2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 14:43:54 +08:00
linux-next/arch/s390/kernel/sysinfo.c
Martin Schwidefsky 7f79695cc1 s390/fpu: improve kernel_fpu_[begin|end]
In case of nested user of the FPU or vector registers in the kernel
the current code uses the mask of the FPU/vector registers of the
previous contexts to decide which registers to save and restore.
E.g. if the previous context used KERNEL_VXR_V0V7 and the next
context wants to use KERNEL_VXR_V24V31 the first 8 vector registers
are stored to the FPU state structure. But this is not necessary
as the next context does not use these registers.

Rework the FPU/vector register save and restore code. The new code
does a few things differently:
1) A lowcore field is used instead of a per-cpu variable.
2) The kernel_fpu_end function now has two parameters just like
   kernel_fpu_begin. The register flags are required by both
   functions to save / restore the minimal register set.
3) The inline functions kernel_fpu_begin/kernel_fpu_end now do the
   update of the register masks. If the user space FPU registers
   have already been stored neither save_fpu_regs nor the
   __kernel_fpu_begin/__kernel_fpu_end functions have to be called
   for the first context. In this case kernel_fpu_begin adds 7
   instructions and kernel_fpu_end adds 4 instructions.
3) The inline assemblies in __kernel_fpu_begin / __kernel_fpu_end
   to save / restore the vector registers are simplified a bit.

Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-08-29 11:05:01 +02:00

479 lines
13 KiB
C

/*
* Copyright IBM Corp. 2001, 2009
* Author(s): Ulrich Weigand <Ulrich.Weigand@de.ibm.com>,
* Martin Schwidefsky <schwidefsky@de.ibm.com>,
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <asm/ebcdic.h>
#include <asm/sysinfo.h>
#include <asm/cpcmd.h>
#include <asm/topology.h>
#include <asm/fpu/api.h>
int topology_max_mnest;
static inline int __stsi(void *sysinfo, int fc, int sel1, int sel2, int *lvl)
{
register int r0 asm("0") = (fc << 28) | sel1;
register int r1 asm("1") = sel2;
int rc = 0;
asm volatile(
" stsi 0(%3)\n"
"0: jz 2f\n"
"1: lhi %1,%4\n"
"2:\n"
EX_TABLE(0b, 1b)
: "+d" (r0), "+d" (rc)
: "d" (r1), "a" (sysinfo), "K" (-EOPNOTSUPP)
: "cc", "memory");
*lvl = ((unsigned int) r0) >> 28;
return rc;
}
/*
* stsi - store system information
*
* Returns the current configuration level if function code 0 was specified.
* Otherwise returns 0 on success or a negative value on error.
*/
int stsi(void *sysinfo, int fc, int sel1, int sel2)
{
int lvl, rc;
rc = __stsi(sysinfo, fc, sel1, sel2, &lvl);
if (rc)
return rc;
return fc ? 0 : lvl;
}
EXPORT_SYMBOL(stsi);
static void stsi_1_1_1(struct seq_file *m, struct sysinfo_1_1_1 *info)
{
int i;
if (stsi(info, 1, 1, 1))
return;
EBCASC(info->manufacturer, sizeof(info->manufacturer));
EBCASC(info->type, sizeof(info->type));
EBCASC(info->model, sizeof(info->model));
EBCASC(info->sequence, sizeof(info->sequence));
EBCASC(info->plant, sizeof(info->plant));
EBCASC(info->model_capacity, sizeof(info->model_capacity));
EBCASC(info->model_perm_cap, sizeof(info->model_perm_cap));
EBCASC(info->model_temp_cap, sizeof(info->model_temp_cap));
seq_printf(m, "Manufacturer: %-16.16s\n", info->manufacturer);
seq_printf(m, "Type: %-4.4s\n", info->type);
/*
* Sigh: the model field has been renamed with System z9
* to model_capacity and a new model field has been added
* after the plant field. To avoid confusing older programs
* the "Model:" prints "model_capacity model" or just
* "model_capacity" if the model string is empty .
*/
seq_printf(m, "Model: %-16.16s", info->model_capacity);
if (info->model[0] != '\0')
seq_printf(m, " %-16.16s", info->model);
seq_putc(m, '\n');
seq_printf(m, "Sequence Code: %-16.16s\n", info->sequence);
seq_printf(m, "Plant: %-4.4s\n", info->plant);
seq_printf(m, "Model Capacity: %-16.16s %08u\n",
info->model_capacity, info->model_cap_rating);
if (info->model_perm_cap_rating)
seq_printf(m, "Model Perm. Capacity: %-16.16s %08u\n",
info->model_perm_cap,
info->model_perm_cap_rating);
if (info->model_temp_cap_rating)
seq_printf(m, "Model Temp. Capacity: %-16.16s %08u\n",
info->model_temp_cap,
info->model_temp_cap_rating);
if (info->ncr)
seq_printf(m, "Nominal Cap. Rating: %08u\n", info->ncr);
if (info->npr)
seq_printf(m, "Nominal Perm. Rating: %08u\n", info->npr);
if (info->ntr)
seq_printf(m, "Nominal Temp. Rating: %08u\n", info->ntr);
if (info->cai) {
seq_printf(m, "Capacity Adj. Ind.: %d\n", info->cai);
seq_printf(m, "Capacity Ch. Reason: %d\n", info->ccr);
seq_printf(m, "Capacity Transient: %d\n", info->t);
}
if (info->p) {
for (i = 1; i <= ARRAY_SIZE(info->typepct); i++) {
seq_printf(m, "Type %d Percentage: %d\n",
i, info->typepct[i - 1]);
}
}
}
static void stsi_15_1_x(struct seq_file *m, struct sysinfo_15_1_x *info)
{
int i;
seq_putc(m, '\n');
if (!MACHINE_HAS_TOPOLOGY)
return;
if (stsi(info, 15, 1, topology_max_mnest))
return;
seq_printf(m, "CPU Topology HW: ");
for (i = 0; i < TOPOLOGY_NR_MAG; i++)
seq_printf(m, " %d", info->mag[i]);
seq_putc(m, '\n');
#ifdef CONFIG_SCHED_TOPOLOGY
store_topology(info);
seq_printf(m, "CPU Topology SW: ");
for (i = 0; i < TOPOLOGY_NR_MAG; i++)
seq_printf(m, " %d", info->mag[i]);
seq_putc(m, '\n');
#endif
}
static void stsi_1_2_2(struct seq_file *m, struct sysinfo_1_2_2 *info)
{
struct sysinfo_1_2_2_extension *ext;
int i;
if (stsi(info, 1, 2, 2))
return;
ext = (struct sysinfo_1_2_2_extension *)
((unsigned long) info + info->acc_offset);
seq_printf(m, "CPUs Total: %d\n", info->cpus_total);
seq_printf(m, "CPUs Configured: %d\n", info->cpus_configured);
seq_printf(m, "CPUs Standby: %d\n", info->cpus_standby);
seq_printf(m, "CPUs Reserved: %d\n", info->cpus_reserved);
if (info->mt_installed) {
seq_printf(m, "CPUs G-MTID: %d\n", info->mt_gtid);
seq_printf(m, "CPUs S-MTID: %d\n", info->mt_stid);
}
/*
* Sigh 2. According to the specification the alternate
* capability field is a 32 bit floating point number
* if the higher order 8 bits are not zero. Printing
* a floating point number in the kernel is a no-no,
* always print the number as 32 bit unsigned integer.
* The user-space needs to know about the strange
* encoding of the alternate cpu capability.
*/
seq_printf(m, "Capability: %u", info->capability);
if (info->format == 1)
seq_printf(m, " %u", ext->alt_capability);
seq_putc(m, '\n');
if (info->nominal_cap)
seq_printf(m, "Nominal Capability: %d\n", info->nominal_cap);
if (info->secondary_cap)
seq_printf(m, "Secondary Capability: %d\n", info->secondary_cap);
for (i = 2; i <= info->cpus_total; i++) {
seq_printf(m, "Adjustment %02d-way: %u",
i, info->adjustment[i-2]);
if (info->format == 1)
seq_printf(m, " %u", ext->alt_adjustment[i-2]);
seq_putc(m, '\n');
}
}
static void stsi_2_2_2(struct seq_file *m, struct sysinfo_2_2_2 *info)
{
if (stsi(info, 2, 2, 2))
return;
EBCASC(info->name, sizeof(info->name));
seq_putc(m, '\n');
seq_printf(m, "LPAR Number: %d\n", info->lpar_number);
seq_printf(m, "LPAR Characteristics: ");
if (info->characteristics & LPAR_CHAR_DEDICATED)
seq_printf(m, "Dedicated ");
if (info->characteristics & LPAR_CHAR_SHARED)
seq_printf(m, "Shared ");
if (info->characteristics & LPAR_CHAR_LIMITED)
seq_printf(m, "Limited ");
seq_putc(m, '\n');
seq_printf(m, "LPAR Name: %-8.8s\n", info->name);
seq_printf(m, "LPAR Adjustment: %d\n", info->caf);
seq_printf(m, "LPAR CPUs Total: %d\n", info->cpus_total);
seq_printf(m, "LPAR CPUs Configured: %d\n", info->cpus_configured);
seq_printf(m, "LPAR CPUs Standby: %d\n", info->cpus_standby);
seq_printf(m, "LPAR CPUs Reserved: %d\n", info->cpus_reserved);
seq_printf(m, "LPAR CPUs Dedicated: %d\n", info->cpus_dedicated);
seq_printf(m, "LPAR CPUs Shared: %d\n", info->cpus_shared);
if (info->mt_installed) {
seq_printf(m, "LPAR CPUs G-MTID: %d\n", info->mt_gtid);
seq_printf(m, "LPAR CPUs S-MTID: %d\n", info->mt_stid);
seq_printf(m, "LPAR CPUs PS-MTID: %d\n", info->mt_psmtid);
}
}
static void print_ext_name(struct seq_file *m, int lvl,
struct sysinfo_3_2_2 *info)
{
if (info->vm[lvl].ext_name_encoding == 0)
return;
if (info->ext_names[lvl][0] == 0)
return;
switch (info->vm[lvl].ext_name_encoding) {
case 1: /* EBCDIC */
EBCASC(info->ext_names[lvl], sizeof(info->ext_names[lvl]));
break;
case 2: /* UTF-8 */
break;
default:
return;
}
seq_printf(m, "VM%02d Extended Name: %-.256s\n", lvl,
info->ext_names[lvl]);
}
static void print_uuid(struct seq_file *m, int i, struct sysinfo_3_2_2 *info)
{
if (!memcmp(&info->vm[i].uuid, &NULL_UUID_BE, sizeof(uuid_be)))
return;
seq_printf(m, "VM%02d UUID: %pUb\n", i, &info->vm[i].uuid);
}
static void stsi_3_2_2(struct seq_file *m, struct sysinfo_3_2_2 *info)
{
int i;
if (stsi(info, 3, 2, 2))
return;
for (i = 0; i < info->count; i++) {
EBCASC(info->vm[i].name, sizeof(info->vm[i].name));
EBCASC(info->vm[i].cpi, sizeof(info->vm[i].cpi));
seq_putc(m, '\n');
seq_printf(m, "VM%02d Name: %-8.8s\n", i, info->vm[i].name);
seq_printf(m, "VM%02d Control Program: %-16.16s\n", i, info->vm[i].cpi);
seq_printf(m, "VM%02d Adjustment: %d\n", i, info->vm[i].caf);
seq_printf(m, "VM%02d CPUs Total: %d\n", i, info->vm[i].cpus_total);
seq_printf(m, "VM%02d CPUs Configured: %d\n", i, info->vm[i].cpus_configured);
seq_printf(m, "VM%02d CPUs Standby: %d\n", i, info->vm[i].cpus_standby);
seq_printf(m, "VM%02d CPUs Reserved: %d\n", i, info->vm[i].cpus_reserved);
print_ext_name(m, i, info);
print_uuid(m, i, info);
}
}
static int sysinfo_show(struct seq_file *m, void *v)
{
void *info = (void *)get_zeroed_page(GFP_KERNEL);
int level;
if (!info)
return 0;
level = stsi(NULL, 0, 0, 0);
if (level >= 1)
stsi_1_1_1(m, info);
if (level >= 1)
stsi_15_1_x(m, info);
if (level >= 1)
stsi_1_2_2(m, info);
if (level >= 2)
stsi_2_2_2(m, info);
if (level >= 3)
stsi_3_2_2(m, info);
free_page((unsigned long)info);
return 0;
}
static int sysinfo_open(struct inode *inode, struct file *file)
{
return single_open(file, sysinfo_show, NULL);
}
static const struct file_operations sysinfo_fops = {
.open = sysinfo_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int __init sysinfo_create_proc(void)
{
proc_create("sysinfo", 0444, NULL, &sysinfo_fops);
return 0;
}
device_initcall(sysinfo_create_proc);
/*
* Service levels interface.
*/
static DECLARE_RWSEM(service_level_sem);
static LIST_HEAD(service_level_list);
int register_service_level(struct service_level *slr)
{
struct service_level *ptr;
down_write(&service_level_sem);
list_for_each_entry(ptr, &service_level_list, list)
if (ptr == slr) {
up_write(&service_level_sem);
return -EEXIST;
}
list_add_tail(&slr->list, &service_level_list);
up_write(&service_level_sem);
return 0;
}
EXPORT_SYMBOL(register_service_level);
int unregister_service_level(struct service_level *slr)
{
struct service_level *ptr, *next;
int rc = -ENOENT;
down_write(&service_level_sem);
list_for_each_entry_safe(ptr, next, &service_level_list, list) {
if (ptr != slr)
continue;
list_del(&ptr->list);
rc = 0;
break;
}
up_write(&service_level_sem);
return rc;
}
EXPORT_SYMBOL(unregister_service_level);
static void *service_level_start(struct seq_file *m, loff_t *pos)
{
down_read(&service_level_sem);
return seq_list_start(&service_level_list, *pos);
}
static void *service_level_next(struct seq_file *m, void *p, loff_t *pos)
{
return seq_list_next(p, &service_level_list, pos);
}
static void service_level_stop(struct seq_file *m, void *p)
{
up_read(&service_level_sem);
}
static int service_level_show(struct seq_file *m, void *p)
{
struct service_level *slr;
slr = list_entry(p, struct service_level, list);
slr->seq_print(m, slr);
return 0;
}
static const struct seq_operations service_level_seq_ops = {
.start = service_level_start,
.next = service_level_next,
.stop = service_level_stop,
.show = service_level_show
};
static int service_level_open(struct inode *inode, struct file *file)
{
return seq_open(file, &service_level_seq_ops);
}
static const struct file_operations service_level_ops = {
.open = service_level_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release
};
static void service_level_vm_print(struct seq_file *m,
struct service_level *slr)
{
char *query_buffer, *str;
query_buffer = kmalloc(1024, GFP_KERNEL | GFP_DMA);
if (!query_buffer)
return;
cpcmd("QUERY CPLEVEL", query_buffer, 1024, NULL);
str = strchr(query_buffer, '\n');
if (str)
*str = 0;
seq_printf(m, "VM: %s\n", query_buffer);
kfree(query_buffer);
}
static struct service_level service_level_vm = {
.seq_print = service_level_vm_print
};
static __init int create_proc_service_level(void)
{
proc_create("service_levels", 0, NULL, &service_level_ops);
if (MACHINE_IS_VM)
register_service_level(&service_level_vm);
return 0;
}
subsys_initcall(create_proc_service_level);
/*
* CPU capability might have changed. Therefore recalculate loops_per_jiffy.
*/
void s390_adjust_jiffies(void)
{
struct sysinfo_1_2_2 *info;
unsigned long capability;
struct kernel_fpu fpu;
info = (void *) get_zeroed_page(GFP_KERNEL);
if (!info)
return;
if (stsi(info, 1, 2, 2) == 0) {
/*
* Major sigh. The cpu capability encoding is "special".
* If the first 9 bits of info->capability are 0 then it
* is a 32 bit unsigned integer in the range 0 .. 2^23.
* If the first 9 bits are != 0 then it is a 32 bit float.
* In addition a lower value indicates a proportionally
* higher cpu capacity. Bogomips are the other way round.
* To get to a halfway suitable number we divide 1e7
* by the cpu capability number. Yes, that means a floating
* point division ..
*/
kernel_fpu_begin(&fpu, KERNEL_FPR);
asm volatile(
" sfpc %3\n"
" l %0,%1\n"
" tmlh %0,0xff80\n"
" jnz 0f\n"
" cefbr %%f2,%0\n"
" j 1f\n"
"0: le %%f2,%1\n"
"1: cefbr %%f0,%2\n"
" debr %%f0,%%f2\n"
" cgebr %0,5,%%f0\n"
: "=&d" (capability)
: "Q" (info->capability), "d" (10000000), "d" (0)
: "cc"
);
kernel_fpu_end(&fpu, KERNEL_FPR);
} else
/*
* Really old machine without stsi block for basic
* cpu information. Report 42.0 bogomips.
*/
capability = 42;
loops_per_jiffy = capability * (500000/HZ);
free_page((unsigned long) info);
}
/*
* calibrate the delay loop
*/
void calibrate_delay(void)
{
s390_adjust_jiffies();
/* Print the good old Bogomips line .. */
printk(KERN_DEBUG "Calibrating delay loop (skipped)... "
"%lu.%02lu BogoMIPS preset\n", loops_per_jiffy/(500000/HZ),
(loops_per_jiffy/(5000/HZ)) % 100);
}