mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-12 15:44:01 +08:00
464902e812
This information allows userspace to implement a hybrid policy where it can store the rfkill soft-blocked state in platform non-volatile storage if available, and if not then file-based storage can be used. Some users prefer platform non-volatile storage because of the behaviour when dual-booting multiple versions of Linux, or if the rfkill setting is changed in the BIOS setting screens, or if the BIOS responds to wireless-toggle hotkeys itself before the relevant platform driver has been loaded. Signed-off-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Acked-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> Signed-off-by: John W. Linville <linville@tuxdriver.com>
140 lines
5.5 KiB
Plaintext
140 lines
5.5 KiB
Plaintext
rfkill - RF kill switch support
|
|
===============================
|
|
|
|
1. Introduction
|
|
2. Implementation details
|
|
3. Kernel API
|
|
4. Userspace support
|
|
|
|
|
|
1. Introduction
|
|
|
|
The rfkill subsystem provides a generic interface to disabling any radio
|
|
transmitter in the system. When a transmitter is blocked, it shall not
|
|
radiate any power.
|
|
|
|
The subsystem also provides the ability to react on button presses and
|
|
disable all transmitters of a certain type (or all). This is intended for
|
|
situations where transmitters need to be turned off, for example on
|
|
aircraft.
|
|
|
|
The rfkill subsystem has a concept of "hard" and "soft" block, which
|
|
differ little in their meaning (block == transmitters off) but rather in
|
|
whether they can be changed or not:
|
|
- hard block: read-only radio block that cannot be overriden by software
|
|
- soft block: writable radio block (need not be readable) that is set by
|
|
the system software.
|
|
|
|
|
|
2. Implementation details
|
|
|
|
The rfkill subsystem is composed of three main components:
|
|
* the rfkill core,
|
|
* the deprecated rfkill-input module (an input layer handler, being
|
|
replaced by userspace policy code) and
|
|
* the rfkill drivers.
|
|
|
|
The rfkill core provides API for kernel drivers to register their radio
|
|
transmitter with the kernel, methods for turning it on and off and, letting
|
|
the system know about hardware-disabled states that may be implemented on
|
|
the device.
|
|
|
|
The rfkill core code also notifies userspace of state changes, and provides
|
|
ways for userspace to query the current states. See the "Userspace support"
|
|
section below.
|
|
|
|
When the device is hard-blocked (either by a call to rfkill_set_hw_state()
|
|
or from query_hw_block) set_block() will be invoked for additional software
|
|
block, but drivers can ignore the method call since they can use the return
|
|
value of the function rfkill_set_hw_state() to sync the software state
|
|
instead of keeping track of calls to set_block(). In fact, drivers should
|
|
use the return value of rfkill_set_hw_state() unless the hardware actually
|
|
keeps track of soft and hard block separately.
|
|
|
|
|
|
3. Kernel API
|
|
|
|
|
|
Drivers for radio transmitters normally implement an rfkill driver.
|
|
|
|
Platform drivers might implement input devices if the rfkill button is just
|
|
that, a button. If that button influences the hardware then you need to
|
|
implement an rfkill driver instead. This also applies if the platform provides
|
|
a way to turn on/off the transmitter(s).
|
|
|
|
For some platforms, it is possible that the hardware state changes during
|
|
suspend/hibernation, in which case it will be necessary to update the rfkill
|
|
core with the current state is at resume time.
|
|
|
|
To create an rfkill driver, driver's Kconfig needs to have
|
|
|
|
depends on RFKILL || !RFKILL
|
|
|
|
to ensure the driver cannot be built-in when rfkill is modular. The !RFKILL
|
|
case allows the driver to be built when rfkill is not configured, which which
|
|
case all rfkill API can still be used but will be provided by static inlines
|
|
which compile to almost nothing.
|
|
|
|
Calling rfkill_set_hw_state() when a state change happens is required from
|
|
rfkill drivers that control devices that can be hard-blocked unless they also
|
|
assign the poll_hw_block() callback (then the rfkill core will poll the
|
|
device). Don't do this unless you cannot get the event in any other way.
|
|
|
|
|
|
|
|
5. Userspace support
|
|
|
|
The recommended userspace interface to use is /dev/rfkill, which is a misc
|
|
character device that allows userspace to obtain and set the state of rfkill
|
|
devices and sets of devices. It also notifies userspace about device addition
|
|
and removal. The API is a simple read/write API that is defined in
|
|
linux/rfkill.h, with one ioctl that allows turning off the deprecated input
|
|
handler in the kernel for the transition period.
|
|
|
|
Except for the one ioctl, communication with the kernel is done via read()
|
|
and write() of instances of 'struct rfkill_event'. In this structure, the
|
|
soft and hard block are properly separated (unlike sysfs, see below) and
|
|
userspace is able to get a consistent snapshot of all rfkill devices in the
|
|
system. Also, it is possible to switch all rfkill drivers (or all drivers of
|
|
a specified type) into a state which also updates the default state for
|
|
hotplugged devices.
|
|
|
|
After an application opens /dev/rfkill, it can read the current state of
|
|
all devices, and afterwards can poll the descriptor for hotplug or state
|
|
change events.
|
|
|
|
Applications must ignore operations (the "op" field) they do not handle,
|
|
this allows the API to be extended in the future.
|
|
|
|
Additionally, each rfkill device is registered in sysfs and there has the
|
|
following attributes:
|
|
|
|
name: Name assigned by driver to this key (interface or driver name).
|
|
type: Driver type string ("wlan", "bluetooth", etc).
|
|
persistent: Whether the soft blocked state is initialised from
|
|
non-volatile storage at startup.
|
|
state: Current state of the transmitter
|
|
0: RFKILL_STATE_SOFT_BLOCKED
|
|
transmitter is turned off by software
|
|
1: RFKILL_STATE_UNBLOCKED
|
|
transmitter is (potentially) active
|
|
2: RFKILL_STATE_HARD_BLOCKED
|
|
transmitter is forced off by something outside of
|
|
the driver's control.
|
|
This file is deprecated because it can only properly show
|
|
three of the four possible states, soft-and-hard-blocked is
|
|
missing.
|
|
claim: 0: Kernel handles events
|
|
This file is deprecated because there no longer is a way to
|
|
claim just control over a single rfkill instance.
|
|
|
|
rfkill devices also issue uevents (with an action of "change"), with the
|
|
following environment variables set:
|
|
|
|
RFKILL_NAME
|
|
RFKILL_STATE
|
|
RFKILL_TYPE
|
|
|
|
The contents of these variables corresponds to the "name", "state" and
|
|
"type" sysfs files explained above.
|