
|
u32 value;
|
|
|
|
uebase = ixp2000_uengine_csr_area(uengine);
|
|
|
|
local_csr_status = (u32 *)(uebase + LOCAL_CSR_STATUS);
|
|
reg = (u32 *)(uebase + offset);
|
|
do {
|
|
value = ixp2000_reg_read(reg);
|
|
} while (ixp2000_reg_read(local_csr_status) & 1);
|
|
|
|
return value;
|
|
}
|
|
EXPORT_SYMBOL(ixp2000_uengine_csr_read);
|
|
|
|
void ixp2000_uengine_csr_write(int uengine, int offset, u32 value)
|
|
{
|
|
void *uebase;
|
|
u32 *local_csr_status;
|
|
u32 *reg;
|
|
|
|
uebase = ixp2000_uengine_csr_area(uengine);
|
|
|
|
local_csr_status = (u32 *)(uebase + LOCAL_CSR_STATUS);
|
|
reg = (u32 *)(uebase + offset);
|
|
do {
|
|
ixp2000_reg_write(reg, value);
|
|
} while (ixp2000_reg_read(local_csr_status) & 1);
|
|
}
|
|
EXPORT_SYMBOL(ixp2000_uengine_csr_write);
|
|
|
|
void ixp2000_uengine_reset(u32 uengine_mask)
|
|
{
|
|
u32 value;
|
|
|
|
value = ixp2000_reg_read(IXP_RESET1) & ~ixp2000_uengine_mask;
|
|
|
|
uengine_mask &= ixp2000_uengine_mask;
|
|
ixp2000_reg_wrb(IXP_RESET1, value | uengine_mask);
|
|
ixp2000_reg_wrb(IXP_RESET1, value);
|
|
}
|
|
EXPORT_SYMBOL(ixp2000_uengine_reset);
|
|
|
|
void ixp2000_uengine_set_mode(int uengine, u32 mode)
|
|
{
|
|
/*
|
|
* CTL_STR_PAR_EN: unconditionally enable parity checking on
|
|
* control store.
|
|
*/
|
|
mode |= 0x10000000;
|
|
ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mode);
|
|
|
|
/*
|
|
* Enable updating of condition codes.
|
|
*/
|
|
ixp2000_uengine_csr_write(uengine, CC_ENABLE, 0x00002000);
|
|
|
|
/*
|
|
* Initialise other per-microengine registers.
|
|
*/
|
|
ixp2000_uengine_csr_write(uengine, NN_PUT, 0x00);
|
|
ixp2000_uengine_csr_write(uengine, NN_GET, 0x00);
|
|
ixp2000_uengine_csr_write(uengine, T_INDEX_BYTE_INDEX, 0);
|
|
}
|
|
EXPORT_SYMBOL(ixp2000_uengine_set_mode);
|
|
|
|
static int make_even_parity(u32 x)
|
|
{
|
|
return hweight32(x) & 1;
|
|
}
|
|
|
|
static void ustore_write(int uengine, u64 insn)
|
|
{
|
|
/*
|
|
* Generate even parity for top and bottom 20 bits.
|
|
*/
|
|
insn |= (u64)make_even_parity((insn >> 20) & 0x000fffff) << 41;
|
|
insn |= (u64)make_even_parity(insn & 0x000fffff) << 40;
|
|
|
|
/*
|
|
* Write to microstore. The second write auto-increments
|
|
* the USTORE_ADDRESS index register.
|
|
*/
|
|
ixp2000_uengine_csr_write(uengine, USTORE_DATA_LOWER, (u32)insn);
|
|
ixp2000_uengine_csr_write(uengine, USTORE_DATA_UPPER, (u32)(insn >> 32));
|
|
}
|
|
|
|
void ixp2000_uengine_load_microcode(int uengine, u8 *ucode, int insns)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Start writing to microstore at address 0.
|
|
*/
|
|
ixp2000_uengine_csr_write(uengine, USTORE_ADDRESS, 0x80000000);
|
|
for (i = 0; i < insns; i++) {
|
|
u64 insn;
|
|
|
|
insn = (((u64)ucode[0]) << 32) |
|
|
(((u64)ucode[1]) << 24) |
|
|
(((u64)ucode[2]) << 16) |
|
|
(((u64)ucode[3]) << 8) |
|
|
((u64)ucode[4]);
|
|
ucode += 5;
|
|
|
|
ustore_write(uengine, insn);
|
|
}
|
|
|
|
/*
|
|
* Pad with a few NOPs at the end (to avoid the microengine
|
|
* aborting as it prefetches beyond the last instruction), unless
|
|
* we run off the end of the instruction store first, at which
|
|
* point the address register will wrap back to zero.
|
|
*/
|
|
for (i = 0; i < 4; i++) {
|
|
u32 addr;
|
|
|
|
addr = ixp2000_uengine_csr_read(uengine, USTORE_ADDRESS);
|
|
if (addr == 0x80000000)
|
|
break;
|
|
ustore_write(uengine, 0xf0000c0300ULL);
|
|
}
|
|
|
|
/*
|
|
* End programming.
|
|
*/
|
|
ixp2000_uengine_csr_write(uengine, USTORE_ADDRESS, 0x00000000);
|
|
}
|
|
EXPORT_SYMBOL(ixp2000_uengine_load_microcode);
|
|
|
|
void ixp2000_uengine_init_context(int uengine, int context, int pc)
|
|
{
|
|
/*
|
|
* Select the right context for indirect access.
|
|
*/
|
|
ixp2000_uengine_csr_write(uengine, CSR_CTX_POINTER, context);
|
|
|
|
/*
|
|
* Initialise signal masks to immediately go to Ready state.
|
|
*/
|
|
ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_SIG_EVENTS, 1);
|
|
ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_WAKEUP_EVENTS, 1);
|
|
|
|
/*
|
|
* Set program counter.
|
|
*/
|
|
ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_STS, pc);
|
|
}
|
|
EXPORT_SYMBOL(ixp2000_uengine_init_context);
|
|
|
|
void ixp2000_uengine_start_contexts(int uengine, u8 ctx_mask)
|
|
{
|
|
u32 mask;
|
|
|
|
/*
|
|
* Enable the specified context to go to Executing state.
|
|
*/
|
|
mask = ixp2000_uengine_csr_read(uengine, CTX_ENABLES);
|
|
mask |= ctx_mask << 8;
|
|
ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mask);
|
|
}
|
|
EXPORT_SYMBOL(ixp2000_uengine_start_contexts);
|
|
|
|
void ixp2000_uengine_stop_contexts(int uengine, u8 ctx_mask)
|
|
{
|
|
u32 mask;
|
|
|
|
/*
|
|
* Disable the Ready->Executing transition. Note that this
|
|
* does not stop the context until it voluntarily yields.
|
|
*/
|
|
mask = ixp2000_uengine_csr_read(uengine, CTX_ENABLES);
|
|
mask &= ~(ctx_mask << 8);
|
|
ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mask);
|
|
}
|
|
EXPORT_SYMBOL(ixp2000_uengine_stop_contexts);
|
|
|
|
static int check_ixp_type(struct ixp2000_uengine_code *c)
|
|
{
|
|
u32 product_id;
|
|
u32 rev;
|
|
|
|
product_id = ixp2000_reg_read(IXP_PRODUCT_ID);
|
|
if (((product_id >> 16) & 0x1f) != 0)
|
|
return 0;
|
|
|
|
switch ((product_id >> 8) & 0xff) {
|
|
#ifdef CONFIG_ARCH_IXP2000
|
|
case 0: /* IXP2800 */
|
|
if (!(c->cpu_model_bitmask & 4))
|
|
return 0;
|
|
break;
|
|
|
|
case 1: /* IXP2850 */
|
|
if (!(c->cpu_model_bitmask & 8))
|
|
return 0;
|
|
break;
|
|
|
|
case 2: /* IXP2400 */
|
|
if (!(c->cpu_model_bitmask & 2))
|
|
return 0;
|
|
break;
|
|
#endif
|
|
|
|
#ifdef CONFIG_ARCH_IXP23XX
|
|
case 4: /* IXP23xx */
|
|
if (!(c->cpu_model_bitmask & 0x3f0))
|
|
return 0;
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
rev = product_id & 0xff;
|
|
if (rev < c->cpu_min_revision || rev > c->cpu_max_revision)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void generate_ucode(u8 *ucode, u32 *gpr_a, u32 *gpr_b)
|
|
{
|
|
int offset;
|
|
int i;
|
|
|
|
offset = 0;
|
|
|
|
for (i = 0; i < 128; i++) {
|
|
u8 b3;
|
|
u8 b2;
|
|
u8 b1;
|
|
u8 b0;
|
|
|
|
b3 = (gpr_a[i] >> 24) & 0xff;
|
|
b2 = (gpr_a[i] >> 16) & 0xff;
|
|
b1 = (gpr_a[i] >> 8) & 0xff;
|
|
b0 = gpr_a[i] & 0xff;
|
|
|
|
// immed[@ai, (b1 << 8) | b0]
|
|
// 11110000 0000VVVV VVVV11VV VVVVVV00 1IIIIIII
|
|
ucode[offset++] = 0xf0;
|
|
ucode[offset++] = (b1 >> 4);
|
|
ucode[offset++] = (b1 << 4) | 0x0c | (b0 >> 6);
|
|
ucode[offset++] = (b0 << 2);
|
|
ucode[offset++] = 0x80 | i;
|
|
|
|
// immed_w1[@ai, (b3 << 8) | b2]
|
|
// 11110100 0100VVVV VVVV11VV VVVVVV00 1IIIIIII
|
|
ucode[offset++] = 0xf4;
|
|
ucode[offset++] = 0x40 | (b3 >> 4);
|
|
ucode[offset++] = (b3 << 4) | 0x0c | (b2 >> 6);
|
|
ucode[offset++] = (b2 << 2);
|
|
ucode[offset++] = 0x80 | i;
|
|
}
|
|
|
|
for (i = 0; i < 128; i++) {
|
|
u8 b3;
|
|
u8 b2;
|
|
u8 b1;
|
|
u8 b0;
|
|
|
|
b3 = (gpr_b[i] >> 24) & 0xff;
|
|
b2 = (gpr_b[i] >> 16) & 0xff;
|
|
b1 = (gpr_b[i] >> 8) & 0xff;
|
|
b0 = gpr_b[i] & 0xff;
|
|
|
|
// immed[@bi, (b1 << 8) | b0]
|
|
// 11110000 0000VVVV VVVV001I IIIIII11 VVVVVVVV
|
|
ucode[offset++] = 0xf0;
|
|
ucode[offset++] = (b1 >> 4);
|
|
ucode[offset++] = (b1 << 4) | 0x02 | (i >> 6);
|
|
ucode[offset++] = (i << 2) | 0x03;
|
|
ucode[offset++] = b0;
|
|
|
|
// immed_w1[@bi, (b3 << 8) | b2]
|
|
// 11110100 0100VVVV VVVV001I IIIIII11 VVVVVVVV
|
|
ucode[offset++] = 0xf4;
|
|
ucode[offset++] = 0x40 | (b3 >> 4);
|
|
ucode[offset++] = (b3 << 4) | 0x02 | (i >> 6);
|
|
ucode[offset++] = (i << 2) | 0x03;
|
|
ucode[offset++] = b2;
|
|
}
|
|
|
|
// ctx_arb[kill]
|
|
ucode[offset++] = 0xe0;
|
|
ucode[offset++] = 0x00;
|
|
ucode[offset++] = 0x01;
|
|
ucode[offset++] = 0x00;
|
|
ucode[offset++] = 0x00;
|
|
}
|
|
|
|
static int set_initial_registers(int uengine, struct ixp2000_uengine_code *c)
|
|
{
|
|
int per_ctx_regs;
|
|
u32 *gpr_a;
|
|
u32 *gpr_b;
|
|
u8 *ucode;
|
|
int i;
|
|
|
|
gpr_a = kmalloc(128 * sizeof(u32), GFP_KERNEL);
|
|
gpr_b = kmalloc(128 * sizeof(u32), GFP_KERNEL);
|
|
ucode = kmalloc(513 * 5, GFP_KERNEL);
|
|
if (gpr_a == NULL || gpr_b == NULL || ucode == NULL) {
|
|
kfree(ucode);
|
|
kfree(gpr_b);
|
|
kfree(gpr_a);
|
|
return 1;
|
|
}
|
|
|
|
per_ctx_regs = 16;
|
|
if (c->uengine_parameters & IXP2000_UENGINE_4_CONTEXTS)
|
|
per_ctx_regs = 32;
|
|
|
|
memset(gpr_a, 0, sizeof(gpr_a));
|
|
memset(gpr_b, 0, sizeof(gpr_b));
|
|
for (i = 0; i < 256; i++) {
|
|
struct ixp2000_reg_value *r = c->initial_reg_values + i;
|
|
u32 *bank;
|
|
int inc;
|
|
int j;
|
|
|
|
if (r->reg == -1)
|
|
break;
|
|
|
|
bank = (r->reg & 0x400) ? gpr_b : gpr_a;
|
|
inc = (r->reg & 0x80) ? 128 : per_ctx_regs;
|
|
|
|
j = r->reg & 0x7f;
|
|
while (j < 128) {
|
|
bank[j] = r->value;
|
|
j += inc;
|
|
}
|
|
}
|
|
|
|
generate_ucode(ucode, gpr_a, gpr_b);
|
|
ixp2000_uengine_load_microcode(uengine, ucode, 513);
|
|
ixp2000_uengine_init_context(uengine, 0, 0);
|
|
ixp2000_uengine_start_contexts(uengine, 0x01);
|
|
for (i = 0; i < 100; i++) {
|
|
u32 status;
|
|
|
|
status = ixp2000_uengine_csr_read(uengine, ACTIVE_CTX_STS);
|
|
if (!(status & 0x80000000))
|
|
break;
|
|
}
|
|
ixp2000_uengine_stop_contexts(uengine, 0x01);
|
|
|
|
kfree(ucode);
|
|
kfree(gpr_b);
|
|
kfree(gpr_a);
|
|
|
|
return !!(i == 100);
|
|
}
|
|
|
|
int ixp2000_uengine_load(int uengine, struct ixp2000_uengine_code *c)
|
|
{
|
|
int ctx;
|
|
|
|
if (!check_ixp_type(c))
|
|
return 1;
|
|
|
|
if (!(ixp2000_uengine_mask & (1 << uengine)))
|
|
return 1;
|
|
|
|
ixp2000_uengine_reset(1 << uengine);
|
|
ixp2000_uengine_set_mode(uengine, c->uengine_parameters);
|
|
if (set_initial_registers(uengine, c))
|
|
return 1;
|
|
ixp2000_uengine_load_microcode(uengine, c->insns, c->num_insns);
|
|
|
|
for (ctx = 0; ctx < 8; ctx++)
|
|
ixp2000_uengine_init_context(uengine, ctx, 0);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ixp2000_uengine_load);
|
|
|
|
|
|
static int __init ixp2000_uengine_init(void)
|
|
{
|
|
int uengine;
|
|
u32 value;
|
|
|
|
/*
|
|
* Determine number of microengines present.
|
|
*/
|
|
switch ((ixp2000_reg_read(IXP_PRODUCT_ID) >> 8) & 0x1fff) {
|
|
#ifdef CONFIG_ARCH_IXP2000
|
|
case 0: /* IXP2800 */
|
|
case 1: /* IXP2850 */
|
|
ixp2000_uengine_mask = 0x00ff00ff;
|
|
break;
|
|
|
|
case 2: /* IXP2400 */
|
|
ixp2000_uengine_mask = 0x000f000f;
|
|
break;
|
|
#endif
|
|
|
|
#ifdef CONFIG_ARCH_IXP23XX
|
|
case 4: /* IXP23xx */
|
|
ixp2000_uengine_mask = (*IXP23XX_EXP_CFG_FUSE >> 8) & 0xf;
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
printk(KERN_INFO "Detected unknown IXP2000 model (%.8x)\n",
|
|
(unsigned int)ixp2000_reg_read(IXP_PRODUCT_ID));
|
|
ixp2000_uengine_mask = 0x00000000;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Reset microengines.
|
|
*/
|
|
ixp2000_uengine_reset(ixp2000_uengine_mask);
|
|
|
|
/*
|
|
* Synchronise timestamp counters across all microengines.
|
|
*/
|
|
value = ixp2000_reg_read(IXP_MISC_CONTROL);
|
|
ixp2000_reg_wrb(IXP_MISC_CONTROL, value & ~0x80);
|
|
for (uengine = 0; uengine < 32; uengine++) {
|
|
if (ixp2000_uengine_mask & (1 << uengine)) {
|
|
ixp2000_uengine_csr_write(uengine, TIMESTAMP_LOW, 0);
|
|
ixp2000_uengine_csr_write(uengine, TIMESTAMP_HIGH, 0);
|
|
}
|
|
}
|
|
ixp2000_reg_wrb(IXP_MISC_CONTROL, value | 0x80);
|
|
|
|
return 0;
|
|
}
|
|
|
|
subsys_initcall(ixp2000_uengine_init);
|