2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 22:53:55 +08:00
linux-next/include/linux/regmap.h
Randy Dunlap 6611561a7a
regmap: fix duplicated word in <linux/regmap.h>
Change doubled word "be" to "to be".

Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/7ef41bfc-de3e-073a-8746-0b3fdf7628c0@infradead.org
Signed-off-by: Mark Brown <broonie@kernel.org>
2020-07-17 00:03:11 +01:00

1714 lines
57 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
#ifndef __LINUX_REGMAP_H
#define __LINUX_REGMAP_H
/*
* Register map access API
*
* Copyright 2011 Wolfson Microelectronics plc
*
* Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
*/
#include <linux/list.h>
#include <linux/rbtree.h>
#include <linux/ktime.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/bug.h>
#include <linux/lockdep.h>
#include <linux/iopoll.h>
#include <linux/fwnode.h>
struct module;
struct clk;
struct device;
struct device_node;
struct i2c_client;
struct i3c_device;
struct irq_domain;
struct slim_device;
struct spi_device;
struct spmi_device;
struct regmap;
struct regmap_range_cfg;
struct regmap_field;
struct snd_ac97;
struct sdw_slave;
/* An enum of all the supported cache types */
enum regcache_type {
REGCACHE_NONE,
REGCACHE_RBTREE,
REGCACHE_COMPRESSED,
REGCACHE_FLAT,
};
/**
* struct reg_default - Default value for a register.
*
* @reg: Register address.
* @def: Register default value.
*
* We use an array of structs rather than a simple array as many modern devices
* have very sparse register maps.
*/
struct reg_default {
unsigned int reg;
unsigned int def;
};
/**
* struct reg_sequence - An individual write from a sequence of writes.
*
* @reg: Register address.
* @def: Register value.
* @delay_us: Delay to be applied after the register write in microseconds
*
* Register/value pairs for sequences of writes with an optional delay in
* microseconds to be applied after each write.
*/
struct reg_sequence {
unsigned int reg;
unsigned int def;
unsigned int delay_us;
};
#define REG_SEQ(_reg, _def, _delay_us) { \
.reg = _reg, \
.def = _def, \
.delay_us = _delay_us, \
}
#define REG_SEQ0(_reg, _def) REG_SEQ(_reg, _def, 0)
/**
* regmap_read_poll_timeout - Poll until a condition is met or a timeout occurs
*
* @map: Regmap to read from
* @addr: Address to poll
* @val: Unsigned integer variable to read the value into
* @cond: Break condition (usually involving @val)
* @sleep_us: Maximum time to sleep between reads in us (0
* tight-loops). Should be less than ~20ms since usleep_range
* is used (see Documentation/timers/timers-howto.rst).
* @timeout_us: Timeout in us, 0 means never timeout
*
* Returns 0 on success and -ETIMEDOUT upon a timeout or the regmap_read
* error return value in case of a error read. In the two former cases,
* the last read value at @addr is stored in @val. Must not be called
* from atomic context if sleep_us or timeout_us are used.
*
* This is modelled after the readx_poll_timeout macros in linux/iopoll.h.
*/
#define regmap_read_poll_timeout(map, addr, val, cond, sleep_us, timeout_us) \
({ \
int __ret, __tmp; \
__tmp = read_poll_timeout(regmap_read, __ret, __ret || (cond), \
sleep_us, timeout_us, false, (map), (addr), &(val)); \
__ret ?: __tmp; \
})
/**
* regmap_read_poll_timeout_atomic - Poll until a condition is met or a timeout occurs
*
* @map: Regmap to read from
* @addr: Address to poll
* @val: Unsigned integer variable to read the value into
* @cond: Break condition (usually involving @val)
* @delay_us: Time to udelay between reads in us (0 tight-loops).
* Should be less than ~10us since udelay is used
* (see Documentation/timers/timers-howto.rst).
* @timeout_us: Timeout in us, 0 means never timeout
*
* Returns 0 on success and -ETIMEDOUT upon a timeout or the regmap_read
* error return value in case of a error read. In the two former cases,
* the last read value at @addr is stored in @val.
*
* This is modelled after the readx_poll_timeout_atomic macros in linux/iopoll.h.
*
* Note: In general regmap cannot be used in atomic context. If you want to use
* this macro then first setup your regmap for atomic use (flat or no cache
* and MMIO regmap).
*/
#define regmap_read_poll_timeout_atomic(map, addr, val, cond, delay_us, timeout_us) \
({ \
u64 __timeout_us = (timeout_us); \
unsigned long __delay_us = (delay_us); \
ktime_t __timeout = ktime_add_us(ktime_get(), __timeout_us); \
int __ret; \
for (;;) { \
__ret = regmap_read((map), (addr), &(val)); \
if (__ret) \
break; \
if (cond) \
break; \
if ((__timeout_us) && \
ktime_compare(ktime_get(), __timeout) > 0) { \
__ret = regmap_read((map), (addr), &(val)); \
break; \
} \
if (__delay_us) \
udelay(__delay_us); \
} \
__ret ?: ((cond) ? 0 : -ETIMEDOUT); \
})
/**
* regmap_field_read_poll_timeout - Poll until a condition is met or timeout
*
* @field: Regmap field to read from
* @val: Unsigned integer variable to read the value into
* @cond: Break condition (usually involving @val)
* @sleep_us: Maximum time to sleep between reads in us (0
* tight-loops). Should be less than ~20ms since usleep_range
* is used (see Documentation/timers/timers-howto.rst).
* @timeout_us: Timeout in us, 0 means never timeout
*
* Returns 0 on success and -ETIMEDOUT upon a timeout or the regmap_field_read
* error return value in case of a error read. In the two former cases,
* the last read value at @addr is stored in @val. Must not be called
* from atomic context if sleep_us or timeout_us are used.
*
* This is modelled after the readx_poll_timeout macros in linux/iopoll.h.
*/
#define regmap_field_read_poll_timeout(field, val, cond, sleep_us, timeout_us) \
({ \
int __ret, __tmp; \
__tmp = read_poll_timeout(regmap_field_read, __ret, __ret || (cond), \
sleep_us, timeout_us, false, (field), &(val)); \
__ret ?: __tmp; \
})
#ifdef CONFIG_REGMAP
enum regmap_endian {
/* Unspecified -> 0 -> Backwards compatible default */
REGMAP_ENDIAN_DEFAULT = 0,
REGMAP_ENDIAN_BIG,
REGMAP_ENDIAN_LITTLE,
REGMAP_ENDIAN_NATIVE,
};
/**
* struct regmap_range - A register range, used for access related checks
* (readable/writeable/volatile/precious checks)
*
* @range_min: address of first register
* @range_max: address of last register
*/
struct regmap_range {
unsigned int range_min;
unsigned int range_max;
};
#define regmap_reg_range(low, high) { .range_min = low, .range_max = high, }
/**
* struct regmap_access_table - A table of register ranges for access checks
*
* @yes_ranges : pointer to an array of regmap ranges used as "yes ranges"
* @n_yes_ranges: size of the above array
* @no_ranges: pointer to an array of regmap ranges used as "no ranges"
* @n_no_ranges: size of the above array
*
* A table of ranges including some yes ranges and some no ranges.
* If a register belongs to a no_range, the corresponding check function
* will return false. If a register belongs to a yes range, the corresponding
* check function will return true. "no_ranges" are searched first.
*/
struct regmap_access_table {
const struct regmap_range *yes_ranges;
unsigned int n_yes_ranges;
const struct regmap_range *no_ranges;
unsigned int n_no_ranges;
};
typedef void (*regmap_lock)(void *);
typedef void (*regmap_unlock)(void *);
/**
* struct regmap_config - Configuration for the register map of a device.
*
* @name: Optional name of the regmap. Useful when a device has multiple
* register regions.
*
* @reg_bits: Number of bits in a register address, mandatory.
* @reg_stride: The register address stride. Valid register addresses are a
* multiple of this value. If set to 0, a value of 1 will be
* used.
* @pad_bits: Number of bits of padding between register and value.
* @val_bits: Number of bits in a register value, mandatory.
*
* @writeable_reg: Optional callback returning true if the register
* can be written to. If this field is NULL but wr_table
* (see below) is not, the check is performed on such table
* (a register is writeable if it belongs to one of the ranges
* specified by wr_table).
* @readable_reg: Optional callback returning true if the register
* can be read from. If this field is NULL but rd_table
* (see below) is not, the check is performed on such table
* (a register is readable if it belongs to one of the ranges
* specified by rd_table).
* @volatile_reg: Optional callback returning true if the register
* value can't be cached. If this field is NULL but
* volatile_table (see below) is not, the check is performed on
* such table (a register is volatile if it belongs to one of
* the ranges specified by volatile_table).
* @precious_reg: Optional callback returning true if the register
* should not be read outside of a call from the driver
* (e.g., a clear on read interrupt status register). If this
* field is NULL but precious_table (see below) is not, the
* check is performed on such table (a register is precious if
* it belongs to one of the ranges specified by precious_table).
* @writeable_noinc_reg: Optional callback returning true if the register
* supports multiple write operations without incrementing
* the register number. If this field is NULL but
* wr_noinc_table (see below) is not, the check is
* performed on such table (a register is no increment
* writeable if it belongs to one of the ranges specified
* by wr_noinc_table).
* @readable_noinc_reg: Optional callback returning true if the register
* supports multiple read operations without incrementing
* the register number. If this field is NULL but
* rd_noinc_table (see below) is not, the check is
* performed on such table (a register is no increment
* readable if it belongs to one of the ranges specified
* by rd_noinc_table).
* @disable_locking: This regmap is either protected by external means or
* is guaranteed not to be accessed from multiple threads.
* Don't use any locking mechanisms.
* @lock: Optional lock callback (overrides regmap's default lock
* function, based on spinlock or mutex).
* @unlock: As above for unlocking.
* @lock_arg: this field is passed as the only argument of lock/unlock
* functions (ignored in case regular lock/unlock functions
* are not overridden).
* @reg_read: Optional callback that if filled will be used to perform
* all the reads from the registers. Should only be provided for
* devices whose read operation cannot be represented as a simple
* read operation on a bus such as SPI, I2C, etc. Most of the
* devices do not need this.
* @reg_write: Same as above for writing.
* @fast_io: Register IO is fast. Use a spinlock instead of a mutex
* to perform locking. This field is ignored if custom lock/unlock
* functions are used (see fields lock/unlock of struct regmap_config).
* This field is a duplicate of a similar file in
* 'struct regmap_bus' and serves exact same purpose.
* Use it only for "no-bus" cases.
* @max_register: Optional, specifies the maximum valid register address.
* @wr_table: Optional, points to a struct regmap_access_table specifying
* valid ranges for write access.
* @rd_table: As above, for read access.
* @volatile_table: As above, for volatile registers.
* @precious_table: As above, for precious registers.
* @wr_noinc_table: As above, for no increment writeable registers.
* @rd_noinc_table: As above, for no increment readable registers.
* @reg_defaults: Power on reset values for registers (for use with
* register cache support).
* @num_reg_defaults: Number of elements in reg_defaults.
*
* @read_flag_mask: Mask to be set in the top bytes of the register when doing
* a read.
* @write_flag_mask: Mask to be set in the top bytes of the register when doing
* a write. If both read_flag_mask and write_flag_mask are
* empty and zero_flag_mask is not set the regmap_bus default
* masks are used.
* @zero_flag_mask: If set, read_flag_mask and write_flag_mask are used even
* if they are both empty.
* @use_single_read: If set, converts the bulk read operation into a series of
* single read operations. This is useful for a device that
* does not support bulk read.
* @use_single_write: If set, converts the bulk write operation into a series of
* single write operations. This is useful for a device that
* does not support bulk write.
* @can_multi_write: If set, the device supports the multi write mode of bulk
* write operations, if clear multi write requests will be
* split into individual write operations
*
* @cache_type: The actual cache type.
* @reg_defaults_raw: Power on reset values for registers (for use with
* register cache support).
* @num_reg_defaults_raw: Number of elements in reg_defaults_raw.
* @reg_format_endian: Endianness for formatted register addresses. If this is
* DEFAULT, the @reg_format_endian_default value from the
* regmap bus is used.
* @val_format_endian: Endianness for formatted register values. If this is
* DEFAULT, the @reg_format_endian_default value from the
* regmap bus is used.
*
* @ranges: Array of configuration entries for virtual address ranges.
* @num_ranges: Number of range configuration entries.
* @use_hwlock: Indicate if a hardware spinlock should be used.
* @hwlock_id: Specify the hardware spinlock id.
* @hwlock_mode: The hardware spinlock mode, should be HWLOCK_IRQSTATE,
* HWLOCK_IRQ or 0.
*/
struct regmap_config {
const char *name;
int reg_bits;
int reg_stride;
int pad_bits;
int val_bits;
bool (*writeable_reg)(struct device *dev, unsigned int reg);
bool (*readable_reg)(struct device *dev, unsigned int reg);
bool (*volatile_reg)(struct device *dev, unsigned int reg);
bool (*precious_reg)(struct device *dev, unsigned int reg);
bool (*writeable_noinc_reg)(struct device *dev, unsigned int reg);
bool (*readable_noinc_reg)(struct device *dev, unsigned int reg);
bool disable_locking;
regmap_lock lock;
regmap_unlock unlock;
void *lock_arg;
int (*reg_read)(void *context, unsigned int reg, unsigned int *val);
int (*reg_write)(void *context, unsigned int reg, unsigned int val);
bool fast_io;
unsigned int max_register;
const struct regmap_access_table *wr_table;
const struct regmap_access_table *rd_table;
const struct regmap_access_table *volatile_table;
const struct regmap_access_table *precious_table;
const struct regmap_access_table *wr_noinc_table;
const struct regmap_access_table *rd_noinc_table;
const struct reg_default *reg_defaults;
unsigned int num_reg_defaults;
enum regcache_type cache_type;
const void *reg_defaults_raw;
unsigned int num_reg_defaults_raw;
unsigned long read_flag_mask;
unsigned long write_flag_mask;
bool zero_flag_mask;
bool use_single_read;
bool use_single_write;
bool can_multi_write;
enum regmap_endian reg_format_endian;
enum regmap_endian val_format_endian;
const struct regmap_range_cfg *ranges;
unsigned int num_ranges;
bool use_hwlock;
unsigned int hwlock_id;
unsigned int hwlock_mode;
};
/**
* struct regmap_range_cfg - Configuration for indirectly accessed or paged
* registers.
*
* @name: Descriptive name for diagnostics
*
* @range_min: Address of the lowest register address in virtual range.
* @range_max: Address of the highest register in virtual range.
*
* @selector_reg: Register with selector field.
* @selector_mask: Bit mask for selector value.
* @selector_shift: Bit shift for selector value.
*
* @window_start: Address of first (lowest) register in data window.
* @window_len: Number of registers in data window.
*
* Registers, mapped to this virtual range, are accessed in two steps:
* 1. page selector register update;
* 2. access through data window registers.
*/
struct regmap_range_cfg {
const char *name;
/* Registers of virtual address range */
unsigned int range_min;
unsigned int range_max;
/* Page selector for indirect addressing */
unsigned int selector_reg;
unsigned int selector_mask;
int selector_shift;
/* Data window (per each page) */
unsigned int window_start;
unsigned int window_len;
};
struct regmap_async;
typedef int (*regmap_hw_write)(void *context, const void *data,
size_t count);
typedef int (*regmap_hw_gather_write)(void *context,
const void *reg, size_t reg_len,
const void *val, size_t val_len);
typedef int (*regmap_hw_async_write)(void *context,
const void *reg, size_t reg_len,
const void *val, size_t val_len,
struct regmap_async *async);
typedef int (*regmap_hw_read)(void *context,
const void *reg_buf, size_t reg_size,
void *val_buf, size_t val_size);
typedef int (*regmap_hw_reg_read)(void *context, unsigned int reg,
unsigned int *val);
typedef int (*regmap_hw_reg_write)(void *context, unsigned int reg,
unsigned int val);
typedef int (*regmap_hw_reg_update_bits)(void *context, unsigned int reg,
unsigned int mask, unsigned int val);
typedef struct regmap_async *(*regmap_hw_async_alloc)(void);
typedef void (*regmap_hw_free_context)(void *context);
/**
* struct regmap_bus - Description of a hardware bus for the register map
* infrastructure.
*
* @fast_io: Register IO is fast. Use a spinlock instead of a mutex
* to perform locking. This field is ignored if custom lock/unlock
* functions are used (see fields lock/unlock of
* struct regmap_config).
* @write: Write operation.
* @gather_write: Write operation with split register/value, return -ENOTSUPP
* if not implemented on a given device.
* @async_write: Write operation which completes asynchronously, optional and
* must serialise with respect to non-async I/O.
* @reg_write: Write a single register value to the given register address. This
* write operation has to complete when returning from the function.
* @reg_update_bits: Update bits operation to be used against volatile
* registers, intended for devices supporting some mechanism
* for setting clearing bits without having to
* read/modify/write.
* @read: Read operation. Data is returned in the buffer used to transmit
* data.
* @reg_read: Read a single register value from a given register address.
* @free_context: Free context.
* @async_alloc: Allocate a regmap_async() structure.
* @read_flag_mask: Mask to be set in the top byte of the register when doing
* a read.
* @reg_format_endian_default: Default endianness for formatted register
* addresses. Used when the regmap_config specifies DEFAULT. If this is
* DEFAULT, BIG is assumed.
* @val_format_endian_default: Default endianness for formatted register
* values. Used when the regmap_config specifies DEFAULT. If this is
* DEFAULT, BIG is assumed.
* @max_raw_read: Max raw read size that can be used on the bus.
* @max_raw_write: Max raw write size that can be used on the bus.
*/
struct regmap_bus {
bool fast_io;
regmap_hw_write write;
regmap_hw_gather_write gather_write;
regmap_hw_async_write async_write;
regmap_hw_reg_write reg_write;
regmap_hw_reg_update_bits reg_update_bits;
regmap_hw_read read;
regmap_hw_reg_read reg_read;
regmap_hw_free_context free_context;
regmap_hw_async_alloc async_alloc;
u8 read_flag_mask;
enum regmap_endian reg_format_endian_default;
enum regmap_endian val_format_endian_default;
size_t max_raw_read;
size_t max_raw_write;
};
/*
* __regmap_init functions.
*
* These functions take a lock key and name parameter, and should not be called
* directly. Instead, use the regmap_init macros that generate a key and name
* for each call.
*/
struct regmap *__regmap_init(struct device *dev,
const struct regmap_bus *bus,
void *bus_context,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name);
struct regmap *__regmap_init_i2c(struct i2c_client *i2c,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name);
struct regmap *__regmap_init_sccb(struct i2c_client *i2c,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name);
struct regmap *__regmap_init_slimbus(struct slim_device *slimbus,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name);
struct regmap *__regmap_init_spi(struct spi_device *dev,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name);
struct regmap *__regmap_init_spmi_base(struct spmi_device *dev,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name);
struct regmap *__regmap_init_spmi_ext(struct spmi_device *dev,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name);
struct regmap *__regmap_init_w1(struct device *w1_dev,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name);
struct regmap *__regmap_init_mmio_clk(struct device *dev, const char *clk_id,
void __iomem *regs,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name);
struct regmap *__regmap_init_ac97(struct snd_ac97 *ac97,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name);
struct regmap *__regmap_init_sdw(struct sdw_slave *sdw,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name);
struct regmap *__devm_regmap_init(struct device *dev,
const struct regmap_bus *bus,
void *bus_context,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name);
struct regmap *__devm_regmap_init_i2c(struct i2c_client *i2c,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name);
struct regmap *__devm_regmap_init_sccb(struct i2c_client *i2c,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name);
struct regmap *__devm_regmap_init_spi(struct spi_device *dev,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name);
struct regmap *__devm_regmap_init_spmi_base(struct spmi_device *dev,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name);
struct regmap *__devm_regmap_init_spmi_ext(struct spmi_device *dev,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name);
struct regmap *__devm_regmap_init_w1(struct device *w1_dev,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name);
struct regmap *__devm_regmap_init_mmio_clk(struct device *dev,
const char *clk_id,
void __iomem *regs,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name);
struct regmap *__devm_regmap_init_ac97(struct snd_ac97 *ac97,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name);
struct regmap *__devm_regmap_init_sdw(struct sdw_slave *sdw,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name);
struct regmap *__devm_regmap_init_slimbus(struct slim_device *slimbus,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name);
struct regmap *__devm_regmap_init_i3c(struct i3c_device *i3c,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name);
/*
* Wrapper for regmap_init macros to include a unique lockdep key and name
* for each call. No-op if CONFIG_LOCKDEP is not set.
*
* @fn: Real function to call (in the form __[*_]regmap_init[_*])
* @name: Config variable name (#config in the calling macro)
**/
#ifdef CONFIG_LOCKDEP
#define __regmap_lockdep_wrapper(fn, name, ...) \
( \
({ \
static struct lock_class_key _key; \
fn(__VA_ARGS__, &_key, \
KBUILD_BASENAME ":" \
__stringify(__LINE__) ":" \
"(" name ")->lock"); \
}) \
)
#else
#define __regmap_lockdep_wrapper(fn, name, ...) fn(__VA_ARGS__, NULL, NULL)
#endif
/**
* regmap_init() - Initialise register map
*
* @dev: Device that will be interacted with
* @bus: Bus-specific callbacks to use with device
* @bus_context: Data passed to bus-specific callbacks
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer to
* a struct regmap. This function should generally not be called
* directly, it should be called by bus-specific init functions.
*/
#define regmap_init(dev, bus, bus_context, config) \
__regmap_lockdep_wrapper(__regmap_init, #config, \
dev, bus, bus_context, config)
int regmap_attach_dev(struct device *dev, struct regmap *map,
const struct regmap_config *config);
/**
* regmap_init_i2c() - Initialise register map
*
* @i2c: Device that will be interacted with
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer to
* a struct regmap.
*/
#define regmap_init_i2c(i2c, config) \
__regmap_lockdep_wrapper(__regmap_init_i2c, #config, \
i2c, config)
/**
* regmap_init_sccb() - Initialise register map
*
* @i2c: Device that will be interacted with
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer to
* a struct regmap.
*/
#define regmap_init_sccb(i2c, config) \
__regmap_lockdep_wrapper(__regmap_init_sccb, #config, \
i2c, config)
/**
* regmap_init_slimbus() - Initialise register map
*
* @slimbus: Device that will be interacted with
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer to
* a struct regmap.
*/
#define regmap_init_slimbus(slimbus, config) \
__regmap_lockdep_wrapper(__regmap_init_slimbus, #config, \
slimbus, config)
/**
* regmap_init_spi() - Initialise register map
*
* @dev: Device that will be interacted with
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer to
* a struct regmap.
*/
#define regmap_init_spi(dev, config) \
__regmap_lockdep_wrapper(__regmap_init_spi, #config, \
dev, config)
/**
* regmap_init_spmi_base() - Create regmap for the Base register space
*
* @dev: SPMI device that will be interacted with
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer to
* a struct regmap.
*/
#define regmap_init_spmi_base(dev, config) \
__regmap_lockdep_wrapper(__regmap_init_spmi_base, #config, \
dev, config)
/**
* regmap_init_spmi_ext() - Create regmap for Ext register space
*
* @dev: Device that will be interacted with
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer to
* a struct regmap.
*/
#define regmap_init_spmi_ext(dev, config) \
__regmap_lockdep_wrapper(__regmap_init_spmi_ext, #config, \
dev, config)
/**
* regmap_init_w1() - Initialise register map
*
* @w1_dev: Device that will be interacted with
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer to
* a struct regmap.
*/
#define regmap_init_w1(w1_dev, config) \
__regmap_lockdep_wrapper(__regmap_init_w1, #config, \
w1_dev, config)
/**
* regmap_init_mmio_clk() - Initialise register map with register clock
*
* @dev: Device that will be interacted with
* @clk_id: register clock consumer ID
* @regs: Pointer to memory-mapped IO region
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer to
* a struct regmap.
*/
#define regmap_init_mmio_clk(dev, clk_id, regs, config) \
__regmap_lockdep_wrapper(__regmap_init_mmio_clk, #config, \
dev, clk_id, regs, config)
/**
* regmap_init_mmio() - Initialise register map
*
* @dev: Device that will be interacted with
* @regs: Pointer to memory-mapped IO region
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer to
* a struct regmap.
*/
#define regmap_init_mmio(dev, regs, config) \
regmap_init_mmio_clk(dev, NULL, regs, config)
/**
* regmap_init_ac97() - Initialise AC'97 register map
*
* @ac97: Device that will be interacted with
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer to
* a struct regmap.
*/
#define regmap_init_ac97(ac97, config) \
__regmap_lockdep_wrapper(__regmap_init_ac97, #config, \
ac97, config)
bool regmap_ac97_default_volatile(struct device *dev, unsigned int reg);
/**
* regmap_init_sdw() - Initialise register map
*
* @sdw: Device that will be interacted with
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer to
* a struct regmap.
*/
#define regmap_init_sdw(sdw, config) \
__regmap_lockdep_wrapper(__regmap_init_sdw, #config, \
sdw, config)
/**
* devm_regmap_init() - Initialise managed register map
*
* @dev: Device that will be interacted with
* @bus: Bus-specific callbacks to use with device
* @bus_context: Data passed to bus-specific callbacks
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer
* to a struct regmap. This function should generally not be called
* directly, it should be called by bus-specific init functions. The
* map will be automatically freed by the device management code.
*/
#define devm_regmap_init(dev, bus, bus_context, config) \
__regmap_lockdep_wrapper(__devm_regmap_init, #config, \
dev, bus, bus_context, config)
/**
* devm_regmap_init_i2c() - Initialise managed register map
*
* @i2c: Device that will be interacted with
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer
* to a struct regmap. The regmap will be automatically freed by the
* device management code.
*/
#define devm_regmap_init_i2c(i2c, config) \
__regmap_lockdep_wrapper(__devm_regmap_init_i2c, #config, \
i2c, config)
/**
* devm_regmap_init_sccb() - Initialise managed register map
*
* @i2c: Device that will be interacted with
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer
* to a struct regmap. The regmap will be automatically freed by the
* device management code.
*/
#define devm_regmap_init_sccb(i2c, config) \
__regmap_lockdep_wrapper(__devm_regmap_init_sccb, #config, \
i2c, config)
/**
* devm_regmap_init_spi() - Initialise register map
*
* @dev: Device that will be interacted with
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer
* to a struct regmap. The map will be automatically freed by the
* device management code.
*/
#define devm_regmap_init_spi(dev, config) \
__regmap_lockdep_wrapper(__devm_regmap_init_spi, #config, \
dev, config)
/**
* devm_regmap_init_spmi_base() - Create managed regmap for Base register space
*
* @dev: SPMI device that will be interacted with
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer
* to a struct regmap. The regmap will be automatically freed by the
* device management code.
*/
#define devm_regmap_init_spmi_base(dev, config) \
__regmap_lockdep_wrapper(__devm_regmap_init_spmi_base, #config, \
dev, config)
/**
* devm_regmap_init_spmi_ext() - Create managed regmap for Ext register space
*
* @dev: SPMI device that will be interacted with
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer
* to a struct regmap. The regmap will be automatically freed by the
* device management code.
*/
#define devm_regmap_init_spmi_ext(dev, config) \
__regmap_lockdep_wrapper(__devm_regmap_init_spmi_ext, #config, \
dev, config)
/**
* devm_regmap_init_w1() - Initialise managed register map
*
* @w1_dev: Device that will be interacted with
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer
* to a struct regmap. The regmap will be automatically freed by the
* device management code.
*/
#define devm_regmap_init_w1(w1_dev, config) \
__regmap_lockdep_wrapper(__devm_regmap_init_w1, #config, \
w1_dev, config)
/**
* devm_regmap_init_mmio_clk() - Initialise managed register map with clock
*
* @dev: Device that will be interacted with
* @clk_id: register clock consumer ID
* @regs: Pointer to memory-mapped IO region
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer
* to a struct regmap. The regmap will be automatically freed by the
* device management code.
*/
#define devm_regmap_init_mmio_clk(dev, clk_id, regs, config) \
__regmap_lockdep_wrapper(__devm_regmap_init_mmio_clk, #config, \
dev, clk_id, regs, config)
/**
* devm_regmap_init_mmio() - Initialise managed register map
*
* @dev: Device that will be interacted with
* @regs: Pointer to memory-mapped IO region
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer
* to a struct regmap. The regmap will be automatically freed by the
* device management code.
*/
#define devm_regmap_init_mmio(dev, regs, config) \
devm_regmap_init_mmio_clk(dev, NULL, regs, config)
/**
* devm_regmap_init_ac97() - Initialise AC'97 register map
*
* @ac97: Device that will be interacted with
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer
* to a struct regmap. The regmap will be automatically freed by the
* device management code.
*/
#define devm_regmap_init_ac97(ac97, config) \
__regmap_lockdep_wrapper(__devm_regmap_init_ac97, #config, \
ac97, config)
/**
* devm_regmap_init_sdw() - Initialise managed register map
*
* @sdw: Device that will be interacted with
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer
* to a struct regmap. The regmap will be automatically freed by the
* device management code.
*/
#define devm_regmap_init_sdw(sdw, config) \
__regmap_lockdep_wrapper(__devm_regmap_init_sdw, #config, \
sdw, config)
/**
* devm_regmap_init_slimbus() - Initialise managed register map
*
* @slimbus: Device that will be interacted with
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer
* to a struct regmap. The regmap will be automatically freed by the
* device management code.
*/
#define devm_regmap_init_slimbus(slimbus, config) \
__regmap_lockdep_wrapper(__devm_regmap_init_slimbus, #config, \
slimbus, config)
/**
* devm_regmap_init_i3c() - Initialise managed register map
*
* @i3c: Device that will be interacted with
* @config: Configuration for register map
*
* The return value will be an ERR_PTR() on error or a valid pointer
* to a struct regmap. The regmap will be automatically freed by the
* device management code.
*/
#define devm_regmap_init_i3c(i3c, config) \
__regmap_lockdep_wrapper(__devm_regmap_init_i3c, #config, \
i3c, config)
int regmap_mmio_attach_clk(struct regmap *map, struct clk *clk);
void regmap_mmio_detach_clk(struct regmap *map);
void regmap_exit(struct regmap *map);
int regmap_reinit_cache(struct regmap *map,
const struct regmap_config *config);
struct regmap *dev_get_regmap(struct device *dev, const char *name);
struct device *regmap_get_device(struct regmap *map);
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val);
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val);
int regmap_raw_write(struct regmap *map, unsigned int reg,
const void *val, size_t val_len);
int regmap_noinc_write(struct regmap *map, unsigned int reg,
const void *val, size_t val_len);
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
size_t val_count);
int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
int num_regs);
int regmap_multi_reg_write_bypassed(struct regmap *map,
const struct reg_sequence *regs,
int num_regs);
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
const void *val, size_t val_len);
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val);
int regmap_raw_read(struct regmap *map, unsigned int reg,
void *val, size_t val_len);
int regmap_noinc_read(struct regmap *map, unsigned int reg,
void *val, size_t val_len);
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
size_t val_count);
int regmap_update_bits_base(struct regmap *map, unsigned int reg,
unsigned int mask, unsigned int val,
bool *change, bool async, bool force);
static inline int regmap_update_bits(struct regmap *map, unsigned int reg,
unsigned int mask, unsigned int val)
{
return regmap_update_bits_base(map, reg, mask, val, NULL, false, false);
}
static inline int regmap_update_bits_async(struct regmap *map, unsigned int reg,
unsigned int mask, unsigned int val)
{
return regmap_update_bits_base(map, reg, mask, val, NULL, true, false);
}
static inline int regmap_update_bits_check(struct regmap *map, unsigned int reg,
unsigned int mask, unsigned int val,
bool *change)
{
return regmap_update_bits_base(map, reg, mask, val,
change, false, false);
}
static inline int
regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
unsigned int mask, unsigned int val,
bool *change)
{
return regmap_update_bits_base(map, reg, mask, val,
change, true, false);
}
static inline int regmap_write_bits(struct regmap *map, unsigned int reg,
unsigned int mask, unsigned int val)
{
return regmap_update_bits_base(map, reg, mask, val, NULL, false, true);
}
int regmap_get_val_bytes(struct regmap *map);
int regmap_get_max_register(struct regmap *map);
int regmap_get_reg_stride(struct regmap *map);
int regmap_async_complete(struct regmap *map);
bool regmap_can_raw_write(struct regmap *map);
size_t regmap_get_raw_read_max(struct regmap *map);
size_t regmap_get_raw_write_max(struct regmap *map);
int regcache_sync(struct regmap *map);
int regcache_sync_region(struct regmap *map, unsigned int min,
unsigned int max);
int regcache_drop_region(struct regmap *map, unsigned int min,
unsigned int max);
void regcache_cache_only(struct regmap *map, bool enable);
void regcache_cache_bypass(struct regmap *map, bool enable);
void regcache_mark_dirty(struct regmap *map);
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
const struct regmap_access_table *table);
int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
int num_regs);
int regmap_parse_val(struct regmap *map, const void *buf,
unsigned int *val);
static inline bool regmap_reg_in_range(unsigned int reg,
const struct regmap_range *range)
{
return reg >= range->range_min && reg <= range->range_max;
}
bool regmap_reg_in_ranges(unsigned int reg,
const struct regmap_range *ranges,
unsigned int nranges);
static inline int regmap_set_bits(struct regmap *map,
unsigned int reg, unsigned int bits)
{
return regmap_update_bits_base(map, reg, bits, bits,
NULL, false, false);
}
static inline int regmap_clear_bits(struct regmap *map,
unsigned int reg, unsigned int bits)
{
return regmap_update_bits_base(map, reg, bits, 0, NULL, false, false);
}
int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits);
/**
* struct reg_field - Description of an register field
*
* @reg: Offset of the register within the regmap bank
* @lsb: lsb of the register field.
* @msb: msb of the register field.
* @id_size: port size if it has some ports
* @id_offset: address offset for each ports
*/
struct reg_field {
unsigned int reg;
unsigned int lsb;
unsigned int msb;
unsigned int id_size;
unsigned int id_offset;
};
#define REG_FIELD(_reg, _lsb, _msb) { \
.reg = _reg, \
.lsb = _lsb, \
.msb = _msb, \
}
#define REG_FIELD_ID(_reg, _lsb, _msb, _size, _offset) { \
.reg = _reg, \
.lsb = _lsb, \
.msb = _msb, \
.id_size = _size, \
.id_offset = _offset, \
}
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
struct reg_field reg_field);
void regmap_field_free(struct regmap_field *field);
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
struct regmap *regmap, struct reg_field reg_field);
void devm_regmap_field_free(struct device *dev, struct regmap_field *field);
int regmap_field_read(struct regmap_field *field, unsigned int *val);
int regmap_field_update_bits_base(struct regmap_field *field,
unsigned int mask, unsigned int val,
bool *change, bool async, bool force);
int regmap_fields_read(struct regmap_field *field, unsigned int id,
unsigned int *val);
int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
unsigned int mask, unsigned int val,
bool *change, bool async, bool force);
static inline int regmap_field_write(struct regmap_field *field,
unsigned int val)
{
return regmap_field_update_bits_base(field, ~0, val,
NULL, false, false);
}
static inline int regmap_field_force_write(struct regmap_field *field,
unsigned int val)
{
return regmap_field_update_bits_base(field, ~0, val, NULL, false, true);
}
static inline int regmap_field_update_bits(struct regmap_field *field,
unsigned int mask, unsigned int val)
{
return regmap_field_update_bits_base(field, mask, val,
NULL, false, false);
}
static inline int
regmap_field_force_update_bits(struct regmap_field *field,
unsigned int mask, unsigned int val)
{
return regmap_field_update_bits_base(field, mask, val,
NULL, false, true);
}
static inline int regmap_fields_write(struct regmap_field *field,
unsigned int id, unsigned int val)
{
return regmap_fields_update_bits_base(field, id, ~0, val,
NULL, false, false);
}
static inline int regmap_fields_force_write(struct regmap_field *field,
unsigned int id, unsigned int val)
{
return regmap_fields_update_bits_base(field, id, ~0, val,
NULL, false, true);
}
static inline int
regmap_fields_update_bits(struct regmap_field *field, unsigned int id,
unsigned int mask, unsigned int val)
{
return regmap_fields_update_bits_base(field, id, mask, val,
NULL, false, false);
}
static inline int
regmap_fields_force_update_bits(struct regmap_field *field, unsigned int id,
unsigned int mask, unsigned int val)
{
return regmap_fields_update_bits_base(field, id, mask, val,
NULL, false, true);
}
/**
* struct regmap_irq_type - IRQ type definitions.
*
* @type_reg_offset: Offset register for the irq type setting.
* @type_rising_val: Register value to configure RISING type irq.
* @type_falling_val: Register value to configure FALLING type irq.
* @type_level_low_val: Register value to configure LEVEL_LOW type irq.
* @type_level_high_val: Register value to configure LEVEL_HIGH type irq.
* @types_supported: logical OR of IRQ_TYPE_* flags indicating supported types.
*/
struct regmap_irq_type {
unsigned int type_reg_offset;
unsigned int type_reg_mask;
unsigned int type_rising_val;
unsigned int type_falling_val;
unsigned int type_level_low_val;
unsigned int type_level_high_val;
unsigned int types_supported;
};
/**
* struct regmap_irq - Description of an IRQ for the generic regmap irq_chip.
*
* @reg_offset: Offset of the status/mask register within the bank
* @mask: Mask used to flag/control the register.
* @type: IRQ trigger type setting details if supported.
*/
struct regmap_irq {
unsigned int reg_offset;
unsigned int mask;
struct regmap_irq_type type;
};
#define REGMAP_IRQ_REG(_irq, _off, _mask) \
[_irq] = { .reg_offset = (_off), .mask = (_mask) }
#define REGMAP_IRQ_REG_LINE(_id, _reg_bits) \
[_id] = { \
.mask = BIT((_id) % (_reg_bits)), \
.reg_offset = (_id) / (_reg_bits), \
}
#define REGMAP_IRQ_MAIN_REG_OFFSET(arr) \
{ .num_regs = ARRAY_SIZE((arr)), .offset = &(arr)[0] }
struct regmap_irq_sub_irq_map {
unsigned int num_regs;
unsigned int *offset;
};
/**
* struct regmap_irq_chip - Description of a generic regmap irq_chip.
*
* @name: Descriptive name for IRQ controller.
*
* @main_status: Base main status register address. For chips which have
* interrupts arranged in separate sub-irq blocks with own IRQ
* registers and which have a main IRQ registers indicating
* sub-irq blocks with unhandled interrupts. For such chips fill
* sub-irq register information in status_base, mask_base and
* ack_base.
* @num_main_status_bits: Should be given to chips where number of meaningfull
* main status bits differs from num_regs.
* @sub_reg_offsets: arrays of mappings from main register bits to sub irq
* registers. First item in array describes the registers
* for first main status bit. Second array for second bit etc.
* Offset is given as sub register status offset to
* status_base. Should contain num_regs arrays.
* Can be provided for chips with more complex mapping than
* 1.st bit to 1.st sub-reg, 2.nd bit to 2.nd sub-reg, ...
* @num_main_regs: Number of 'main status' irq registers for chips which have
* main_status set.
*
* @status_base: Base status register address.
* @mask_base: Base mask register address.
* @mask_writeonly: Base mask register is write only.
* @unmask_base: Base unmask register address. for chips who have
* separate mask and unmask registers
* @ack_base: Base ack address. If zero then the chip is clear on read.
* Using zero value is possible with @use_ack bit.
* @wake_base: Base address for wake enables. If zero unsupported.
* @type_base: Base address for irq type. If zero unsupported.
* @irq_reg_stride: Stride to use for chips where registers are not contiguous.
* @init_ack_masked: Ack all masked interrupts once during initalization.
* @mask_invert: Inverted mask register: cleared bits are masked out.
* @use_ack: Use @ack register even if it is zero.
* @ack_invert: Inverted ack register: cleared bits for ack.
* @wake_invert: Inverted wake register: cleared bits are wake enabled.
* @type_invert: Invert the type flags.
* @type_in_mask: Use the mask registers for controlling irq type. For
* interrupts defining type_rising/falling_mask use mask_base
* for edge configuration and never update bits in type_base.
* @clear_on_unmask: For chips with interrupts cleared on read: read the status
* registers before unmasking interrupts to clear any bits
* set when they were masked.
* @runtime_pm: Hold a runtime PM lock on the device when accessing it.
*
* @num_regs: Number of registers in each control bank.
* @irqs: Descriptors for individual IRQs. Interrupt numbers are
* assigned based on the index in the array of the interrupt.
* @num_irqs: Number of descriptors.
* @num_type_reg: Number of type registers.
* @type_reg_stride: Stride to use for chips where type registers are not
* contiguous.
* @handle_pre_irq: Driver specific callback to handle interrupt from device
* before regmap_irq_handler process the interrupts.
* @handle_post_irq: Driver specific callback to handle interrupt from device
* after handling the interrupts in regmap_irq_handler().
* @irq_drv_data: Driver specific IRQ data which is passed as parameter when
* driver specific pre/post interrupt handler is called.
*
* This is not intended to handle every possible interrupt controller, but
* it should handle a substantial proportion of those that are found in the
* wild.
*/
struct regmap_irq_chip {
const char *name;
unsigned int main_status;
unsigned int num_main_status_bits;
struct regmap_irq_sub_irq_map *sub_reg_offsets;
int num_main_regs;
unsigned int status_base;
unsigned int mask_base;
unsigned int unmask_base;
unsigned int ack_base;
unsigned int wake_base;
unsigned int type_base;
unsigned int irq_reg_stride;
bool mask_writeonly:1;
bool init_ack_masked:1;
bool mask_invert:1;
bool use_ack:1;
bool ack_invert:1;
bool wake_invert:1;
bool runtime_pm:1;
bool type_invert:1;
bool type_in_mask:1;
bool clear_on_unmask:1;
int num_regs;
const struct regmap_irq *irqs;
int num_irqs;
int num_type_reg;
unsigned int type_reg_stride;
int (*handle_pre_irq)(void *irq_drv_data);
int (*handle_post_irq)(void *irq_drv_data);
void *irq_drv_data;
};
struct regmap_irq_chip_data;
int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
int irq_base, const struct regmap_irq_chip *chip,
struct regmap_irq_chip_data **data);
int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
struct regmap *map, int irq,
int irq_flags, int irq_base,
const struct regmap_irq_chip *chip,
struct regmap_irq_chip_data **data);
void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *data);
int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
int irq_flags, int irq_base,
const struct regmap_irq_chip *chip,
struct regmap_irq_chip_data **data);
int devm_regmap_add_irq_chip_fwnode(struct device *dev,
struct fwnode_handle *fwnode,
struct regmap *map, int irq,
int irq_flags, int irq_base,
const struct regmap_irq_chip *chip,
struct regmap_irq_chip_data **data);
void devm_regmap_del_irq_chip(struct device *dev, int irq,
struct regmap_irq_chip_data *data);
int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data);
int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq);
struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data);
#else
/*
* These stubs should only ever be called by generic code which has
* regmap based facilities, if they ever get called at runtime
* something is going wrong and something probably needs to select
* REGMAP.
*/
static inline int regmap_write(struct regmap *map, unsigned int reg,
unsigned int val)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_write_async(struct regmap *map, unsigned int reg,
unsigned int val)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_raw_write(struct regmap *map, unsigned int reg,
const void *val, size_t val_len)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_raw_write_async(struct regmap *map, unsigned int reg,
const void *val, size_t val_len)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_noinc_write(struct regmap *map, unsigned int reg,
const void *val, size_t val_len)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_bulk_write(struct regmap *map, unsigned int reg,
const void *val, size_t val_count)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_read(struct regmap *map, unsigned int reg,
unsigned int *val)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_raw_read(struct regmap *map, unsigned int reg,
void *val, size_t val_len)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_noinc_read(struct regmap *map, unsigned int reg,
void *val, size_t val_len)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_bulk_read(struct regmap *map, unsigned int reg,
void *val, size_t val_count)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_update_bits_base(struct regmap *map, unsigned int reg,
unsigned int mask, unsigned int val,
bool *change, bool async, bool force)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_set_bits(struct regmap *map,
unsigned int reg, unsigned int bits)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_clear_bits(struct regmap *map,
unsigned int reg, unsigned int bits)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_test_bits(struct regmap *map,
unsigned int reg, unsigned int bits)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_field_update_bits_base(struct regmap_field *field,
unsigned int mask, unsigned int val,
bool *change, bool async, bool force)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_fields_update_bits_base(struct regmap_field *field,
unsigned int id,
unsigned int mask, unsigned int val,
bool *change, bool async, bool force)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_update_bits(struct regmap *map, unsigned int reg,
unsigned int mask, unsigned int val)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_update_bits_async(struct regmap *map, unsigned int reg,
unsigned int mask, unsigned int val)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_update_bits_check(struct regmap *map, unsigned int reg,
unsigned int mask, unsigned int val,
bool *change)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int
regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
unsigned int mask, unsigned int val,
bool *change)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_write_bits(struct regmap *map, unsigned int reg,
unsigned int mask, unsigned int val)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_field_write(struct regmap_field *field,
unsigned int val)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_field_force_write(struct regmap_field *field,
unsigned int val)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_field_update_bits(struct regmap_field *field,
unsigned int mask, unsigned int val)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int
regmap_field_force_update_bits(struct regmap_field *field,
unsigned int mask, unsigned int val)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_fields_write(struct regmap_field *field,
unsigned int id, unsigned int val)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_fields_force_write(struct regmap_field *field,
unsigned int id, unsigned int val)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int
regmap_fields_update_bits(struct regmap_field *field, unsigned int id,
unsigned int mask, unsigned int val)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int
regmap_fields_force_update_bits(struct regmap_field *field, unsigned int id,
unsigned int mask, unsigned int val)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_get_val_bytes(struct regmap *map)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_get_max_register(struct regmap *map)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_get_reg_stride(struct regmap *map)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regcache_sync(struct regmap *map)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regcache_sync_region(struct regmap *map, unsigned int min,
unsigned int max)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regcache_drop_region(struct regmap *map, unsigned int min,
unsigned int max)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline void regcache_cache_only(struct regmap *map, bool enable)
{
WARN_ONCE(1, "regmap API is disabled");
}
static inline void regcache_cache_bypass(struct regmap *map, bool enable)
{
WARN_ONCE(1, "regmap API is disabled");
}
static inline void regcache_mark_dirty(struct regmap *map)
{
WARN_ONCE(1, "regmap API is disabled");
}
static inline void regmap_async_complete(struct regmap *map)
{
WARN_ONCE(1, "regmap API is disabled");
}
static inline int regmap_register_patch(struct regmap *map,
const struct reg_sequence *regs,
int num_regs)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline int regmap_parse_val(struct regmap *map, const void *buf,
unsigned int *val)
{
WARN_ONCE(1, "regmap API is disabled");
return -EINVAL;
}
static inline struct regmap *dev_get_regmap(struct device *dev,
const char *name)
{
return NULL;
}
static inline struct device *regmap_get_device(struct regmap *map)
{
WARN_ONCE(1, "regmap API is disabled");
return NULL;
}
#endif
#endif