2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 19:54:03 +08:00
linux-next/fs/namespace.c
Linus Torvalds f6f993328b Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs updates from Al Viro:
 "Stuff in here:

   - acct.c fixes and general rework of mnt_pin mechanism.  That allows
     to go for delayed-mntput stuff, which will permit mntput() on deep
     stack without worrying about stack overflows - fs shutdown will
     happen on shallow stack.  IOW, we can do Eric's umount-on-rmdir
     series without introducing tons of stack overflows on new mntput()
     call chains it introduces.
   - Bruce's d_splice_alias() patches
   - more Miklos' rename() stuff.
   - a couple of regression fixes (stable fodder, in the end of branch)
     and a fix for API idiocy in iov_iter.c.

  There definitely will be another pile, maybe even two.  I'd like to
  get Eric's series in this time, but even if we miss it, it'll go right
  in the beginning of for-next in the next cycle - the tricky part of
  prereqs is in this pile"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (40 commits)
  fix copy_tree() regression
  __generic_file_write_iter(): fix handling of sync error after DIO
  switch iov_iter_get_pages() to passing maximal number of pages
  fs: mark __d_obtain_alias static
  dcache: d_splice_alias should detect loops
  exportfs: update Exporting documentation
  dcache: d_find_alias needn't recheck IS_ROOT && DCACHE_DISCONNECTED
  dcache: remove unused d_find_alias parameter
  dcache: d_obtain_alias callers don't all want DISCONNECTED
  dcache: d_splice_alias should ignore DCACHE_DISCONNECTED
  dcache: d_splice_alias mustn't create directory aliases
  dcache: close d_move race in d_splice_alias
  dcache: move d_splice_alias
  namei: trivial fix to vfs_rename_dir comment
  VFS: allow ->d_manage() to declare -EISDIR in rcu_walk mode.
  cifs: support RENAME_NOREPLACE
  hostfs: support rename flags
  shmem: support RENAME_EXCHANGE
  shmem: support RENAME_NOREPLACE
  btrfs: add RENAME_NOREPLACE
  ...
2014-08-11 11:44:11 -07:00

3082 lines
74 KiB
C

/*
* linux/fs/namespace.c
*
* (C) Copyright Al Viro 2000, 2001
* Released under GPL v2.
*
* Based on code from fs/super.c, copyright Linus Torvalds and others.
* Heavily rewritten.
*/
#include <linux/syscalls.h>
#include <linux/export.h>
#include <linux/capability.h>
#include <linux/mnt_namespace.h>
#include <linux/user_namespace.h>
#include <linux/namei.h>
#include <linux/security.h>
#include <linux/idr.h>
#include <linux/init.h> /* init_rootfs */
#include <linux/fs_struct.h> /* get_fs_root et.al. */
#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
#include <linux/uaccess.h>
#include <linux/proc_ns.h>
#include <linux/magic.h>
#include <linux/bootmem.h>
#include "pnode.h"
#include "internal.h"
static unsigned int m_hash_mask __read_mostly;
static unsigned int m_hash_shift __read_mostly;
static unsigned int mp_hash_mask __read_mostly;
static unsigned int mp_hash_shift __read_mostly;
static __initdata unsigned long mhash_entries;
static int __init set_mhash_entries(char *str)
{
if (!str)
return 0;
mhash_entries = simple_strtoul(str, &str, 0);
return 1;
}
__setup("mhash_entries=", set_mhash_entries);
static __initdata unsigned long mphash_entries;
static int __init set_mphash_entries(char *str)
{
if (!str)
return 0;
mphash_entries = simple_strtoul(str, &str, 0);
return 1;
}
__setup("mphash_entries=", set_mphash_entries);
static u64 event;
static DEFINE_IDA(mnt_id_ida);
static DEFINE_IDA(mnt_group_ida);
static DEFINE_SPINLOCK(mnt_id_lock);
static int mnt_id_start = 0;
static int mnt_group_start = 1;
static struct hlist_head *mount_hashtable __read_mostly;
static struct hlist_head *mountpoint_hashtable __read_mostly;
static struct kmem_cache *mnt_cache __read_mostly;
static DECLARE_RWSEM(namespace_sem);
/* /sys/fs */
struct kobject *fs_kobj;
EXPORT_SYMBOL_GPL(fs_kobj);
/*
* vfsmount lock may be taken for read to prevent changes to the
* vfsmount hash, ie. during mountpoint lookups or walking back
* up the tree.
*
* It should be taken for write in all cases where the vfsmount
* tree or hash is modified or when a vfsmount structure is modified.
*/
__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
{
unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
tmp = tmp + (tmp >> m_hash_shift);
return &mount_hashtable[tmp & m_hash_mask];
}
static inline struct hlist_head *mp_hash(struct dentry *dentry)
{
unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
tmp = tmp + (tmp >> mp_hash_shift);
return &mountpoint_hashtable[tmp & mp_hash_mask];
}
/*
* allocation is serialized by namespace_sem, but we need the spinlock to
* serialize with freeing.
*/
static int mnt_alloc_id(struct mount *mnt)
{
int res;
retry:
ida_pre_get(&mnt_id_ida, GFP_KERNEL);
spin_lock(&mnt_id_lock);
res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
if (!res)
mnt_id_start = mnt->mnt_id + 1;
spin_unlock(&mnt_id_lock);
if (res == -EAGAIN)
goto retry;
return res;
}
static void mnt_free_id(struct mount *mnt)
{
int id = mnt->mnt_id;
spin_lock(&mnt_id_lock);
ida_remove(&mnt_id_ida, id);
if (mnt_id_start > id)
mnt_id_start = id;
spin_unlock(&mnt_id_lock);
}
/*
* Allocate a new peer group ID
*
* mnt_group_ida is protected by namespace_sem
*/
static int mnt_alloc_group_id(struct mount *mnt)
{
int res;
if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
return -ENOMEM;
res = ida_get_new_above(&mnt_group_ida,
mnt_group_start,
&mnt->mnt_group_id);
if (!res)
mnt_group_start = mnt->mnt_group_id + 1;
return res;
}
/*
* Release a peer group ID
*/
void mnt_release_group_id(struct mount *mnt)
{
int id = mnt->mnt_group_id;
ida_remove(&mnt_group_ida, id);
if (mnt_group_start > id)
mnt_group_start = id;
mnt->mnt_group_id = 0;
}
/*
* vfsmount lock must be held for read
*/
static inline void mnt_add_count(struct mount *mnt, int n)
{
#ifdef CONFIG_SMP
this_cpu_add(mnt->mnt_pcp->mnt_count, n);
#else
preempt_disable();
mnt->mnt_count += n;
preempt_enable();
#endif
}
/*
* vfsmount lock must be held for write
*/
unsigned int mnt_get_count(struct mount *mnt)
{
#ifdef CONFIG_SMP
unsigned int count = 0;
int cpu;
for_each_possible_cpu(cpu) {
count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
}
return count;
#else
return mnt->mnt_count;
#endif
}
static struct mount *alloc_vfsmnt(const char *name)
{
struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
if (mnt) {
int err;
err = mnt_alloc_id(mnt);
if (err)
goto out_free_cache;
if (name) {
mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
if (!mnt->mnt_devname)
goto out_free_id;
}
#ifdef CONFIG_SMP
mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
if (!mnt->mnt_pcp)
goto out_free_devname;
this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
#else
mnt->mnt_count = 1;
mnt->mnt_writers = 0;
#endif
INIT_HLIST_NODE(&mnt->mnt_hash);
INIT_LIST_HEAD(&mnt->mnt_child);
INIT_LIST_HEAD(&mnt->mnt_mounts);
INIT_LIST_HEAD(&mnt->mnt_list);
INIT_LIST_HEAD(&mnt->mnt_expire);
INIT_LIST_HEAD(&mnt->mnt_share);
INIT_LIST_HEAD(&mnt->mnt_slave_list);
INIT_LIST_HEAD(&mnt->mnt_slave);
#ifdef CONFIG_FSNOTIFY
INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
#endif
}
return mnt;
#ifdef CONFIG_SMP
out_free_devname:
kfree(mnt->mnt_devname);
#endif
out_free_id:
mnt_free_id(mnt);
out_free_cache:
kmem_cache_free(mnt_cache, mnt);
return NULL;
}
/*
* Most r/o checks on a fs are for operations that take
* discrete amounts of time, like a write() or unlink().
* We must keep track of when those operations start
* (for permission checks) and when they end, so that
* we can determine when writes are able to occur to
* a filesystem.
*/
/*
* __mnt_is_readonly: check whether a mount is read-only
* @mnt: the mount to check for its write status
*
* This shouldn't be used directly ouside of the VFS.
* It does not guarantee that the filesystem will stay
* r/w, just that it is right *now*. This can not and
* should not be used in place of IS_RDONLY(inode).
* mnt_want/drop_write() will _keep_ the filesystem
* r/w.
*/
int __mnt_is_readonly(struct vfsmount *mnt)
{
if (mnt->mnt_flags & MNT_READONLY)
return 1;
if (mnt->mnt_sb->s_flags & MS_RDONLY)
return 1;
return 0;
}
EXPORT_SYMBOL_GPL(__mnt_is_readonly);
static inline void mnt_inc_writers(struct mount *mnt)
{
#ifdef CONFIG_SMP
this_cpu_inc(mnt->mnt_pcp->mnt_writers);
#else
mnt->mnt_writers++;
#endif
}
static inline void mnt_dec_writers(struct mount *mnt)
{
#ifdef CONFIG_SMP
this_cpu_dec(mnt->mnt_pcp->mnt_writers);
#else
mnt->mnt_writers--;
#endif
}
static unsigned int mnt_get_writers(struct mount *mnt)
{
#ifdef CONFIG_SMP
unsigned int count = 0;
int cpu;
for_each_possible_cpu(cpu) {
count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
}
return count;
#else
return mnt->mnt_writers;
#endif
}
static int mnt_is_readonly(struct vfsmount *mnt)
{
if (mnt->mnt_sb->s_readonly_remount)
return 1;
/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
smp_rmb();
return __mnt_is_readonly(mnt);
}
/*
* Most r/o & frozen checks on a fs are for operations that take discrete
* amounts of time, like a write() or unlink(). We must keep track of when
* those operations start (for permission checks) and when they end, so that we
* can determine when writes are able to occur to a filesystem.
*/
/**
* __mnt_want_write - get write access to a mount without freeze protection
* @m: the mount on which to take a write
*
* This tells the low-level filesystem that a write is about to be performed to
* it, and makes sure that writes are allowed (mnt it read-write) before
* returning success. This operation does not protect against filesystem being
* frozen. When the write operation is finished, __mnt_drop_write() must be
* called. This is effectively a refcount.
*/
int __mnt_want_write(struct vfsmount *m)
{
struct mount *mnt = real_mount(m);
int ret = 0;
preempt_disable();
mnt_inc_writers(mnt);
/*
* The store to mnt_inc_writers must be visible before we pass
* MNT_WRITE_HOLD loop below, so that the slowpath can see our
* incremented count after it has set MNT_WRITE_HOLD.
*/
smp_mb();
while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
cpu_relax();
/*
* After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
* be set to match its requirements. So we must not load that until
* MNT_WRITE_HOLD is cleared.
*/
smp_rmb();
if (mnt_is_readonly(m)) {
mnt_dec_writers(mnt);
ret = -EROFS;
}
preempt_enable();
return ret;
}
/**
* mnt_want_write - get write access to a mount
* @m: the mount on which to take a write
*
* This tells the low-level filesystem that a write is about to be performed to
* it, and makes sure that writes are allowed (mount is read-write, filesystem
* is not frozen) before returning success. When the write operation is
* finished, mnt_drop_write() must be called. This is effectively a refcount.
*/
int mnt_want_write(struct vfsmount *m)
{
int ret;
sb_start_write(m->mnt_sb);
ret = __mnt_want_write(m);
if (ret)
sb_end_write(m->mnt_sb);
return ret;
}
EXPORT_SYMBOL_GPL(mnt_want_write);
/**
* mnt_clone_write - get write access to a mount
* @mnt: the mount on which to take a write
*
* This is effectively like mnt_want_write, except
* it must only be used to take an extra write reference
* on a mountpoint that we already know has a write reference
* on it. This allows some optimisation.
*
* After finished, mnt_drop_write must be called as usual to
* drop the reference.
*/
int mnt_clone_write(struct vfsmount *mnt)
{
/* superblock may be r/o */
if (__mnt_is_readonly(mnt))
return -EROFS;
preempt_disable();
mnt_inc_writers(real_mount(mnt));
preempt_enable();
return 0;
}
EXPORT_SYMBOL_GPL(mnt_clone_write);
/**
* __mnt_want_write_file - get write access to a file's mount
* @file: the file who's mount on which to take a write
*
* This is like __mnt_want_write, but it takes a file and can
* do some optimisations if the file is open for write already
*/
int __mnt_want_write_file(struct file *file)
{
if (!(file->f_mode & FMODE_WRITER))
return __mnt_want_write(file->f_path.mnt);
else
return mnt_clone_write(file->f_path.mnt);
}
/**
* mnt_want_write_file - get write access to a file's mount
* @file: the file who's mount on which to take a write
*
* This is like mnt_want_write, but it takes a file and can
* do some optimisations if the file is open for write already
*/
int mnt_want_write_file(struct file *file)
{
int ret;
sb_start_write(file->f_path.mnt->mnt_sb);
ret = __mnt_want_write_file(file);
if (ret)
sb_end_write(file->f_path.mnt->mnt_sb);
return ret;
}
EXPORT_SYMBOL_GPL(mnt_want_write_file);
/**
* __mnt_drop_write - give up write access to a mount
* @mnt: the mount on which to give up write access
*
* Tells the low-level filesystem that we are done
* performing writes to it. Must be matched with
* __mnt_want_write() call above.
*/
void __mnt_drop_write(struct vfsmount *mnt)
{
preempt_disable();
mnt_dec_writers(real_mount(mnt));
preempt_enable();
}
/**
* mnt_drop_write - give up write access to a mount
* @mnt: the mount on which to give up write access
*
* Tells the low-level filesystem that we are done performing writes to it and
* also allows filesystem to be frozen again. Must be matched with
* mnt_want_write() call above.
*/
void mnt_drop_write(struct vfsmount *mnt)
{
__mnt_drop_write(mnt);
sb_end_write(mnt->mnt_sb);
}
EXPORT_SYMBOL_GPL(mnt_drop_write);
void __mnt_drop_write_file(struct file *file)
{
__mnt_drop_write(file->f_path.mnt);
}
void mnt_drop_write_file(struct file *file)
{
mnt_drop_write(file->f_path.mnt);
}
EXPORT_SYMBOL(mnt_drop_write_file);
static int mnt_make_readonly(struct mount *mnt)
{
int ret = 0;
lock_mount_hash();
mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
/*
* After storing MNT_WRITE_HOLD, we'll read the counters. This store
* should be visible before we do.
*/
smp_mb();
/*
* With writers on hold, if this value is zero, then there are
* definitely no active writers (although held writers may subsequently
* increment the count, they'll have to wait, and decrement it after
* seeing MNT_READONLY).
*
* It is OK to have counter incremented on one CPU and decremented on
* another: the sum will add up correctly. The danger would be when we
* sum up each counter, if we read a counter before it is incremented,
* but then read another CPU's count which it has been subsequently
* decremented from -- we would see more decrements than we should.
* MNT_WRITE_HOLD protects against this scenario, because
* mnt_want_write first increments count, then smp_mb, then spins on
* MNT_WRITE_HOLD, so it can't be decremented by another CPU while
* we're counting up here.
*/
if (mnt_get_writers(mnt) > 0)
ret = -EBUSY;
else
mnt->mnt.mnt_flags |= MNT_READONLY;
/*
* MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
* that become unheld will see MNT_READONLY.
*/
smp_wmb();
mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
unlock_mount_hash();
return ret;
}
static void __mnt_unmake_readonly(struct mount *mnt)
{
lock_mount_hash();
mnt->mnt.mnt_flags &= ~MNT_READONLY;
unlock_mount_hash();
}
int sb_prepare_remount_readonly(struct super_block *sb)
{
struct mount *mnt;
int err = 0;
/* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
if (atomic_long_read(&sb->s_remove_count))
return -EBUSY;
lock_mount_hash();
list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
smp_mb();
if (mnt_get_writers(mnt) > 0) {
err = -EBUSY;
break;
}
}
}
if (!err && atomic_long_read(&sb->s_remove_count))
err = -EBUSY;
if (!err) {
sb->s_readonly_remount = 1;
smp_wmb();
}
list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
}
unlock_mount_hash();
return err;
}
static void free_vfsmnt(struct mount *mnt)
{
kfree(mnt->mnt_devname);
#ifdef CONFIG_SMP
free_percpu(mnt->mnt_pcp);
#endif
kmem_cache_free(mnt_cache, mnt);
}
static void delayed_free_vfsmnt(struct rcu_head *head)
{
free_vfsmnt(container_of(head, struct mount, mnt_rcu));
}
/* call under rcu_read_lock */
bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
{
struct mount *mnt;
if (read_seqretry(&mount_lock, seq))
return false;
if (bastard == NULL)
return true;
mnt = real_mount(bastard);
mnt_add_count(mnt, 1);
if (likely(!read_seqretry(&mount_lock, seq)))
return true;
if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
mnt_add_count(mnt, -1);
return false;
}
rcu_read_unlock();
mntput(bastard);
rcu_read_lock();
return false;
}
/*
* find the first mount at @dentry on vfsmount @mnt.
* call under rcu_read_lock()
*/
struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
{
struct hlist_head *head = m_hash(mnt, dentry);
struct mount *p;
hlist_for_each_entry_rcu(p, head, mnt_hash)
if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
return p;
return NULL;
}
/*
* find the last mount at @dentry on vfsmount @mnt.
* mount_lock must be held.
*/
struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
{
struct mount *p, *res;
res = p = __lookup_mnt(mnt, dentry);
if (!p)
goto out;
hlist_for_each_entry_continue(p, mnt_hash) {
if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
break;
res = p;
}
out:
return res;
}
/*
* lookup_mnt - Return the first child mount mounted at path
*
* "First" means first mounted chronologically. If you create the
* following mounts:
*
* mount /dev/sda1 /mnt
* mount /dev/sda2 /mnt
* mount /dev/sda3 /mnt
*
* Then lookup_mnt() on the base /mnt dentry in the root mount will
* return successively the root dentry and vfsmount of /dev/sda1, then
* /dev/sda2, then /dev/sda3, then NULL.
*
* lookup_mnt takes a reference to the found vfsmount.
*/
struct vfsmount *lookup_mnt(struct path *path)
{
struct mount *child_mnt;
struct vfsmount *m;
unsigned seq;
rcu_read_lock();
do {
seq = read_seqbegin(&mount_lock);
child_mnt = __lookup_mnt(path->mnt, path->dentry);
m = child_mnt ? &child_mnt->mnt : NULL;
} while (!legitimize_mnt(m, seq));
rcu_read_unlock();
return m;
}
static struct mountpoint *new_mountpoint(struct dentry *dentry)
{
struct hlist_head *chain = mp_hash(dentry);
struct mountpoint *mp;
int ret;
hlist_for_each_entry(mp, chain, m_hash) {
if (mp->m_dentry == dentry) {
/* might be worth a WARN_ON() */
if (d_unlinked(dentry))
return ERR_PTR(-ENOENT);
mp->m_count++;
return mp;
}
}
mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
if (!mp)
return ERR_PTR(-ENOMEM);
ret = d_set_mounted(dentry);
if (ret) {
kfree(mp);
return ERR_PTR(ret);
}
mp->m_dentry = dentry;
mp->m_count = 1;
hlist_add_head(&mp->m_hash, chain);
return mp;
}
static void put_mountpoint(struct mountpoint *mp)
{
if (!--mp->m_count) {
struct dentry *dentry = mp->m_dentry;
spin_lock(&dentry->d_lock);
dentry->d_flags &= ~DCACHE_MOUNTED;
spin_unlock(&dentry->d_lock);
hlist_del(&mp->m_hash);
kfree(mp);
}
}
static inline int check_mnt(struct mount *mnt)
{
return mnt->mnt_ns == current->nsproxy->mnt_ns;
}
/*
* vfsmount lock must be held for write
*/
static void touch_mnt_namespace(struct mnt_namespace *ns)
{
if (ns) {
ns->event = ++event;
wake_up_interruptible(&ns->poll);
}
}
/*
* vfsmount lock must be held for write
*/
static void __touch_mnt_namespace(struct mnt_namespace *ns)
{
if (ns && ns->event != event) {
ns->event = event;
wake_up_interruptible(&ns->poll);
}
}
/*
* vfsmount lock must be held for write
*/
static void detach_mnt(struct mount *mnt, struct path *old_path)
{
old_path->dentry = mnt->mnt_mountpoint;
old_path->mnt = &mnt->mnt_parent->mnt;
mnt->mnt_parent = mnt;
mnt->mnt_mountpoint = mnt->mnt.mnt_root;
list_del_init(&mnt->mnt_child);
hlist_del_init_rcu(&mnt->mnt_hash);
put_mountpoint(mnt->mnt_mp);
mnt->mnt_mp = NULL;
}
/*
* vfsmount lock must be held for write
*/
void mnt_set_mountpoint(struct mount *mnt,
struct mountpoint *mp,
struct mount *child_mnt)
{
mp->m_count++;
mnt_add_count(mnt, 1); /* essentially, that's mntget */
child_mnt->mnt_mountpoint = dget(mp->m_dentry);
child_mnt->mnt_parent = mnt;
child_mnt->mnt_mp = mp;
}
/*
* vfsmount lock must be held for write
*/
static void attach_mnt(struct mount *mnt,
struct mount *parent,
struct mountpoint *mp)
{
mnt_set_mountpoint(parent, mp, mnt);
hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
}
static void attach_shadowed(struct mount *mnt,
struct mount *parent,
struct mount *shadows)
{
if (shadows) {
hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
list_add(&mnt->mnt_child, &shadows->mnt_child);
} else {
hlist_add_head_rcu(&mnt->mnt_hash,
m_hash(&parent->mnt, mnt->mnt_mountpoint));
list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
}
}
/*
* vfsmount lock must be held for write
*/
static void commit_tree(struct mount *mnt, struct mount *shadows)
{
struct mount *parent = mnt->mnt_parent;
struct mount *m;
LIST_HEAD(head);
struct mnt_namespace *n = parent->mnt_ns;
BUG_ON(parent == mnt);
list_add_tail(&head, &mnt->mnt_list);
list_for_each_entry(m, &head, mnt_list)
m->mnt_ns = n;
list_splice(&head, n->list.prev);
attach_shadowed(mnt, parent, shadows);
touch_mnt_namespace(n);
}
static struct mount *next_mnt(struct mount *p, struct mount *root)
{
struct list_head *next = p->mnt_mounts.next;
if (next == &p->mnt_mounts) {
while (1) {
if (p == root)
return NULL;
next = p->mnt_child.next;
if (next != &p->mnt_parent->mnt_mounts)
break;
p = p->mnt_parent;
}
}
return list_entry(next, struct mount, mnt_child);
}
static struct mount *skip_mnt_tree(struct mount *p)
{
struct list_head *prev = p->mnt_mounts.prev;
while (prev != &p->mnt_mounts) {
p = list_entry(prev, struct mount, mnt_child);
prev = p->mnt_mounts.prev;
}
return p;
}
struct vfsmount *
vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
{
struct mount *mnt;
struct dentry *root;
if (!type)
return ERR_PTR(-ENODEV);
mnt = alloc_vfsmnt(name);
if (!mnt)
return ERR_PTR(-ENOMEM);
if (flags & MS_KERNMOUNT)
mnt->mnt.mnt_flags = MNT_INTERNAL;
root = mount_fs(type, flags, name, data);
if (IS_ERR(root)) {
mnt_free_id(mnt);
free_vfsmnt(mnt);
return ERR_CAST(root);
}
mnt->mnt.mnt_root = root;
mnt->mnt.mnt_sb = root->d_sb;
mnt->mnt_mountpoint = mnt->mnt.mnt_root;
mnt->mnt_parent = mnt;
lock_mount_hash();
list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
unlock_mount_hash();
return &mnt->mnt;
}
EXPORT_SYMBOL_GPL(vfs_kern_mount);
static struct mount *clone_mnt(struct mount *old, struct dentry *root,
int flag)
{
struct super_block *sb = old->mnt.mnt_sb;
struct mount *mnt;
int err;
mnt = alloc_vfsmnt(old->mnt_devname);
if (!mnt)
return ERR_PTR(-ENOMEM);
if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
mnt->mnt_group_id = 0; /* not a peer of original */
else
mnt->mnt_group_id = old->mnt_group_id;
if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
err = mnt_alloc_group_id(mnt);
if (err)
goto out_free;
}
mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
/* Don't allow unprivileged users to change mount flags */
if (flag & CL_UNPRIVILEGED) {
mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
if (mnt->mnt.mnt_flags & MNT_READONLY)
mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
if (mnt->mnt.mnt_flags & MNT_NODEV)
mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
if (mnt->mnt.mnt_flags & MNT_NOSUID)
mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
if (mnt->mnt.mnt_flags & MNT_NOEXEC)
mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
}
/* Don't allow unprivileged users to reveal what is under a mount */
if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
mnt->mnt.mnt_flags |= MNT_LOCKED;
atomic_inc(&sb->s_active);
mnt->mnt.mnt_sb = sb;
mnt->mnt.mnt_root = dget(root);
mnt->mnt_mountpoint = mnt->mnt.mnt_root;
mnt->mnt_parent = mnt;
lock_mount_hash();
list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
unlock_mount_hash();
if ((flag & CL_SLAVE) ||
((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
list_add(&mnt->mnt_slave, &old->mnt_slave_list);
mnt->mnt_master = old;
CLEAR_MNT_SHARED(mnt);
} else if (!(flag & CL_PRIVATE)) {
if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
list_add(&mnt->mnt_share, &old->mnt_share);
if (IS_MNT_SLAVE(old))
list_add(&mnt->mnt_slave, &old->mnt_slave);
mnt->mnt_master = old->mnt_master;
}
if (flag & CL_MAKE_SHARED)
set_mnt_shared(mnt);
/* stick the duplicate mount on the same expiry list
* as the original if that was on one */
if (flag & CL_EXPIRE) {
if (!list_empty(&old->mnt_expire))
list_add(&mnt->mnt_expire, &old->mnt_expire);
}
return mnt;
out_free:
mnt_free_id(mnt);
free_vfsmnt(mnt);
return ERR_PTR(err);
}
static void mntput_no_expire(struct mount *mnt)
{
rcu_read_lock();
mnt_add_count(mnt, -1);
if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
rcu_read_unlock();
return;
}
lock_mount_hash();
if (mnt_get_count(mnt)) {
rcu_read_unlock();
unlock_mount_hash();
return;
}
if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
rcu_read_unlock();
unlock_mount_hash();
return;
}
mnt->mnt.mnt_flags |= MNT_DOOMED;
rcu_read_unlock();
list_del(&mnt->mnt_instance);
unlock_mount_hash();
/*
* This probably indicates that somebody messed
* up a mnt_want/drop_write() pair. If this
* happens, the filesystem was probably unable
* to make r/w->r/o transitions.
*/
/*
* The locking used to deal with mnt_count decrement provides barriers,
* so mnt_get_writers() below is safe.
*/
WARN_ON(mnt_get_writers(mnt));
if (unlikely(mnt->mnt_pins.first))
mnt_pin_kill(mnt);
fsnotify_vfsmount_delete(&mnt->mnt);
dput(mnt->mnt.mnt_root);
deactivate_super(mnt->mnt.mnt_sb);
mnt_free_id(mnt);
call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
}
void mntput(struct vfsmount *mnt)
{
if (mnt) {
struct mount *m = real_mount(mnt);
/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
if (unlikely(m->mnt_expiry_mark))
m->mnt_expiry_mark = 0;
mntput_no_expire(m);
}
}
EXPORT_SYMBOL(mntput);
struct vfsmount *mntget(struct vfsmount *mnt)
{
if (mnt)
mnt_add_count(real_mount(mnt), 1);
return mnt;
}
EXPORT_SYMBOL(mntget);
struct vfsmount *mnt_clone_internal(struct path *path)
{
struct mount *p;
p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
if (IS_ERR(p))
return ERR_CAST(p);
p->mnt.mnt_flags |= MNT_INTERNAL;
return &p->mnt;
}
static inline void mangle(struct seq_file *m, const char *s)
{
seq_escape(m, s, " \t\n\\");
}
/*
* Simple .show_options callback for filesystems which don't want to
* implement more complex mount option showing.
*
* See also save_mount_options().
*/
int generic_show_options(struct seq_file *m, struct dentry *root)
{
const char *options;
rcu_read_lock();
options = rcu_dereference(root->d_sb->s_options);
if (options != NULL && options[0]) {
seq_putc(m, ',');
mangle(m, options);
}
rcu_read_unlock();
return 0;
}
EXPORT_SYMBOL(generic_show_options);
/*
* If filesystem uses generic_show_options(), this function should be
* called from the fill_super() callback.
*
* The .remount_fs callback usually needs to be handled in a special
* way, to make sure, that previous options are not overwritten if the
* remount fails.
*
* Also note, that if the filesystem's .remount_fs function doesn't
* reset all options to their default value, but changes only newly
* given options, then the displayed options will not reflect reality
* any more.
*/
void save_mount_options(struct super_block *sb, char *options)
{
BUG_ON(sb->s_options);
rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
}
EXPORT_SYMBOL(save_mount_options);
void replace_mount_options(struct super_block *sb, char *options)
{
char *old = sb->s_options;
rcu_assign_pointer(sb->s_options, options);
if (old) {
synchronize_rcu();
kfree(old);
}
}
EXPORT_SYMBOL(replace_mount_options);
#ifdef CONFIG_PROC_FS
/* iterator; we want it to have access to namespace_sem, thus here... */
static void *m_start(struct seq_file *m, loff_t *pos)
{
struct proc_mounts *p = proc_mounts(m);
down_read(&namespace_sem);
if (p->cached_event == p->ns->event) {
void *v = p->cached_mount;
if (*pos == p->cached_index)
return v;
if (*pos == p->cached_index + 1) {
v = seq_list_next(v, &p->ns->list, &p->cached_index);
return p->cached_mount = v;
}
}
p->cached_event = p->ns->event;
p->cached_mount = seq_list_start(&p->ns->list, *pos);
p->cached_index = *pos;
return p->cached_mount;
}
static void *m_next(struct seq_file *m, void *v, loff_t *pos)
{
struct proc_mounts *p = proc_mounts(m);
p->cached_mount = seq_list_next(v, &p->ns->list, pos);
p->cached_index = *pos;
return p->cached_mount;
}
static void m_stop(struct seq_file *m, void *v)
{
up_read(&namespace_sem);
}
static int m_show(struct seq_file *m, void *v)
{
struct proc_mounts *p = proc_mounts(m);
struct mount *r = list_entry(v, struct mount, mnt_list);
return p->show(m, &r->mnt);
}
const struct seq_operations mounts_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = m_show,
};
#endif /* CONFIG_PROC_FS */
/**
* may_umount_tree - check if a mount tree is busy
* @mnt: root of mount tree
*
* This is called to check if a tree of mounts has any
* open files, pwds, chroots or sub mounts that are
* busy.
*/
int may_umount_tree(struct vfsmount *m)
{
struct mount *mnt = real_mount(m);
int actual_refs = 0;
int minimum_refs = 0;
struct mount *p;
BUG_ON(!m);
/* write lock needed for mnt_get_count */
lock_mount_hash();
for (p = mnt; p; p = next_mnt(p, mnt)) {
actual_refs += mnt_get_count(p);
minimum_refs += 2;
}
unlock_mount_hash();
if (actual_refs > minimum_refs)
return 0;
return 1;
}
EXPORT_SYMBOL(may_umount_tree);
/**
* may_umount - check if a mount point is busy
* @mnt: root of mount
*
* This is called to check if a mount point has any
* open files, pwds, chroots or sub mounts. If the
* mount has sub mounts this will return busy
* regardless of whether the sub mounts are busy.
*
* Doesn't take quota and stuff into account. IOW, in some cases it will
* give false negatives. The main reason why it's here is that we need
* a non-destructive way to look for easily umountable filesystems.
*/
int may_umount(struct vfsmount *mnt)
{
int ret = 1;
down_read(&namespace_sem);
lock_mount_hash();
if (propagate_mount_busy(real_mount(mnt), 2))
ret = 0;
unlock_mount_hash();
up_read(&namespace_sem);
return ret;
}
EXPORT_SYMBOL(may_umount);
static HLIST_HEAD(unmounted); /* protected by namespace_sem */
static void namespace_unlock(void)
{
struct mount *mnt;
struct hlist_head head = unmounted;
if (likely(hlist_empty(&head))) {
up_write(&namespace_sem);
return;
}
head.first->pprev = &head.first;
INIT_HLIST_HEAD(&unmounted);
up_write(&namespace_sem);
synchronize_rcu();
while (!hlist_empty(&head)) {
mnt = hlist_entry(head.first, struct mount, mnt_hash);
hlist_del_init(&mnt->mnt_hash);
if (mnt->mnt_ex_mountpoint.mnt)
path_put(&mnt->mnt_ex_mountpoint);
mntput(&mnt->mnt);
}
}
static inline void namespace_lock(void)
{
down_write(&namespace_sem);
}
/*
* mount_lock must be held
* namespace_sem must be held for write
* how = 0 => just this tree, don't propagate
* how = 1 => propagate; we know that nobody else has reference to any victims
* how = 2 => lazy umount
*/
void umount_tree(struct mount *mnt, int how)
{
HLIST_HEAD(tmp_list);
struct mount *p;
struct mount *last = NULL;
for (p = mnt; p; p = next_mnt(p, mnt)) {
hlist_del_init_rcu(&p->mnt_hash);
hlist_add_head(&p->mnt_hash, &tmp_list);
}
if (how)
propagate_umount(&tmp_list);
hlist_for_each_entry(p, &tmp_list, mnt_hash) {
list_del_init(&p->mnt_expire);
list_del_init(&p->mnt_list);
__touch_mnt_namespace(p->mnt_ns);
p->mnt_ns = NULL;
if (how < 2)
p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
list_del_init(&p->mnt_child);
if (mnt_has_parent(p)) {
put_mountpoint(p->mnt_mp);
/* move the reference to mountpoint into ->mnt_ex_mountpoint */
p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
p->mnt_mountpoint = p->mnt.mnt_root;
p->mnt_parent = p;
p->mnt_mp = NULL;
}
change_mnt_propagation(p, MS_PRIVATE);
last = p;
}
if (last) {
last->mnt_hash.next = unmounted.first;
unmounted.first = tmp_list.first;
unmounted.first->pprev = &unmounted.first;
}
}
static void shrink_submounts(struct mount *mnt);
static int do_umount(struct mount *mnt, int flags)
{
struct super_block *sb = mnt->mnt.mnt_sb;
int retval;
retval = security_sb_umount(&mnt->mnt, flags);
if (retval)
return retval;
/*
* Allow userspace to request a mountpoint be expired rather than
* unmounting unconditionally. Unmount only happens if:
* (1) the mark is already set (the mark is cleared by mntput())
* (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
*/
if (flags & MNT_EXPIRE) {
if (&mnt->mnt == current->fs->root.mnt ||
flags & (MNT_FORCE | MNT_DETACH))
return -EINVAL;
/*
* probably don't strictly need the lock here if we examined
* all race cases, but it's a slowpath.
*/
lock_mount_hash();
if (mnt_get_count(mnt) != 2) {
unlock_mount_hash();
return -EBUSY;
}
unlock_mount_hash();
if (!xchg(&mnt->mnt_expiry_mark, 1))
return -EAGAIN;
}
/*
* If we may have to abort operations to get out of this
* mount, and they will themselves hold resources we must
* allow the fs to do things. In the Unix tradition of
* 'Gee thats tricky lets do it in userspace' the umount_begin
* might fail to complete on the first run through as other tasks
* must return, and the like. Thats for the mount program to worry
* about for the moment.
*/
if (flags & MNT_FORCE && sb->s_op->umount_begin) {
sb->s_op->umount_begin(sb);
}
/*
* No sense to grab the lock for this test, but test itself looks
* somewhat bogus. Suggestions for better replacement?
* Ho-hum... In principle, we might treat that as umount + switch
* to rootfs. GC would eventually take care of the old vfsmount.
* Actually it makes sense, especially if rootfs would contain a
* /reboot - static binary that would close all descriptors and
* call reboot(9). Then init(8) could umount root and exec /reboot.
*/
if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
/*
* Special case for "unmounting" root ...
* we just try to remount it readonly.
*/
down_write(&sb->s_umount);
if (!(sb->s_flags & MS_RDONLY))
retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
up_write(&sb->s_umount);
return retval;
}
namespace_lock();
lock_mount_hash();
event++;
if (flags & MNT_DETACH) {
if (!list_empty(&mnt->mnt_list))
umount_tree(mnt, 2);
retval = 0;
} else {
shrink_submounts(mnt);
retval = -EBUSY;
if (!propagate_mount_busy(mnt, 2)) {
if (!list_empty(&mnt->mnt_list))
umount_tree(mnt, 1);
retval = 0;
}
}
unlock_mount_hash();
namespace_unlock();
return retval;
}
/*
* Is the caller allowed to modify his namespace?
*/
static inline bool may_mount(void)
{
return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
}
/*
* Now umount can handle mount points as well as block devices.
* This is important for filesystems which use unnamed block devices.
*
* We now support a flag for forced unmount like the other 'big iron'
* unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
*/
SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
{
struct path path;
struct mount *mnt;
int retval;
int lookup_flags = 0;
if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
return -EINVAL;
if (!may_mount())
return -EPERM;
if (!(flags & UMOUNT_NOFOLLOW))
lookup_flags |= LOOKUP_FOLLOW;
retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
if (retval)
goto out;
mnt = real_mount(path.mnt);
retval = -EINVAL;
if (path.dentry != path.mnt->mnt_root)
goto dput_and_out;
if (!check_mnt(mnt))
goto dput_and_out;
if (mnt->mnt.mnt_flags & MNT_LOCKED)
goto dput_and_out;
retval = do_umount(mnt, flags);
dput_and_out:
/* we mustn't call path_put() as that would clear mnt_expiry_mark */
dput(path.dentry);
mntput_no_expire(mnt);
out:
return retval;
}
#ifdef __ARCH_WANT_SYS_OLDUMOUNT
/*
* The 2.0 compatible umount. No flags.
*/
SYSCALL_DEFINE1(oldumount, char __user *, name)
{
return sys_umount(name, 0);
}
#endif
static bool is_mnt_ns_file(struct dentry *dentry)
{
/* Is this a proxy for a mount namespace? */
struct inode *inode = dentry->d_inode;
struct proc_ns *ei;
if (!proc_ns_inode(inode))
return false;
ei = get_proc_ns(inode);
if (ei->ns_ops != &mntns_operations)
return false;
return true;
}
static bool mnt_ns_loop(struct dentry *dentry)
{
/* Could bind mounting the mount namespace inode cause a
* mount namespace loop?
*/
struct mnt_namespace *mnt_ns;
if (!is_mnt_ns_file(dentry))
return false;
mnt_ns = get_proc_ns(dentry->d_inode)->ns;
return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
}
struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
int flag)
{
struct mount *res, *p, *q, *r, *parent;
if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
return ERR_PTR(-EINVAL);
if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
return ERR_PTR(-EINVAL);
res = q = clone_mnt(mnt, dentry, flag);
if (IS_ERR(q))
return q;
q->mnt.mnt_flags &= ~MNT_LOCKED;
q->mnt_mountpoint = mnt->mnt_mountpoint;
p = mnt;
list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
struct mount *s;
if (!is_subdir(r->mnt_mountpoint, dentry))
continue;
for (s = r; s; s = next_mnt(s, r)) {
struct mount *t = NULL;
if (!(flag & CL_COPY_UNBINDABLE) &&
IS_MNT_UNBINDABLE(s)) {
s = skip_mnt_tree(s);
continue;
}
if (!(flag & CL_COPY_MNT_NS_FILE) &&
is_mnt_ns_file(s->mnt.mnt_root)) {
s = skip_mnt_tree(s);
continue;
}
while (p != s->mnt_parent) {
p = p->mnt_parent;
q = q->mnt_parent;
}
p = s;
parent = q;
q = clone_mnt(p, p->mnt.mnt_root, flag);
if (IS_ERR(q))
goto out;
lock_mount_hash();
list_add_tail(&q->mnt_list, &res->mnt_list);
mnt_set_mountpoint(parent, p->mnt_mp, q);
if (!list_empty(&parent->mnt_mounts)) {
t = list_last_entry(&parent->mnt_mounts,
struct mount, mnt_child);
if (t->mnt_mp != p->mnt_mp)
t = NULL;
}
attach_shadowed(q, parent, t);
unlock_mount_hash();
}
}
return res;
out:
if (res) {
lock_mount_hash();
umount_tree(res, 0);
unlock_mount_hash();
}
return q;
}
/* Caller should check returned pointer for errors */
struct vfsmount *collect_mounts(struct path *path)
{
struct mount *tree;
namespace_lock();
tree = copy_tree(real_mount(path->mnt), path->dentry,
CL_COPY_ALL | CL_PRIVATE);
namespace_unlock();
if (IS_ERR(tree))
return ERR_CAST(tree);
return &tree->mnt;
}
void drop_collected_mounts(struct vfsmount *mnt)
{
namespace_lock();
lock_mount_hash();
umount_tree(real_mount(mnt), 0);
unlock_mount_hash();
namespace_unlock();
}
int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
struct vfsmount *root)
{
struct mount *mnt;
int res = f(root, arg);
if (res)
return res;
list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
res = f(&mnt->mnt, arg);
if (res)
return res;
}
return 0;
}
static void cleanup_group_ids(struct mount *mnt, struct mount *end)
{
struct mount *p;
for (p = mnt; p != end; p = next_mnt(p, mnt)) {
if (p->mnt_group_id && !IS_MNT_SHARED(p))
mnt_release_group_id(p);
}
}
static int invent_group_ids(struct mount *mnt, bool recurse)
{
struct mount *p;
for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
int err = mnt_alloc_group_id(p);
if (err) {
cleanup_group_ids(mnt, p);
return err;
}
}
}
return 0;
}
/*
* @source_mnt : mount tree to be attached
* @nd : place the mount tree @source_mnt is attached
* @parent_nd : if non-null, detach the source_mnt from its parent and
* store the parent mount and mountpoint dentry.
* (done when source_mnt is moved)
*
* NOTE: in the table below explains the semantics when a source mount
* of a given type is attached to a destination mount of a given type.
* ---------------------------------------------------------------------------
* | BIND MOUNT OPERATION |
* |**************************************************************************
* | source-->| shared | private | slave | unbindable |
* | dest | | | | |
* | | | | | | |
* | v | | | | |
* |**************************************************************************
* | shared | shared (++) | shared (+) | shared(+++)| invalid |
* | | | | | |
* |non-shared| shared (+) | private | slave (*) | invalid |
* ***************************************************************************
* A bind operation clones the source mount and mounts the clone on the
* destination mount.
*
* (++) the cloned mount is propagated to all the mounts in the propagation
* tree of the destination mount and the cloned mount is added to
* the peer group of the source mount.
* (+) the cloned mount is created under the destination mount and is marked
* as shared. The cloned mount is added to the peer group of the source
* mount.
* (+++) the mount is propagated to all the mounts in the propagation tree
* of the destination mount and the cloned mount is made slave
* of the same master as that of the source mount. The cloned mount
* is marked as 'shared and slave'.
* (*) the cloned mount is made a slave of the same master as that of the
* source mount.
*
* ---------------------------------------------------------------------------
* | MOVE MOUNT OPERATION |
* |**************************************************************************
* | source-->| shared | private | slave | unbindable |
* | dest | | | | |
* | | | | | | |
* | v | | | | |
* |**************************************************************************
* | shared | shared (+) | shared (+) | shared(+++) | invalid |
* | | | | | |
* |non-shared| shared (+*) | private | slave (*) | unbindable |
* ***************************************************************************
*
* (+) the mount is moved to the destination. And is then propagated to
* all the mounts in the propagation tree of the destination mount.
* (+*) the mount is moved to the destination.
* (+++) the mount is moved to the destination and is then propagated to
* all the mounts belonging to the destination mount's propagation tree.
* the mount is marked as 'shared and slave'.
* (*) the mount continues to be a slave at the new location.
*
* if the source mount is a tree, the operations explained above is
* applied to each mount in the tree.
* Must be called without spinlocks held, since this function can sleep
* in allocations.
*/
static int attach_recursive_mnt(struct mount *source_mnt,
struct mount *dest_mnt,
struct mountpoint *dest_mp,
struct path *parent_path)
{
HLIST_HEAD(tree_list);
struct mount *child, *p;
struct hlist_node *n;
int err;
if (IS_MNT_SHARED(dest_mnt)) {
err = invent_group_ids(source_mnt, true);
if (err)
goto out;
err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
lock_mount_hash();
if (err)
goto out_cleanup_ids;
for (p = source_mnt; p; p = next_mnt(p, source_mnt))
set_mnt_shared(p);
} else {
lock_mount_hash();
}
if (parent_path) {
detach_mnt(source_mnt, parent_path);
attach_mnt(source_mnt, dest_mnt, dest_mp);
touch_mnt_namespace(source_mnt->mnt_ns);
} else {
mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
commit_tree(source_mnt, NULL);
}
hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
struct mount *q;
hlist_del_init(&child->mnt_hash);
q = __lookup_mnt_last(&child->mnt_parent->mnt,
child->mnt_mountpoint);
commit_tree(child, q);
}
unlock_mount_hash();
return 0;
out_cleanup_ids:
while (!hlist_empty(&tree_list)) {
child = hlist_entry(tree_list.first, struct mount, mnt_hash);
umount_tree(child, 0);
}
unlock_mount_hash();
cleanup_group_ids(source_mnt, NULL);
out:
return err;
}
static struct mountpoint *lock_mount(struct path *path)
{
struct vfsmount *mnt;
struct dentry *dentry = path->dentry;
retry:
mutex_lock(&dentry->d_inode->i_mutex);
if (unlikely(cant_mount(dentry))) {
mutex_unlock(&dentry->d_inode->i_mutex);
return ERR_PTR(-ENOENT);
}
namespace_lock();
mnt = lookup_mnt(path);
if (likely(!mnt)) {
struct mountpoint *mp = new_mountpoint(dentry);
if (IS_ERR(mp)) {
namespace_unlock();
mutex_unlock(&dentry->d_inode->i_mutex);
return mp;
}
return mp;
}
namespace_unlock();
mutex_unlock(&path->dentry->d_inode->i_mutex);
path_put(path);
path->mnt = mnt;
dentry = path->dentry = dget(mnt->mnt_root);
goto retry;
}
static void unlock_mount(struct mountpoint *where)
{
struct dentry *dentry = where->m_dentry;
put_mountpoint(where);
namespace_unlock();
mutex_unlock(&dentry->d_inode->i_mutex);
}
static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
{
if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
return -EINVAL;
if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
return -ENOTDIR;
return attach_recursive_mnt(mnt, p, mp, NULL);
}
/*
* Sanity check the flags to change_mnt_propagation.
*/
static int flags_to_propagation_type(int flags)
{
int type = flags & ~(MS_REC | MS_SILENT);
/* Fail if any non-propagation flags are set */
if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
return 0;
/* Only one propagation flag should be set */
if (!is_power_of_2(type))
return 0;
return type;
}
/*
* recursively change the type of the mountpoint.
*/
static int do_change_type(struct path *path, int flag)
{
struct mount *m;
struct mount *mnt = real_mount(path->mnt);
int recurse = flag & MS_REC;
int type;
int err = 0;
if (path->dentry != path->mnt->mnt_root)
return -EINVAL;
type = flags_to_propagation_type(flag);
if (!type)
return -EINVAL;
namespace_lock();
if (type == MS_SHARED) {
err = invent_group_ids(mnt, recurse);
if (err)
goto out_unlock;
}
lock_mount_hash();
for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
change_mnt_propagation(m, type);
unlock_mount_hash();
out_unlock:
namespace_unlock();
return err;
}
static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
{
struct mount *child;
list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
if (!is_subdir(child->mnt_mountpoint, dentry))
continue;
if (child->mnt.mnt_flags & MNT_LOCKED)
return true;
}
return false;
}
/*
* do loopback mount.
*/
static int do_loopback(struct path *path, const char *old_name,
int recurse)
{
struct path old_path;
struct mount *mnt = NULL, *old, *parent;
struct mountpoint *mp;
int err;
if (!old_name || !*old_name)
return -EINVAL;
err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
if (err)
return err;
err = -EINVAL;
if (mnt_ns_loop(old_path.dentry))
goto out;
mp = lock_mount(path);
err = PTR_ERR(mp);
if (IS_ERR(mp))
goto out;
old = real_mount(old_path.mnt);
parent = real_mount(path->mnt);
err = -EINVAL;
if (IS_MNT_UNBINDABLE(old))
goto out2;
if (!check_mnt(parent) || !check_mnt(old))
goto out2;
if (!recurse && has_locked_children(old, old_path.dentry))
goto out2;
if (recurse)
mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
else
mnt = clone_mnt(old, old_path.dentry, 0);
if (IS_ERR(mnt)) {
err = PTR_ERR(mnt);
goto out2;
}
mnt->mnt.mnt_flags &= ~MNT_LOCKED;
err = graft_tree(mnt, parent, mp);
if (err) {
lock_mount_hash();
umount_tree(mnt, 0);
unlock_mount_hash();
}
out2:
unlock_mount(mp);
out:
path_put(&old_path);
return err;
}
static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
{
int error = 0;
int readonly_request = 0;
if (ms_flags & MS_RDONLY)
readonly_request = 1;
if (readonly_request == __mnt_is_readonly(mnt))
return 0;
if (readonly_request)
error = mnt_make_readonly(real_mount(mnt));
else
__mnt_unmake_readonly(real_mount(mnt));
return error;
}
/*
* change filesystem flags. dir should be a physical root of filesystem.
* If you've mounted a non-root directory somewhere and want to do remount
* on it - tough luck.
*/
static int do_remount(struct path *path, int flags, int mnt_flags,
void *data)
{
int err;
struct super_block *sb = path->mnt->mnt_sb;
struct mount *mnt = real_mount(path->mnt);
if (!check_mnt(mnt))
return -EINVAL;
if (path->dentry != path->mnt->mnt_root)
return -EINVAL;
/* Don't allow changing of locked mnt flags.
*
* No locks need to be held here while testing the various
* MNT_LOCK flags because those flags can never be cleared
* once they are set.
*/
if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
!(mnt_flags & MNT_READONLY)) {
return -EPERM;
}
if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
!(mnt_flags & MNT_NODEV)) {
return -EPERM;
}
if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
!(mnt_flags & MNT_NOSUID)) {
return -EPERM;
}
if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
!(mnt_flags & MNT_NOEXEC)) {
return -EPERM;
}
if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
return -EPERM;
}
err = security_sb_remount(sb, data);
if (err)
return err;
down_write(&sb->s_umount);
if (flags & MS_BIND)
err = change_mount_flags(path->mnt, flags);
else if (!capable(CAP_SYS_ADMIN))
err = -EPERM;
else
err = do_remount_sb(sb, flags, data, 0);
if (!err) {
lock_mount_hash();
mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
mnt->mnt.mnt_flags = mnt_flags;
touch_mnt_namespace(mnt->mnt_ns);
unlock_mount_hash();
}
up_write(&sb->s_umount);
return err;
}
static inline int tree_contains_unbindable(struct mount *mnt)
{
struct mount *p;
for (p = mnt; p; p = next_mnt(p, mnt)) {
if (IS_MNT_UNBINDABLE(p))
return 1;
}
return 0;
}
static int do_move_mount(struct path *path, const char *old_name)
{
struct path old_path, parent_path;
struct mount *p;
struct mount *old;
struct mountpoint *mp;
int err;
if (!old_name || !*old_name)
return -EINVAL;
err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
if (err)
return err;
mp = lock_mount(path);
err = PTR_ERR(mp);
if (IS_ERR(mp))
goto out;
old = real_mount(old_path.mnt);
p = real_mount(path->mnt);
err = -EINVAL;
if (!check_mnt(p) || !check_mnt(old))
goto out1;
if (old->mnt.mnt_flags & MNT_LOCKED)
goto out1;
err = -EINVAL;
if (old_path.dentry != old_path.mnt->mnt_root)
goto out1;
if (!mnt_has_parent(old))
goto out1;
if (S_ISDIR(path->dentry->d_inode->i_mode) !=
S_ISDIR(old_path.dentry->d_inode->i_mode))
goto out1;
/*
* Don't move a mount residing in a shared parent.
*/
if (IS_MNT_SHARED(old->mnt_parent))
goto out1;
/*
* Don't move a mount tree containing unbindable mounts to a destination
* mount which is shared.
*/
if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
goto out1;
err = -ELOOP;
for (; mnt_has_parent(p); p = p->mnt_parent)
if (p == old)
goto out1;
err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
if (err)
goto out1;
/* if the mount is moved, it should no longer be expire
* automatically */
list_del_init(&old->mnt_expire);
out1:
unlock_mount(mp);
out:
if (!err)
path_put(&parent_path);
path_put(&old_path);
return err;
}
static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
{
int err;
const char *subtype = strchr(fstype, '.');
if (subtype) {
subtype++;
err = -EINVAL;
if (!subtype[0])
goto err;
} else
subtype = "";
mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
err = -ENOMEM;
if (!mnt->mnt_sb->s_subtype)
goto err;
return mnt;
err:
mntput(mnt);
return ERR_PTR(err);
}
/*
* add a mount into a namespace's mount tree
*/
static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
{
struct mountpoint *mp;
struct mount *parent;
int err;
mnt_flags &= ~MNT_INTERNAL_FLAGS;
mp = lock_mount(path);
if (IS_ERR(mp))
return PTR_ERR(mp);
parent = real_mount(path->mnt);
err = -EINVAL;
if (unlikely(!check_mnt(parent))) {
/* that's acceptable only for automounts done in private ns */
if (!(mnt_flags & MNT_SHRINKABLE))
goto unlock;
/* ... and for those we'd better have mountpoint still alive */
if (!parent->mnt_ns)
goto unlock;
}
/* Refuse the same filesystem on the same mount point */
err = -EBUSY;
if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
path->mnt->mnt_root == path->dentry)
goto unlock;
err = -EINVAL;
if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
goto unlock;
newmnt->mnt.mnt_flags = mnt_flags;
err = graft_tree(newmnt, parent, mp);
unlock:
unlock_mount(mp);
return err;
}
/*
* create a new mount for userspace and request it to be added into the
* namespace's tree
*/
static int do_new_mount(struct path *path, const char *fstype, int flags,
int mnt_flags, const char *name, void *data)
{
struct file_system_type *type;
struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
struct vfsmount *mnt;
int err;
if (!fstype)
return -EINVAL;
type = get_fs_type(fstype);
if (!type)
return -ENODEV;
if (user_ns != &init_user_ns) {
if (!(type->fs_flags & FS_USERNS_MOUNT)) {
put_filesystem(type);
return -EPERM;
}
/* Only in special cases allow devices from mounts
* created outside the initial user namespace.
*/
if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
flags |= MS_NODEV;
mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
}
}
mnt = vfs_kern_mount(type, flags, name, data);
if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
!mnt->mnt_sb->s_subtype)
mnt = fs_set_subtype(mnt, fstype);
put_filesystem(type);
if (IS_ERR(mnt))
return PTR_ERR(mnt);
err = do_add_mount(real_mount(mnt), path, mnt_flags);
if (err)
mntput(mnt);
return err;
}
int finish_automount(struct vfsmount *m, struct path *path)
{
struct mount *mnt = real_mount(m);
int err;
/* The new mount record should have at least 2 refs to prevent it being
* expired before we get a chance to add it
*/
BUG_ON(mnt_get_count(mnt) < 2);
if (m->mnt_sb == path->mnt->mnt_sb &&
m->mnt_root == path->dentry) {
err = -ELOOP;
goto fail;
}
err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
if (!err)
return 0;
fail:
/* remove m from any expiration list it may be on */
if (!list_empty(&mnt->mnt_expire)) {
namespace_lock();
list_del_init(&mnt->mnt_expire);
namespace_unlock();
}
mntput(m);
mntput(m);
return err;
}
/**
* mnt_set_expiry - Put a mount on an expiration list
* @mnt: The mount to list.
* @expiry_list: The list to add the mount to.
*/
void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
{
namespace_lock();
list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
namespace_unlock();
}
EXPORT_SYMBOL(mnt_set_expiry);
/*
* process a list of expirable mountpoints with the intent of discarding any
* mountpoints that aren't in use and haven't been touched since last we came
* here
*/
void mark_mounts_for_expiry(struct list_head *mounts)
{
struct mount *mnt, *next;
LIST_HEAD(graveyard);
if (list_empty(mounts))
return;
namespace_lock();
lock_mount_hash();
/* extract from the expiration list every vfsmount that matches the
* following criteria:
* - only referenced by its parent vfsmount
* - still marked for expiry (marked on the last call here; marks are
* cleared by mntput())
*/
list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
if (!xchg(&mnt->mnt_expiry_mark, 1) ||
propagate_mount_busy(mnt, 1))
continue;
list_move(&mnt->mnt_expire, &graveyard);
}
while (!list_empty(&graveyard)) {
mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
touch_mnt_namespace(mnt->mnt_ns);
umount_tree(mnt, 1);
}
unlock_mount_hash();
namespace_unlock();
}
EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
/*
* Ripoff of 'select_parent()'
*
* search the list of submounts for a given mountpoint, and move any
* shrinkable submounts to the 'graveyard' list.
*/
static int select_submounts(struct mount *parent, struct list_head *graveyard)
{
struct mount *this_parent = parent;
struct list_head *next;
int found = 0;
repeat:
next = this_parent->mnt_mounts.next;
resume:
while (next != &this_parent->mnt_mounts) {
struct list_head *tmp = next;
struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
next = tmp->next;
if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
continue;
/*
* Descend a level if the d_mounts list is non-empty.
*/
if (!list_empty(&mnt->mnt_mounts)) {
this_parent = mnt;
goto repeat;
}
if (!propagate_mount_busy(mnt, 1)) {
list_move_tail(&mnt->mnt_expire, graveyard);
found++;
}
}
/*
* All done at this level ... ascend and resume the search
*/
if (this_parent != parent) {
next = this_parent->mnt_child.next;
this_parent = this_parent->mnt_parent;
goto resume;
}
return found;
}
/*
* process a list of expirable mountpoints with the intent of discarding any
* submounts of a specific parent mountpoint
*
* mount_lock must be held for write
*/
static void shrink_submounts(struct mount *mnt)
{
LIST_HEAD(graveyard);
struct mount *m;
/* extract submounts of 'mountpoint' from the expiration list */
while (select_submounts(mnt, &graveyard)) {
while (!list_empty(&graveyard)) {
m = list_first_entry(&graveyard, struct mount,
mnt_expire);
touch_mnt_namespace(m->mnt_ns);
umount_tree(m, 1);
}
}
}
/*
* Some copy_from_user() implementations do not return the exact number of
* bytes remaining to copy on a fault. But copy_mount_options() requires that.
* Note that this function differs from copy_from_user() in that it will oops
* on bad values of `to', rather than returning a short copy.
*/
static long exact_copy_from_user(void *to, const void __user * from,
unsigned long n)
{
char *t = to;
const char __user *f = from;
char c;
if (!access_ok(VERIFY_READ, from, n))
return n;
while (n) {
if (__get_user(c, f)) {
memset(t, 0, n);
break;
}
*t++ = c;
f++;
n--;
}
return n;
}
int copy_mount_options(const void __user * data, unsigned long *where)
{
int i;
unsigned long page;
unsigned long size;
*where = 0;
if (!data)
return 0;
if (!(page = __get_free_page(GFP_KERNEL)))
return -ENOMEM;
/* We only care that *some* data at the address the user
* gave us is valid. Just in case, we'll zero
* the remainder of the page.
*/
/* copy_from_user cannot cross TASK_SIZE ! */
size = TASK_SIZE - (unsigned long)data;
if (size > PAGE_SIZE)
size = PAGE_SIZE;
i = size - exact_copy_from_user((void *)page, data, size);
if (!i) {
free_page(page);
return -EFAULT;
}
if (i != PAGE_SIZE)
memset((char *)page + i, 0, PAGE_SIZE - i);
*where = page;
return 0;
}
int copy_mount_string(const void __user *data, char **where)
{
char *tmp;
if (!data) {
*where = NULL;
return 0;
}
tmp = strndup_user(data, PAGE_SIZE);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
*where = tmp;
return 0;
}
/*
* Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
* be given to the mount() call (ie: read-only, no-dev, no-suid etc).
*
* data is a (void *) that can point to any structure up to
* PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
* information (or be NULL).
*
* Pre-0.97 versions of mount() didn't have a flags word.
* When the flags word was introduced its top half was required
* to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
* Therefore, if this magic number is present, it carries no information
* and must be discarded.
*/
long do_mount(const char *dev_name, const char *dir_name,
const char *type_page, unsigned long flags, void *data_page)
{
struct path path;
int retval = 0;
int mnt_flags = 0;
/* Discard magic */
if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
flags &= ~MS_MGC_MSK;
/* Basic sanity checks */
if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
return -EINVAL;
if (data_page)
((char *)data_page)[PAGE_SIZE - 1] = 0;
/* ... and get the mountpoint */
retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
if (retval)
return retval;
retval = security_sb_mount(dev_name, &path,
type_page, flags, data_page);
if (!retval && !may_mount())
retval = -EPERM;
if (retval)
goto dput_out;
/* Default to relatime unless overriden */
if (!(flags & MS_NOATIME))
mnt_flags |= MNT_RELATIME;
/* Separate the per-mountpoint flags */
if (flags & MS_NOSUID)
mnt_flags |= MNT_NOSUID;
if (flags & MS_NODEV)
mnt_flags |= MNT_NODEV;
if (flags & MS_NOEXEC)
mnt_flags |= MNT_NOEXEC;
if (flags & MS_NOATIME)
mnt_flags |= MNT_NOATIME;
if (flags & MS_NODIRATIME)
mnt_flags |= MNT_NODIRATIME;
if (flags & MS_STRICTATIME)
mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
if (flags & MS_RDONLY)
mnt_flags |= MNT_READONLY;
/* The default atime for remount is preservation */
if ((flags & MS_REMOUNT) &&
((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
MS_STRICTATIME)) == 0)) {
mnt_flags &= ~MNT_ATIME_MASK;
mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
}
flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
MS_STRICTATIME);
if (flags & MS_REMOUNT)
retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
data_page);
else if (flags & MS_BIND)
retval = do_loopback(&path, dev_name, flags & MS_REC);
else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
retval = do_change_type(&path, flags);
else if (flags & MS_MOVE)
retval = do_move_mount(&path, dev_name);
else
retval = do_new_mount(&path, type_page, flags, mnt_flags,
dev_name, data_page);
dput_out:
path_put(&path);
return retval;
}
static void free_mnt_ns(struct mnt_namespace *ns)
{
proc_free_inum(ns->proc_inum);
put_user_ns(ns->user_ns);
kfree(ns);
}
/*
* Assign a sequence number so we can detect when we attempt to bind
* mount a reference to an older mount namespace into the current
* mount namespace, preventing reference counting loops. A 64bit
* number incrementing at 10Ghz will take 12,427 years to wrap which
* is effectively never, so we can ignore the possibility.
*/
static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
{
struct mnt_namespace *new_ns;
int ret;
new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
if (!new_ns)
return ERR_PTR(-ENOMEM);
ret = proc_alloc_inum(&new_ns->proc_inum);
if (ret) {
kfree(new_ns);
return ERR_PTR(ret);
}
new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
atomic_set(&new_ns->count, 1);
new_ns->root = NULL;
INIT_LIST_HEAD(&new_ns->list);
init_waitqueue_head(&new_ns->poll);
new_ns->event = 0;
new_ns->user_ns = get_user_ns(user_ns);
return new_ns;
}
struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
struct user_namespace *user_ns, struct fs_struct *new_fs)
{
struct mnt_namespace *new_ns;
struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
struct mount *p, *q;
struct mount *old;
struct mount *new;
int copy_flags;
BUG_ON(!ns);
if (likely(!(flags & CLONE_NEWNS))) {
get_mnt_ns(ns);
return ns;
}
old = ns->root;
new_ns = alloc_mnt_ns(user_ns);
if (IS_ERR(new_ns))
return new_ns;
namespace_lock();
/* First pass: copy the tree topology */
copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
if (user_ns != ns->user_ns)
copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
new = copy_tree(old, old->mnt.mnt_root, copy_flags);
if (IS_ERR(new)) {
namespace_unlock();
free_mnt_ns(new_ns);
return ERR_CAST(new);
}
new_ns->root = new;
list_add_tail(&new_ns->list, &new->mnt_list);
/*
* Second pass: switch the tsk->fs->* elements and mark new vfsmounts
* as belonging to new namespace. We have already acquired a private
* fs_struct, so tsk->fs->lock is not needed.
*/
p = old;
q = new;
while (p) {
q->mnt_ns = new_ns;
if (new_fs) {
if (&p->mnt == new_fs->root.mnt) {
new_fs->root.mnt = mntget(&q->mnt);
rootmnt = &p->mnt;
}
if (&p->mnt == new_fs->pwd.mnt) {
new_fs->pwd.mnt = mntget(&q->mnt);
pwdmnt = &p->mnt;
}
}
p = next_mnt(p, old);
q = next_mnt(q, new);
if (!q)
break;
while (p->mnt.mnt_root != q->mnt.mnt_root)
p = next_mnt(p, old);
}
namespace_unlock();
if (rootmnt)
mntput(rootmnt);
if (pwdmnt)
mntput(pwdmnt);
return new_ns;
}
/**
* create_mnt_ns - creates a private namespace and adds a root filesystem
* @mnt: pointer to the new root filesystem mountpoint
*/
static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
{
struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
if (!IS_ERR(new_ns)) {
struct mount *mnt = real_mount(m);
mnt->mnt_ns = new_ns;
new_ns->root = mnt;
list_add(&mnt->mnt_list, &new_ns->list);
} else {
mntput(m);
}
return new_ns;
}
struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
{
struct mnt_namespace *ns;
struct super_block *s;
struct path path;
int err;
ns = create_mnt_ns(mnt);
if (IS_ERR(ns))
return ERR_CAST(ns);
err = vfs_path_lookup(mnt->mnt_root, mnt,
name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
put_mnt_ns(ns);
if (err)
return ERR_PTR(err);
/* trade a vfsmount reference for active sb one */
s = path.mnt->mnt_sb;
atomic_inc(&s->s_active);
mntput(path.mnt);
/* lock the sucker */
down_write(&s->s_umount);
/* ... and return the root of (sub)tree on it */
return path.dentry;
}
EXPORT_SYMBOL(mount_subtree);
SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
char __user *, type, unsigned long, flags, void __user *, data)
{
int ret;
char *kernel_type;
struct filename *kernel_dir;
char *kernel_dev;
unsigned long data_page;
ret = copy_mount_string(type, &kernel_type);
if (ret < 0)
goto out_type;
kernel_dir = getname(dir_name);
if (IS_ERR(kernel_dir)) {
ret = PTR_ERR(kernel_dir);
goto out_dir;
}
ret = copy_mount_string(dev_name, &kernel_dev);
if (ret < 0)
goto out_dev;
ret = copy_mount_options(data, &data_page);
if (ret < 0)
goto out_data;
ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
(void *) data_page);
free_page(data_page);
out_data:
kfree(kernel_dev);
out_dev:
putname(kernel_dir);
out_dir:
kfree(kernel_type);
out_type:
return ret;
}
/*
* Return true if path is reachable from root
*
* namespace_sem or mount_lock is held
*/
bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
const struct path *root)
{
while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
dentry = mnt->mnt_mountpoint;
mnt = mnt->mnt_parent;
}
return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
}
int path_is_under(struct path *path1, struct path *path2)
{
int res;
read_seqlock_excl(&mount_lock);
res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
read_sequnlock_excl(&mount_lock);
return res;
}
EXPORT_SYMBOL(path_is_under);
/*
* pivot_root Semantics:
* Moves the root file system of the current process to the directory put_old,
* makes new_root as the new root file system of the current process, and sets
* root/cwd of all processes which had them on the current root to new_root.
*
* Restrictions:
* The new_root and put_old must be directories, and must not be on the
* same file system as the current process root. The put_old must be
* underneath new_root, i.e. adding a non-zero number of /.. to the string
* pointed to by put_old must yield the same directory as new_root. No other
* file system may be mounted on put_old. After all, new_root is a mountpoint.
*
* Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
* See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
* in this situation.
*
* Notes:
* - we don't move root/cwd if they are not at the root (reason: if something
* cared enough to change them, it's probably wrong to force them elsewhere)
* - it's okay to pick a root that isn't the root of a file system, e.g.
* /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
* though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
* first.
*/
SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
const char __user *, put_old)
{
struct path new, old, parent_path, root_parent, root;
struct mount *new_mnt, *root_mnt, *old_mnt;
struct mountpoint *old_mp, *root_mp;
int error;
if (!may_mount())
return -EPERM;
error = user_path_dir(new_root, &new);
if (error)
goto out0;
error = user_path_dir(put_old, &old);
if (error)
goto out1;
error = security_sb_pivotroot(&old, &new);
if (error)
goto out2;
get_fs_root(current->fs, &root);
old_mp = lock_mount(&old);
error = PTR_ERR(old_mp);
if (IS_ERR(old_mp))
goto out3;
error = -EINVAL;
new_mnt = real_mount(new.mnt);
root_mnt = real_mount(root.mnt);
old_mnt = real_mount(old.mnt);
if (IS_MNT_SHARED(old_mnt) ||
IS_MNT_SHARED(new_mnt->mnt_parent) ||
IS_MNT_SHARED(root_mnt->mnt_parent))
goto out4;
if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
goto out4;
if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
goto out4;
error = -ENOENT;
if (d_unlinked(new.dentry))
goto out4;
error = -EBUSY;
if (new_mnt == root_mnt || old_mnt == root_mnt)
goto out4; /* loop, on the same file system */
error = -EINVAL;
if (root.mnt->mnt_root != root.dentry)
goto out4; /* not a mountpoint */
if (!mnt_has_parent(root_mnt))
goto out4; /* not attached */
root_mp = root_mnt->mnt_mp;
if (new.mnt->mnt_root != new.dentry)
goto out4; /* not a mountpoint */
if (!mnt_has_parent(new_mnt))
goto out4; /* not attached */
/* make sure we can reach put_old from new_root */
if (!is_path_reachable(old_mnt, old.dentry, &new))
goto out4;
root_mp->m_count++; /* pin it so it won't go away */
lock_mount_hash();
detach_mnt(new_mnt, &parent_path);
detach_mnt(root_mnt, &root_parent);
if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
new_mnt->mnt.mnt_flags |= MNT_LOCKED;
root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
}
/* mount old root on put_old */
attach_mnt(root_mnt, old_mnt, old_mp);
/* mount new_root on / */
attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
touch_mnt_namespace(current->nsproxy->mnt_ns);
unlock_mount_hash();
chroot_fs_refs(&root, &new);
put_mountpoint(root_mp);
error = 0;
out4:
unlock_mount(old_mp);
if (!error) {
path_put(&root_parent);
path_put(&parent_path);
}
out3:
path_put(&root);
out2:
path_put(&old);
out1:
path_put(&new);
out0:
return error;
}
static void __init init_mount_tree(void)
{
struct vfsmount *mnt;
struct mnt_namespace *ns;
struct path root;
struct file_system_type *type;
type = get_fs_type("rootfs");
if (!type)
panic("Can't find rootfs type");
mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
put_filesystem(type);
if (IS_ERR(mnt))
panic("Can't create rootfs");
ns = create_mnt_ns(mnt);
if (IS_ERR(ns))
panic("Can't allocate initial namespace");
init_task.nsproxy->mnt_ns = ns;
get_mnt_ns(ns);
root.mnt = mnt;
root.dentry = mnt->mnt_root;
set_fs_pwd(current->fs, &root);
set_fs_root(current->fs, &root);
}
void __init mnt_init(void)
{
unsigned u;
int err;
mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
mount_hashtable = alloc_large_system_hash("Mount-cache",
sizeof(struct hlist_head),
mhash_entries, 19,
0,
&m_hash_shift, &m_hash_mask, 0, 0);
mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
sizeof(struct hlist_head),
mphash_entries, 19,
0,
&mp_hash_shift, &mp_hash_mask, 0, 0);
if (!mount_hashtable || !mountpoint_hashtable)
panic("Failed to allocate mount hash table\n");
for (u = 0; u <= m_hash_mask; u++)
INIT_HLIST_HEAD(&mount_hashtable[u]);
for (u = 0; u <= mp_hash_mask; u++)
INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
kernfs_init();
err = sysfs_init();
if (err)
printk(KERN_WARNING "%s: sysfs_init error: %d\n",
__func__, err);
fs_kobj = kobject_create_and_add("fs", NULL);
if (!fs_kobj)
printk(KERN_WARNING "%s: kobj create error\n", __func__);
init_rootfs();
init_mount_tree();
}
void put_mnt_ns(struct mnt_namespace *ns)
{
if (!atomic_dec_and_test(&ns->count))
return;
drop_collected_mounts(&ns->root->mnt);
free_mnt_ns(ns);
}
struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
{
struct vfsmount *mnt;
mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
if (!IS_ERR(mnt)) {
/*
* it is a longterm mount, don't release mnt until
* we unmount before file sys is unregistered
*/
real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
}
return mnt;
}
EXPORT_SYMBOL_GPL(kern_mount_data);
void kern_unmount(struct vfsmount *mnt)
{
/* release long term mount so mount point can be released */
if (!IS_ERR_OR_NULL(mnt)) {
real_mount(mnt)->mnt_ns = NULL;
synchronize_rcu(); /* yecchhh... */
mntput(mnt);
}
}
EXPORT_SYMBOL(kern_unmount);
bool our_mnt(struct vfsmount *mnt)
{
return check_mnt(real_mount(mnt));
}
bool current_chrooted(void)
{
/* Does the current process have a non-standard root */
struct path ns_root;
struct path fs_root;
bool chrooted;
/* Find the namespace root */
ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
ns_root.dentry = ns_root.mnt->mnt_root;
path_get(&ns_root);
while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
;
get_fs_root(current->fs, &fs_root);
chrooted = !path_equal(&fs_root, &ns_root);
path_put(&fs_root);
path_put(&ns_root);
return chrooted;
}
bool fs_fully_visible(struct file_system_type *type)
{
struct mnt_namespace *ns = current->nsproxy->mnt_ns;
struct mount *mnt;
bool visible = false;
if (unlikely(!ns))
return false;
down_read(&namespace_sem);
list_for_each_entry(mnt, &ns->list, mnt_list) {
struct mount *child;
if (mnt->mnt.mnt_sb->s_type != type)
continue;
/* This mount is not fully visible if there are any child mounts
* that cover anything except for empty directories.
*/
list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
struct inode *inode = child->mnt_mountpoint->d_inode;
if (!S_ISDIR(inode->i_mode))
goto next;
if (inode->i_nlink > 2)
goto next;
}
visible = true;
goto found;
next: ;
}
found:
up_read(&namespace_sem);
return visible;
}
static void *mntns_get(struct task_struct *task)
{
struct mnt_namespace *ns = NULL;
struct nsproxy *nsproxy;
task_lock(task);
nsproxy = task->nsproxy;
if (nsproxy) {
ns = nsproxy->mnt_ns;
get_mnt_ns(ns);
}
task_unlock(task);
return ns;
}
static void mntns_put(void *ns)
{
put_mnt_ns(ns);
}
static int mntns_install(struct nsproxy *nsproxy, void *ns)
{
struct fs_struct *fs = current->fs;
struct mnt_namespace *mnt_ns = ns;
struct path root;
if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
!ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
!ns_capable(current_user_ns(), CAP_SYS_ADMIN))
return -EPERM;
if (fs->users != 1)
return -EINVAL;
get_mnt_ns(mnt_ns);
put_mnt_ns(nsproxy->mnt_ns);
nsproxy->mnt_ns = mnt_ns;
/* Find the root */
root.mnt = &mnt_ns->root->mnt;
root.dentry = mnt_ns->root->mnt.mnt_root;
path_get(&root);
while(d_mountpoint(root.dentry) && follow_down_one(&root))
;
/* Update the pwd and root */
set_fs_pwd(fs, &root);
set_fs_root(fs, &root);
path_put(&root);
return 0;
}
static unsigned int mntns_inum(void *ns)
{
struct mnt_namespace *mnt_ns = ns;
return mnt_ns->proc_inum;
}
const struct proc_ns_operations mntns_operations = {
.name = "mnt",
.type = CLONE_NEWNS,
.get = mntns_get,
.put = mntns_put,
.install = mntns_install,
.inum = mntns_inum,
};