2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-21 11:44:01 +08:00
linux-next/mm/backing-dev.c
Mel Gorman 599d0c954f mm, vmscan: move LRU lists to node
This moves the LRU lists from the zone to the node and related data such
as counters, tracing, congestion tracking and writeback tracking.

Unfortunately, due to reclaim and compaction retry logic, it is
necessary to account for the number of LRU pages on both zone and node
logic.  Most reclaim logic is based on the node counters but the retry
logic uses the zone counters which do not distinguish inactive and
active sizes.  It would be possible to leave the LRU counters on a
per-zone basis but it's a heavier calculation across multiple cache
lines that is much more frequent than the retry checks.

Other than the LRU counters, this is mostly a mechanical patch but note
that it introduces a number of anomalies.  For example, the scans are
per-zone but using per-node counters.  We also mark a node as congested
when a zone is congested.  This causes weird problems that are fixed
later but is easier to review.

In the event that there is excessive overhead on 32-bit systems due to
the nodes being on LRU then there are two potential solutions

1. Long-term isolation of highmem pages when reclaim is lowmem

   When pages are skipped, they are immediately added back onto the LRU
   list. If lowmem reclaim persisted for long periods of time, the same
   highmem pages get continually scanned. The idea would be that lowmem
   keeps those pages on a separate list until a reclaim for highmem pages
   arrives that splices the highmem pages back onto the LRU. It potentially
   could be implemented similar to the UNEVICTABLE list.

   That would reduce the skip rate with the potential corner case is that
   highmem pages have to be scanned and reclaimed to free lowmem slab pages.

2. Linear scan lowmem pages if the initial LRU shrink fails

   This will break LRU ordering but may be preferable and faster during
   memory pressure than skipping LRU pages.

Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00

1023 lines
26 KiB
C

#include <linux/wait.h>
#include <linux/backing-dev.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/module.h>
#include <linux/writeback.h>
#include <linux/device.h>
#include <trace/events/writeback.h>
static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
struct backing_dev_info noop_backing_dev_info = {
.name = "noop",
.capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
};
EXPORT_SYMBOL_GPL(noop_backing_dev_info);
static struct class *bdi_class;
/*
* bdi_lock protects updates to bdi_list. bdi_list has RCU reader side
* locking.
*/
DEFINE_SPINLOCK(bdi_lock);
LIST_HEAD(bdi_list);
/* bdi_wq serves all asynchronous writeback tasks */
struct workqueue_struct *bdi_wq;
#ifdef CONFIG_DEBUG_FS
#include <linux/debugfs.h>
#include <linux/seq_file.h>
static struct dentry *bdi_debug_root;
static void bdi_debug_init(void)
{
bdi_debug_root = debugfs_create_dir("bdi", NULL);
}
static int bdi_debug_stats_show(struct seq_file *m, void *v)
{
struct backing_dev_info *bdi = m->private;
struct bdi_writeback *wb = &bdi->wb;
unsigned long background_thresh;
unsigned long dirty_thresh;
unsigned long wb_thresh;
unsigned long nr_dirty, nr_io, nr_more_io, nr_dirty_time;
struct inode *inode;
nr_dirty = nr_io = nr_more_io = nr_dirty_time = 0;
spin_lock(&wb->list_lock);
list_for_each_entry(inode, &wb->b_dirty, i_io_list)
nr_dirty++;
list_for_each_entry(inode, &wb->b_io, i_io_list)
nr_io++;
list_for_each_entry(inode, &wb->b_more_io, i_io_list)
nr_more_io++;
list_for_each_entry(inode, &wb->b_dirty_time, i_io_list)
if (inode->i_state & I_DIRTY_TIME)
nr_dirty_time++;
spin_unlock(&wb->list_lock);
global_dirty_limits(&background_thresh, &dirty_thresh);
wb_thresh = wb_calc_thresh(wb, dirty_thresh);
#define K(x) ((x) << (PAGE_SHIFT - 10))
seq_printf(m,
"BdiWriteback: %10lu kB\n"
"BdiReclaimable: %10lu kB\n"
"BdiDirtyThresh: %10lu kB\n"
"DirtyThresh: %10lu kB\n"
"BackgroundThresh: %10lu kB\n"
"BdiDirtied: %10lu kB\n"
"BdiWritten: %10lu kB\n"
"BdiWriteBandwidth: %10lu kBps\n"
"b_dirty: %10lu\n"
"b_io: %10lu\n"
"b_more_io: %10lu\n"
"b_dirty_time: %10lu\n"
"bdi_list: %10u\n"
"state: %10lx\n",
(unsigned long) K(wb_stat(wb, WB_WRITEBACK)),
(unsigned long) K(wb_stat(wb, WB_RECLAIMABLE)),
K(wb_thresh),
K(dirty_thresh),
K(background_thresh),
(unsigned long) K(wb_stat(wb, WB_DIRTIED)),
(unsigned long) K(wb_stat(wb, WB_WRITTEN)),
(unsigned long) K(wb->write_bandwidth),
nr_dirty,
nr_io,
nr_more_io,
nr_dirty_time,
!list_empty(&bdi->bdi_list), bdi->wb.state);
#undef K
return 0;
}
static int bdi_debug_stats_open(struct inode *inode, struct file *file)
{
return single_open(file, bdi_debug_stats_show, inode->i_private);
}
static const struct file_operations bdi_debug_stats_fops = {
.open = bdi_debug_stats_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static void bdi_debug_register(struct backing_dev_info *bdi, const char *name)
{
bdi->debug_dir = debugfs_create_dir(name, bdi_debug_root);
bdi->debug_stats = debugfs_create_file("stats", 0444, bdi->debug_dir,
bdi, &bdi_debug_stats_fops);
}
static void bdi_debug_unregister(struct backing_dev_info *bdi)
{
debugfs_remove(bdi->debug_stats);
debugfs_remove(bdi->debug_dir);
}
#else
static inline void bdi_debug_init(void)
{
}
static inline void bdi_debug_register(struct backing_dev_info *bdi,
const char *name)
{
}
static inline void bdi_debug_unregister(struct backing_dev_info *bdi)
{
}
#endif
static ssize_t read_ahead_kb_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct backing_dev_info *bdi = dev_get_drvdata(dev);
unsigned long read_ahead_kb;
ssize_t ret;
ret = kstrtoul(buf, 10, &read_ahead_kb);
if (ret < 0)
return ret;
bdi->ra_pages = read_ahead_kb >> (PAGE_SHIFT - 10);
return count;
}
#define K(pages) ((pages) << (PAGE_SHIFT - 10))
#define BDI_SHOW(name, expr) \
static ssize_t name##_show(struct device *dev, \
struct device_attribute *attr, char *page) \
{ \
struct backing_dev_info *bdi = dev_get_drvdata(dev); \
\
return snprintf(page, PAGE_SIZE-1, "%lld\n", (long long)expr); \
} \
static DEVICE_ATTR_RW(name);
BDI_SHOW(read_ahead_kb, K(bdi->ra_pages))
static ssize_t min_ratio_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct backing_dev_info *bdi = dev_get_drvdata(dev);
unsigned int ratio;
ssize_t ret;
ret = kstrtouint(buf, 10, &ratio);
if (ret < 0)
return ret;
ret = bdi_set_min_ratio(bdi, ratio);
if (!ret)
ret = count;
return ret;
}
BDI_SHOW(min_ratio, bdi->min_ratio)
static ssize_t max_ratio_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct backing_dev_info *bdi = dev_get_drvdata(dev);
unsigned int ratio;
ssize_t ret;
ret = kstrtouint(buf, 10, &ratio);
if (ret < 0)
return ret;
ret = bdi_set_max_ratio(bdi, ratio);
if (!ret)
ret = count;
return ret;
}
BDI_SHOW(max_ratio, bdi->max_ratio)
static ssize_t stable_pages_required_show(struct device *dev,
struct device_attribute *attr,
char *page)
{
struct backing_dev_info *bdi = dev_get_drvdata(dev);
return snprintf(page, PAGE_SIZE-1, "%d\n",
bdi_cap_stable_pages_required(bdi) ? 1 : 0);
}
static DEVICE_ATTR_RO(stable_pages_required);
static struct attribute *bdi_dev_attrs[] = {
&dev_attr_read_ahead_kb.attr,
&dev_attr_min_ratio.attr,
&dev_attr_max_ratio.attr,
&dev_attr_stable_pages_required.attr,
NULL,
};
ATTRIBUTE_GROUPS(bdi_dev);
static __init int bdi_class_init(void)
{
bdi_class = class_create(THIS_MODULE, "bdi");
if (IS_ERR(bdi_class))
return PTR_ERR(bdi_class);
bdi_class->dev_groups = bdi_dev_groups;
bdi_debug_init();
return 0;
}
postcore_initcall(bdi_class_init);
static int __init default_bdi_init(void)
{
int err;
bdi_wq = alloc_workqueue("writeback", WQ_MEM_RECLAIM | WQ_FREEZABLE |
WQ_UNBOUND | WQ_SYSFS, 0);
if (!bdi_wq)
return -ENOMEM;
err = bdi_init(&noop_backing_dev_info);
return err;
}
subsys_initcall(default_bdi_init);
/*
* This function is used when the first inode for this wb is marked dirty. It
* wakes-up the corresponding bdi thread which should then take care of the
* periodic background write-out of dirty inodes. Since the write-out would
* starts only 'dirty_writeback_interval' centisecs from now anyway, we just
* set up a timer which wakes the bdi thread up later.
*
* Note, we wouldn't bother setting up the timer, but this function is on the
* fast-path (used by '__mark_inode_dirty()'), so we save few context switches
* by delaying the wake-up.
*
* We have to be careful not to postpone flush work if it is scheduled for
* earlier. Thus we use queue_delayed_work().
*/
void wb_wakeup_delayed(struct bdi_writeback *wb)
{
unsigned long timeout;
timeout = msecs_to_jiffies(dirty_writeback_interval * 10);
spin_lock_bh(&wb->work_lock);
if (test_bit(WB_registered, &wb->state))
queue_delayed_work(bdi_wq, &wb->dwork, timeout);
spin_unlock_bh(&wb->work_lock);
}
/*
* Initial write bandwidth: 100 MB/s
*/
#define INIT_BW (100 << (20 - PAGE_SHIFT))
static int wb_init(struct bdi_writeback *wb, struct backing_dev_info *bdi,
int blkcg_id, gfp_t gfp)
{
int i, err;
memset(wb, 0, sizeof(*wb));
wb->bdi = bdi;
wb->last_old_flush = jiffies;
INIT_LIST_HEAD(&wb->b_dirty);
INIT_LIST_HEAD(&wb->b_io);
INIT_LIST_HEAD(&wb->b_more_io);
INIT_LIST_HEAD(&wb->b_dirty_time);
spin_lock_init(&wb->list_lock);
wb->bw_time_stamp = jiffies;
wb->balanced_dirty_ratelimit = INIT_BW;
wb->dirty_ratelimit = INIT_BW;
wb->write_bandwidth = INIT_BW;
wb->avg_write_bandwidth = INIT_BW;
spin_lock_init(&wb->work_lock);
INIT_LIST_HEAD(&wb->work_list);
INIT_DELAYED_WORK(&wb->dwork, wb_workfn);
wb->congested = wb_congested_get_create(bdi, blkcg_id, gfp);
if (!wb->congested)
return -ENOMEM;
err = fprop_local_init_percpu(&wb->completions, gfp);
if (err)
goto out_put_cong;
for (i = 0; i < NR_WB_STAT_ITEMS; i++) {
err = percpu_counter_init(&wb->stat[i], 0, gfp);
if (err)
goto out_destroy_stat;
}
return 0;
out_destroy_stat:
while (i--)
percpu_counter_destroy(&wb->stat[i]);
fprop_local_destroy_percpu(&wb->completions);
out_put_cong:
wb_congested_put(wb->congested);
return err;
}
/*
* Remove bdi from the global list and shutdown any threads we have running
*/
static void wb_shutdown(struct bdi_writeback *wb)
{
/* Make sure nobody queues further work */
spin_lock_bh(&wb->work_lock);
if (!test_and_clear_bit(WB_registered, &wb->state)) {
spin_unlock_bh(&wb->work_lock);
return;
}
spin_unlock_bh(&wb->work_lock);
/*
* Drain work list and shutdown the delayed_work. !WB_registered
* tells wb_workfn() that @wb is dying and its work_list needs to
* be drained no matter what.
*/
mod_delayed_work(bdi_wq, &wb->dwork, 0);
flush_delayed_work(&wb->dwork);
WARN_ON(!list_empty(&wb->work_list));
}
static void wb_exit(struct bdi_writeback *wb)
{
int i;
WARN_ON(delayed_work_pending(&wb->dwork));
for (i = 0; i < NR_WB_STAT_ITEMS; i++)
percpu_counter_destroy(&wb->stat[i]);
fprop_local_destroy_percpu(&wb->completions);
wb_congested_put(wb->congested);
}
#ifdef CONFIG_CGROUP_WRITEBACK
#include <linux/memcontrol.h>
/*
* cgwb_lock protects bdi->cgwb_tree, bdi->cgwb_congested_tree,
* blkcg->cgwb_list, and memcg->cgwb_list. bdi->cgwb_tree is also RCU
* protected. cgwb_release_wait is used to wait for the completion of cgwb
* releases from bdi destruction path.
*/
static DEFINE_SPINLOCK(cgwb_lock);
static DECLARE_WAIT_QUEUE_HEAD(cgwb_release_wait);
/**
* wb_congested_get_create - get or create a wb_congested
* @bdi: associated bdi
* @blkcg_id: ID of the associated blkcg
* @gfp: allocation mask
*
* Look up the wb_congested for @blkcg_id on @bdi. If missing, create one.
* The returned wb_congested has its reference count incremented. Returns
* NULL on failure.
*/
struct bdi_writeback_congested *
wb_congested_get_create(struct backing_dev_info *bdi, int blkcg_id, gfp_t gfp)
{
struct bdi_writeback_congested *new_congested = NULL, *congested;
struct rb_node **node, *parent;
unsigned long flags;
retry:
spin_lock_irqsave(&cgwb_lock, flags);
node = &bdi->cgwb_congested_tree.rb_node;
parent = NULL;
while (*node != NULL) {
parent = *node;
congested = container_of(parent, struct bdi_writeback_congested,
rb_node);
if (congested->blkcg_id < blkcg_id)
node = &parent->rb_left;
else if (congested->blkcg_id > blkcg_id)
node = &parent->rb_right;
else
goto found;
}
if (new_congested) {
/* !found and storage for new one already allocated, insert */
congested = new_congested;
new_congested = NULL;
rb_link_node(&congested->rb_node, parent, node);
rb_insert_color(&congested->rb_node, &bdi->cgwb_congested_tree);
goto found;
}
spin_unlock_irqrestore(&cgwb_lock, flags);
/* allocate storage for new one and retry */
new_congested = kzalloc(sizeof(*new_congested), gfp);
if (!new_congested)
return NULL;
atomic_set(&new_congested->refcnt, 0);
new_congested->bdi = bdi;
new_congested->blkcg_id = blkcg_id;
goto retry;
found:
atomic_inc(&congested->refcnt);
spin_unlock_irqrestore(&cgwb_lock, flags);
kfree(new_congested);
return congested;
}
/**
* wb_congested_put - put a wb_congested
* @congested: wb_congested to put
*
* Put @congested and destroy it if the refcnt reaches zero.
*/
void wb_congested_put(struct bdi_writeback_congested *congested)
{
unsigned long flags;
local_irq_save(flags);
if (!atomic_dec_and_lock(&congested->refcnt, &cgwb_lock)) {
local_irq_restore(flags);
return;
}
/* bdi might already have been destroyed leaving @congested unlinked */
if (congested->bdi) {
rb_erase(&congested->rb_node,
&congested->bdi->cgwb_congested_tree);
congested->bdi = NULL;
}
spin_unlock_irqrestore(&cgwb_lock, flags);
kfree(congested);
}
static void cgwb_release_workfn(struct work_struct *work)
{
struct bdi_writeback *wb = container_of(work, struct bdi_writeback,
release_work);
struct backing_dev_info *bdi = wb->bdi;
spin_lock_irq(&cgwb_lock);
list_del_rcu(&wb->bdi_node);
spin_unlock_irq(&cgwb_lock);
wb_shutdown(wb);
css_put(wb->memcg_css);
css_put(wb->blkcg_css);
fprop_local_destroy_percpu(&wb->memcg_completions);
percpu_ref_exit(&wb->refcnt);
wb_exit(wb);
kfree_rcu(wb, rcu);
if (atomic_dec_and_test(&bdi->usage_cnt))
wake_up_all(&cgwb_release_wait);
}
static void cgwb_release(struct percpu_ref *refcnt)
{
struct bdi_writeback *wb = container_of(refcnt, struct bdi_writeback,
refcnt);
schedule_work(&wb->release_work);
}
static void cgwb_kill(struct bdi_writeback *wb)
{
lockdep_assert_held(&cgwb_lock);
WARN_ON(!radix_tree_delete(&wb->bdi->cgwb_tree, wb->memcg_css->id));
list_del(&wb->memcg_node);
list_del(&wb->blkcg_node);
percpu_ref_kill(&wb->refcnt);
}
static int cgwb_create(struct backing_dev_info *bdi,
struct cgroup_subsys_state *memcg_css, gfp_t gfp)
{
struct mem_cgroup *memcg;
struct cgroup_subsys_state *blkcg_css;
struct blkcg *blkcg;
struct list_head *memcg_cgwb_list, *blkcg_cgwb_list;
struct bdi_writeback *wb;
unsigned long flags;
int ret = 0;
memcg = mem_cgroup_from_css(memcg_css);
blkcg_css = cgroup_get_e_css(memcg_css->cgroup, &io_cgrp_subsys);
blkcg = css_to_blkcg(blkcg_css);
memcg_cgwb_list = mem_cgroup_cgwb_list(memcg);
blkcg_cgwb_list = &blkcg->cgwb_list;
/* look up again under lock and discard on blkcg mismatch */
spin_lock_irqsave(&cgwb_lock, flags);
wb = radix_tree_lookup(&bdi->cgwb_tree, memcg_css->id);
if (wb && wb->blkcg_css != blkcg_css) {
cgwb_kill(wb);
wb = NULL;
}
spin_unlock_irqrestore(&cgwb_lock, flags);
if (wb)
goto out_put;
/* need to create a new one */
wb = kmalloc(sizeof(*wb), gfp);
if (!wb)
return -ENOMEM;
ret = wb_init(wb, bdi, blkcg_css->id, gfp);
if (ret)
goto err_free;
ret = percpu_ref_init(&wb->refcnt, cgwb_release, 0, gfp);
if (ret)
goto err_wb_exit;
ret = fprop_local_init_percpu(&wb->memcg_completions, gfp);
if (ret)
goto err_ref_exit;
wb->memcg_css = memcg_css;
wb->blkcg_css = blkcg_css;
INIT_WORK(&wb->release_work, cgwb_release_workfn);
set_bit(WB_registered, &wb->state);
/*
* The root wb determines the registered state of the whole bdi and
* memcg_cgwb_list and blkcg_cgwb_list's next pointers indicate
* whether they're still online. Don't link @wb if any is dead.
* See wb_memcg_offline() and wb_blkcg_offline().
*/
ret = -ENODEV;
spin_lock_irqsave(&cgwb_lock, flags);
if (test_bit(WB_registered, &bdi->wb.state) &&
blkcg_cgwb_list->next && memcg_cgwb_list->next) {
/* we might have raced another instance of this function */
ret = radix_tree_insert(&bdi->cgwb_tree, memcg_css->id, wb);
if (!ret) {
atomic_inc(&bdi->usage_cnt);
list_add_tail_rcu(&wb->bdi_node, &bdi->wb_list);
list_add(&wb->memcg_node, memcg_cgwb_list);
list_add(&wb->blkcg_node, blkcg_cgwb_list);
css_get(memcg_css);
css_get(blkcg_css);
}
}
spin_unlock_irqrestore(&cgwb_lock, flags);
if (ret) {
if (ret == -EEXIST)
ret = 0;
goto err_fprop_exit;
}
goto out_put;
err_fprop_exit:
fprop_local_destroy_percpu(&wb->memcg_completions);
err_ref_exit:
percpu_ref_exit(&wb->refcnt);
err_wb_exit:
wb_exit(wb);
err_free:
kfree(wb);
out_put:
css_put(blkcg_css);
return ret;
}
/**
* wb_get_create - get wb for a given memcg, create if necessary
* @bdi: target bdi
* @memcg_css: cgroup_subsys_state of the target memcg (must have positive ref)
* @gfp: allocation mask to use
*
* Try to get the wb for @memcg_css on @bdi. If it doesn't exist, try to
* create one. The returned wb has its refcount incremented.
*
* This function uses css_get() on @memcg_css and thus expects its refcnt
* to be positive on invocation. IOW, rcu_read_lock() protection on
* @memcg_css isn't enough. try_get it before calling this function.
*
* A wb is keyed by its associated memcg. As blkcg implicitly enables
* memcg on the default hierarchy, memcg association is guaranteed to be
* more specific (equal or descendant to the associated blkcg) and thus can
* identify both the memcg and blkcg associations.
*
* Because the blkcg associated with a memcg may change as blkcg is enabled
* and disabled closer to root in the hierarchy, each wb keeps track of
* both the memcg and blkcg associated with it and verifies the blkcg on
* each lookup. On mismatch, the existing wb is discarded and a new one is
* created.
*/
struct bdi_writeback *wb_get_create(struct backing_dev_info *bdi,
struct cgroup_subsys_state *memcg_css,
gfp_t gfp)
{
struct bdi_writeback *wb;
might_sleep_if(gfpflags_allow_blocking(gfp));
if (!memcg_css->parent)
return &bdi->wb;
do {
rcu_read_lock();
wb = radix_tree_lookup(&bdi->cgwb_tree, memcg_css->id);
if (wb) {
struct cgroup_subsys_state *blkcg_css;
/* see whether the blkcg association has changed */
blkcg_css = cgroup_get_e_css(memcg_css->cgroup,
&io_cgrp_subsys);
if (unlikely(wb->blkcg_css != blkcg_css ||
!wb_tryget(wb)))
wb = NULL;
css_put(blkcg_css);
}
rcu_read_unlock();
} while (!wb && !cgwb_create(bdi, memcg_css, gfp));
return wb;
}
static int cgwb_bdi_init(struct backing_dev_info *bdi)
{
int ret;
INIT_RADIX_TREE(&bdi->cgwb_tree, GFP_ATOMIC);
bdi->cgwb_congested_tree = RB_ROOT;
atomic_set(&bdi->usage_cnt, 1);
ret = wb_init(&bdi->wb, bdi, 1, GFP_KERNEL);
if (!ret) {
bdi->wb.memcg_css = &root_mem_cgroup->css;
bdi->wb.blkcg_css = blkcg_root_css;
}
return ret;
}
static void cgwb_bdi_destroy(struct backing_dev_info *bdi)
{
struct radix_tree_iter iter;
struct rb_node *rbn;
void **slot;
WARN_ON(test_bit(WB_registered, &bdi->wb.state));
spin_lock_irq(&cgwb_lock);
radix_tree_for_each_slot(slot, &bdi->cgwb_tree, &iter, 0)
cgwb_kill(*slot);
while ((rbn = rb_first(&bdi->cgwb_congested_tree))) {
struct bdi_writeback_congested *congested =
rb_entry(rbn, struct bdi_writeback_congested, rb_node);
rb_erase(rbn, &bdi->cgwb_congested_tree);
congested->bdi = NULL; /* mark @congested unlinked */
}
spin_unlock_irq(&cgwb_lock);
/*
* All cgwb's and their congested states must be shutdown and
* released before returning. Drain the usage counter to wait for
* all cgwb's and cgwb_congested's ever created on @bdi.
*/
atomic_dec(&bdi->usage_cnt);
wait_event(cgwb_release_wait, !atomic_read(&bdi->usage_cnt));
}
/**
* wb_memcg_offline - kill all wb's associated with a memcg being offlined
* @memcg: memcg being offlined
*
* Also prevents creation of any new wb's associated with @memcg.
*/
void wb_memcg_offline(struct mem_cgroup *memcg)
{
LIST_HEAD(to_destroy);
struct list_head *memcg_cgwb_list = mem_cgroup_cgwb_list(memcg);
struct bdi_writeback *wb, *next;
spin_lock_irq(&cgwb_lock);
list_for_each_entry_safe(wb, next, memcg_cgwb_list, memcg_node)
cgwb_kill(wb);
memcg_cgwb_list->next = NULL; /* prevent new wb's */
spin_unlock_irq(&cgwb_lock);
}
/**
* wb_blkcg_offline - kill all wb's associated with a blkcg being offlined
* @blkcg: blkcg being offlined
*
* Also prevents creation of any new wb's associated with @blkcg.
*/
void wb_blkcg_offline(struct blkcg *blkcg)
{
LIST_HEAD(to_destroy);
struct bdi_writeback *wb, *next;
spin_lock_irq(&cgwb_lock);
list_for_each_entry_safe(wb, next, &blkcg->cgwb_list, blkcg_node)
cgwb_kill(wb);
blkcg->cgwb_list.next = NULL; /* prevent new wb's */
spin_unlock_irq(&cgwb_lock);
}
#else /* CONFIG_CGROUP_WRITEBACK */
static int cgwb_bdi_init(struct backing_dev_info *bdi)
{
int err;
bdi->wb_congested = kzalloc(sizeof(*bdi->wb_congested), GFP_KERNEL);
if (!bdi->wb_congested)
return -ENOMEM;
err = wb_init(&bdi->wb, bdi, 1, GFP_KERNEL);
if (err) {
kfree(bdi->wb_congested);
return err;
}
return 0;
}
static void cgwb_bdi_destroy(struct backing_dev_info *bdi) { }
#endif /* CONFIG_CGROUP_WRITEBACK */
int bdi_init(struct backing_dev_info *bdi)
{
int ret;
bdi->dev = NULL;
bdi->min_ratio = 0;
bdi->max_ratio = 100;
bdi->max_prop_frac = FPROP_FRAC_BASE;
INIT_LIST_HEAD(&bdi->bdi_list);
INIT_LIST_HEAD(&bdi->wb_list);
init_waitqueue_head(&bdi->wb_waitq);
ret = cgwb_bdi_init(bdi);
list_add_tail_rcu(&bdi->wb.bdi_node, &bdi->wb_list);
return ret;
}
EXPORT_SYMBOL(bdi_init);
int bdi_register(struct backing_dev_info *bdi, struct device *parent,
const char *fmt, ...)
{
va_list args;
struct device *dev;
if (bdi->dev) /* The driver needs to use separate queues per device */
return 0;
va_start(args, fmt);
dev = device_create_vargs(bdi_class, parent, MKDEV(0, 0), bdi, fmt, args);
va_end(args);
if (IS_ERR(dev))
return PTR_ERR(dev);
bdi->dev = dev;
bdi_debug_register(bdi, dev_name(dev));
set_bit(WB_registered, &bdi->wb.state);
spin_lock_bh(&bdi_lock);
list_add_tail_rcu(&bdi->bdi_list, &bdi_list);
spin_unlock_bh(&bdi_lock);
trace_writeback_bdi_register(bdi);
return 0;
}
EXPORT_SYMBOL(bdi_register);
int bdi_register_dev(struct backing_dev_info *bdi, dev_t dev)
{
return bdi_register(bdi, NULL, "%u:%u", MAJOR(dev), MINOR(dev));
}
EXPORT_SYMBOL(bdi_register_dev);
/*
* Remove bdi from bdi_list, and ensure that it is no longer visible
*/
static void bdi_remove_from_list(struct backing_dev_info *bdi)
{
spin_lock_bh(&bdi_lock);
list_del_rcu(&bdi->bdi_list);
spin_unlock_bh(&bdi_lock);
synchronize_rcu_expedited();
}
void bdi_unregister(struct backing_dev_info *bdi)
{
/* make sure nobody finds us on the bdi_list anymore */
bdi_remove_from_list(bdi);
wb_shutdown(&bdi->wb);
cgwb_bdi_destroy(bdi);
if (bdi->dev) {
bdi_debug_unregister(bdi);
device_unregister(bdi->dev);
bdi->dev = NULL;
}
}
void bdi_exit(struct backing_dev_info *bdi)
{
WARN_ON_ONCE(bdi->dev);
wb_exit(&bdi->wb);
}
void bdi_destroy(struct backing_dev_info *bdi)
{
bdi_unregister(bdi);
bdi_exit(bdi);
}
EXPORT_SYMBOL(bdi_destroy);
/*
* For use from filesystems to quickly init and register a bdi associated
* with dirty writeback
*/
int bdi_setup_and_register(struct backing_dev_info *bdi, char *name)
{
int err;
bdi->name = name;
bdi->capabilities = 0;
err = bdi_init(bdi);
if (err)
return err;
err = bdi_register(bdi, NULL, "%.28s-%ld", name,
atomic_long_inc_return(&bdi_seq));
if (err) {
bdi_destroy(bdi);
return err;
}
return 0;
}
EXPORT_SYMBOL(bdi_setup_and_register);
static wait_queue_head_t congestion_wqh[2] = {
__WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
__WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
};
static atomic_t nr_wb_congested[2];
void clear_wb_congested(struct bdi_writeback_congested *congested, int sync)
{
wait_queue_head_t *wqh = &congestion_wqh[sync];
enum wb_congested_state bit;
bit = sync ? WB_sync_congested : WB_async_congested;
if (test_and_clear_bit(bit, &congested->state))
atomic_dec(&nr_wb_congested[sync]);
smp_mb__after_atomic();
if (waitqueue_active(wqh))
wake_up(wqh);
}
EXPORT_SYMBOL(clear_wb_congested);
void set_wb_congested(struct bdi_writeback_congested *congested, int sync)
{
enum wb_congested_state bit;
bit = sync ? WB_sync_congested : WB_async_congested;
if (!test_and_set_bit(bit, &congested->state))
atomic_inc(&nr_wb_congested[sync]);
}
EXPORT_SYMBOL(set_wb_congested);
/**
* congestion_wait - wait for a backing_dev to become uncongested
* @sync: SYNC or ASYNC IO
* @timeout: timeout in jiffies
*
* Waits for up to @timeout jiffies for a backing_dev (any backing_dev) to exit
* write congestion. If no backing_devs are congested then just wait for the
* next write to be completed.
*/
long congestion_wait(int sync, long timeout)
{
long ret;
unsigned long start = jiffies;
DEFINE_WAIT(wait);
wait_queue_head_t *wqh = &congestion_wqh[sync];
prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
ret = io_schedule_timeout(timeout);
finish_wait(wqh, &wait);
trace_writeback_congestion_wait(jiffies_to_usecs(timeout),
jiffies_to_usecs(jiffies - start));
return ret;
}
EXPORT_SYMBOL(congestion_wait);
/**
* wait_iff_congested - Conditionally wait for a backing_dev to become uncongested or a pgdat to complete writes
* @pgdat: A pgdat to check if it is heavily congested
* @sync: SYNC or ASYNC IO
* @timeout: timeout in jiffies
*
* In the event of a congested backing_dev (any backing_dev) and the given
* @pgdat has experienced recent congestion, this waits for up to @timeout
* jiffies for either a BDI to exit congestion of the given @sync queue
* or a write to complete.
*
* In the absence of pgdat congestion, cond_resched() is called to yield
* the processor if necessary but otherwise does not sleep.
*
* The return value is 0 if the sleep is for the full timeout. Otherwise,
* it is the number of jiffies that were still remaining when the function
* returned. return_value == timeout implies the function did not sleep.
*/
long wait_iff_congested(struct pglist_data *pgdat, int sync, long timeout)
{
long ret;
unsigned long start = jiffies;
DEFINE_WAIT(wait);
wait_queue_head_t *wqh = &congestion_wqh[sync];
/*
* If there is no congestion, or heavy congestion is not being
* encountered in the current pgdat, yield if necessary instead
* of sleeping on the congestion queue
*/
if (atomic_read(&nr_wb_congested[sync]) == 0 ||
!test_bit(PGDAT_CONGESTED, &pgdat->flags)) {
cond_resched();
/* In case we scheduled, work out time remaining */
ret = timeout - (jiffies - start);
if (ret < 0)
ret = 0;
goto out;
}
/* Sleep until uncongested or a write happens */
prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
ret = io_schedule_timeout(timeout);
finish_wait(wqh, &wait);
out:
trace_writeback_wait_iff_congested(jiffies_to_usecs(timeout),
jiffies_to_usecs(jiffies - start));
return ret;
}
EXPORT_SYMBOL(wait_iff_congested);
int pdflush_proc_obsolete(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
char kbuf[] = "0\n";
if (*ppos || *lenp < sizeof(kbuf)) {
*lenp = 0;
return 0;
}
if (copy_to_user(buffer, kbuf, sizeof(kbuf)))
return -EFAULT;
pr_warn_once("%s exported in /proc is scheduled for removal\n",
table->procname);
*lenp = 2;
*ppos += *lenp;
return 2;
}