2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-26 22:24:09 +08:00
linux-next/fs/f2fs/extent_cache.c
Jaegeuk Kim 7c45729a4d f2fs: keep dirty inodes selectively for checkpoint
This is to avoid no free segment bug during checkpoint caused by a number of
dirty inodes.

The case was reported by Chao like this.
1. mount with lazytime option
2. fill 4k file until disk is full
3. sync filesystem
4. read all files in the image
5. umount

In this case, we actually don't need to flush dirty inode to inode page during
checkpoint.

Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-11-23 12:11:08 -08:00

750 lines
18 KiB
C

/*
* f2fs extent cache support
*
* Copyright (c) 2015 Motorola Mobility
* Copyright (c) 2015 Samsung Electronics
* Authors: Jaegeuk Kim <jaegeuk@kernel.org>
* Chao Yu <chao2.yu@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include "f2fs.h"
#include "node.h"
#include <trace/events/f2fs.h>
static struct kmem_cache *extent_tree_slab;
static struct kmem_cache *extent_node_slab;
static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_info *ei,
struct rb_node *parent, struct rb_node **p)
{
struct extent_node *en;
en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
if (!en)
return NULL;
en->ei = *ei;
INIT_LIST_HEAD(&en->list);
en->et = et;
rb_link_node(&en->rb_node, parent, p);
rb_insert_color(&en->rb_node, &et->root);
atomic_inc(&et->node_cnt);
atomic_inc(&sbi->total_ext_node);
return en;
}
static void __detach_extent_node(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_node *en)
{
rb_erase(&en->rb_node, &et->root);
atomic_dec(&et->node_cnt);
atomic_dec(&sbi->total_ext_node);
if (et->cached_en == en)
et->cached_en = NULL;
kmem_cache_free(extent_node_slab, en);
}
/*
* Flow to release an extent_node:
* 1. list_del_init
* 2. __detach_extent_node
* 3. kmem_cache_free.
*/
static void __release_extent_node(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_node *en)
{
spin_lock(&sbi->extent_lock);
f2fs_bug_on(sbi, list_empty(&en->list));
list_del_init(&en->list);
spin_unlock(&sbi->extent_lock);
__detach_extent_node(sbi, et, en);
}
static struct extent_tree *__grab_extent_tree(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et;
nid_t ino = inode->i_ino;
down_write(&sbi->extent_tree_lock);
et = radix_tree_lookup(&sbi->extent_tree_root, ino);
if (!et) {
et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
memset(et, 0, sizeof(struct extent_tree));
et->ino = ino;
et->root = RB_ROOT;
et->cached_en = NULL;
rwlock_init(&et->lock);
INIT_LIST_HEAD(&et->list);
atomic_set(&et->node_cnt, 0);
atomic_inc(&sbi->total_ext_tree);
} else {
atomic_dec(&sbi->total_zombie_tree);
list_del_init(&et->list);
}
up_write(&sbi->extent_tree_lock);
/* never died until evict_inode */
F2FS_I(inode)->extent_tree = et;
return et;
}
static struct extent_node *__lookup_extent_tree(struct f2fs_sb_info *sbi,
struct extent_tree *et, unsigned int fofs)
{
struct rb_node *node = et->root.rb_node;
struct extent_node *en = et->cached_en;
if (en) {
struct extent_info *cei = &en->ei;
if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) {
stat_inc_cached_node_hit(sbi);
return en;
}
}
while (node) {
en = rb_entry(node, struct extent_node, rb_node);
if (fofs < en->ei.fofs) {
node = node->rb_left;
} else if (fofs >= en->ei.fofs + en->ei.len) {
node = node->rb_right;
} else {
stat_inc_rbtree_node_hit(sbi);
return en;
}
}
return NULL;
}
static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_info *ei)
{
struct rb_node **p = &et->root.rb_node;
struct extent_node *en;
en = __attach_extent_node(sbi, et, ei, NULL, p);
if (!en)
return NULL;
et->largest = en->ei;
et->cached_en = en;
return en;
}
static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
struct extent_tree *et)
{
struct rb_node *node, *next;
struct extent_node *en;
unsigned int count = atomic_read(&et->node_cnt);
node = rb_first(&et->root);
while (node) {
next = rb_next(node);
en = rb_entry(node, struct extent_node, rb_node);
__release_extent_node(sbi, et, en);
node = next;
}
return count - atomic_read(&et->node_cnt);
}
static void __drop_largest_extent(struct inode *inode,
pgoff_t fofs, unsigned int len)
{
struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest;
if (fofs < largest->fofs + largest->len && fofs + len > largest->fofs) {
largest->len = 0;
f2fs_mark_inode_dirty_sync(inode, true);
}
}
/* return true, if inode page is changed */
bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et;
struct extent_node *en;
struct extent_info ei;
if (!f2fs_may_extent_tree(inode)) {
/* drop largest extent */
if (i_ext && i_ext->len) {
i_ext->len = 0;
return true;
}
return false;
}
et = __grab_extent_tree(inode);
if (!i_ext || !i_ext->len)
return false;
get_extent_info(&ei, i_ext);
write_lock(&et->lock);
if (atomic_read(&et->node_cnt))
goto out;
en = __init_extent_tree(sbi, et, &ei);
if (en) {
spin_lock(&sbi->extent_lock);
list_add_tail(&en->list, &sbi->extent_list);
spin_unlock(&sbi->extent_lock);
}
out:
write_unlock(&et->lock);
return false;
}
static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
struct extent_info *ei)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et = F2FS_I(inode)->extent_tree;
struct extent_node *en;
bool ret = false;
f2fs_bug_on(sbi, !et);
trace_f2fs_lookup_extent_tree_start(inode, pgofs);
read_lock(&et->lock);
if (et->largest.fofs <= pgofs &&
et->largest.fofs + et->largest.len > pgofs) {
*ei = et->largest;
ret = true;
stat_inc_largest_node_hit(sbi);
goto out;
}
en = __lookup_extent_tree(sbi, et, pgofs);
if (en) {
*ei = en->ei;
spin_lock(&sbi->extent_lock);
if (!list_empty(&en->list)) {
list_move_tail(&en->list, &sbi->extent_list);
et->cached_en = en;
}
spin_unlock(&sbi->extent_lock);
ret = true;
}
out:
stat_inc_total_hit(sbi);
read_unlock(&et->lock);
trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
return ret;
}
/*
* lookup extent at @fofs, if hit, return the extent
* if not, return NULL and
* @prev_ex: extent before fofs
* @next_ex: extent after fofs
* @insert_p: insert point for new extent at fofs
* in order to simpfy the insertion after.
* tree must stay unchanged between lookup and insertion.
*/
static struct extent_node *__lookup_extent_tree_ret(struct extent_tree *et,
unsigned int fofs,
struct extent_node **prev_ex,
struct extent_node **next_ex,
struct rb_node ***insert_p,
struct rb_node **insert_parent)
{
struct rb_node **pnode = &et->root.rb_node;
struct rb_node *parent = NULL, *tmp_node;
struct extent_node *en = et->cached_en;
*insert_p = NULL;
*insert_parent = NULL;
*prev_ex = NULL;
*next_ex = NULL;
if (RB_EMPTY_ROOT(&et->root))
return NULL;
if (en) {
struct extent_info *cei = &en->ei;
if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
goto lookup_neighbors;
}
while (*pnode) {
parent = *pnode;
en = rb_entry(*pnode, struct extent_node, rb_node);
if (fofs < en->ei.fofs)
pnode = &(*pnode)->rb_left;
else if (fofs >= en->ei.fofs + en->ei.len)
pnode = &(*pnode)->rb_right;
else
goto lookup_neighbors;
}
*insert_p = pnode;
*insert_parent = parent;
en = rb_entry(parent, struct extent_node, rb_node);
tmp_node = parent;
if (parent && fofs > en->ei.fofs)
tmp_node = rb_next(parent);
*next_ex = tmp_node ?
rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
tmp_node = parent;
if (parent && fofs < en->ei.fofs)
tmp_node = rb_prev(parent);
*prev_ex = tmp_node ?
rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
return NULL;
lookup_neighbors:
if (fofs == en->ei.fofs) {
/* lookup prev node for merging backward later */
tmp_node = rb_prev(&en->rb_node);
*prev_ex = tmp_node ?
rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
}
if (fofs == en->ei.fofs + en->ei.len - 1) {
/* lookup next node for merging frontward later */
tmp_node = rb_next(&en->rb_node);
*next_ex = tmp_node ?
rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
}
return en;
}
static struct extent_node *__try_merge_extent_node(struct inode *inode,
struct extent_tree *et, struct extent_info *ei,
struct extent_node *prev_ex,
struct extent_node *next_ex)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_node *en = NULL;
if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) {
prev_ex->ei.len += ei->len;
ei = &prev_ex->ei;
en = prev_ex;
}
if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) {
if (en)
__release_extent_node(sbi, et, prev_ex);
next_ex->ei.fofs = ei->fofs;
next_ex->ei.blk = ei->blk;
next_ex->ei.len += ei->len;
en = next_ex;
}
if (!en)
return NULL;
__try_update_largest_extent(inode, et, en);
spin_lock(&sbi->extent_lock);
if (!list_empty(&en->list)) {
list_move_tail(&en->list, &sbi->extent_list);
et->cached_en = en;
}
spin_unlock(&sbi->extent_lock);
return en;
}
static struct extent_node *__insert_extent_tree(struct inode *inode,
struct extent_tree *et, struct extent_info *ei,
struct rb_node **insert_p,
struct rb_node *insert_parent)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct rb_node **p = &et->root.rb_node;
struct rb_node *parent = NULL;
struct extent_node *en = NULL;
if (insert_p && insert_parent) {
parent = insert_parent;
p = insert_p;
goto do_insert;
}
while (*p) {
parent = *p;
en = rb_entry(parent, struct extent_node, rb_node);
if (ei->fofs < en->ei.fofs)
p = &(*p)->rb_left;
else if (ei->fofs >= en->ei.fofs + en->ei.len)
p = &(*p)->rb_right;
else
f2fs_bug_on(sbi, 1);
}
do_insert:
en = __attach_extent_node(sbi, et, ei, parent, p);
if (!en)
return NULL;
__try_update_largest_extent(inode, et, en);
/* update in global extent list */
spin_lock(&sbi->extent_lock);
list_add_tail(&en->list, &sbi->extent_list);
et->cached_en = en;
spin_unlock(&sbi->extent_lock);
return en;
}
static unsigned int f2fs_update_extent_tree_range(struct inode *inode,
pgoff_t fofs, block_t blkaddr, unsigned int len)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et = F2FS_I(inode)->extent_tree;
struct extent_node *en = NULL, *en1 = NULL;
struct extent_node *prev_en = NULL, *next_en = NULL;
struct extent_info ei, dei, prev;
struct rb_node **insert_p = NULL, *insert_parent = NULL;
unsigned int end = fofs + len;
unsigned int pos = (unsigned int)fofs;
if (!et)
return false;
trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, len);
write_lock(&et->lock);
if (is_inode_flag_set(inode, FI_NO_EXTENT)) {
write_unlock(&et->lock);
return false;
}
prev = et->largest;
dei.len = 0;
/*
* drop largest extent before lookup, in case it's already
* been shrunk from extent tree
*/
__drop_largest_extent(inode, fofs, len);
/* 1. lookup first extent node in range [fofs, fofs + len - 1] */
en = __lookup_extent_tree_ret(et, fofs, &prev_en, &next_en,
&insert_p, &insert_parent);
if (!en)
en = next_en;
/* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */
while (en && en->ei.fofs < end) {
unsigned int org_end;
int parts = 0; /* # of parts current extent split into */
next_en = en1 = NULL;
dei = en->ei;
org_end = dei.fofs + dei.len;
f2fs_bug_on(sbi, pos >= org_end);
if (pos > dei.fofs && pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
en->ei.len = pos - en->ei.fofs;
prev_en = en;
parts = 1;
}
if (end < org_end && org_end - end >= F2FS_MIN_EXTENT_LEN) {
if (parts) {
set_extent_info(&ei, end,
end - dei.fofs + dei.blk,
org_end - end);
en1 = __insert_extent_tree(inode, et, &ei,
NULL, NULL);
next_en = en1;
} else {
en->ei.fofs = end;
en->ei.blk += end - dei.fofs;
en->ei.len -= end - dei.fofs;
next_en = en;
}
parts++;
}
if (!next_en) {
struct rb_node *node = rb_next(&en->rb_node);
next_en = node ?
rb_entry(node, struct extent_node, rb_node)
: NULL;
}
if (parts)
__try_update_largest_extent(inode, et, en);
else
__release_extent_node(sbi, et, en);
/*
* if original extent is split into zero or two parts, extent
* tree has been altered by deletion or insertion, therefore
* invalidate pointers regard to tree.
*/
if (parts != 1) {
insert_p = NULL;
insert_parent = NULL;
}
en = next_en;
}
/* 3. update extent in extent cache */
if (blkaddr) {
set_extent_info(&ei, fofs, blkaddr, len);
if (!__try_merge_extent_node(inode, et, &ei, prev_en, next_en))
__insert_extent_tree(inode, et, &ei,
insert_p, insert_parent);
/* give up extent_cache, if split and small updates happen */
if (dei.len >= 1 &&
prev.len < F2FS_MIN_EXTENT_LEN &&
et->largest.len < F2FS_MIN_EXTENT_LEN) {
__drop_largest_extent(inode, 0, UINT_MAX);
set_inode_flag(inode, FI_NO_EXTENT);
}
}
if (is_inode_flag_set(inode, FI_NO_EXTENT))
__free_extent_tree(sbi, et);
write_unlock(&et->lock);
return !__is_extent_same(&prev, &et->largest);
}
unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
{
struct extent_tree *et, *next;
struct extent_node *en;
unsigned int node_cnt = 0, tree_cnt = 0;
int remained;
if (!test_opt(sbi, EXTENT_CACHE))
return 0;
if (!atomic_read(&sbi->total_zombie_tree))
goto free_node;
if (!down_write_trylock(&sbi->extent_tree_lock))
goto out;
/* 1. remove unreferenced extent tree */
list_for_each_entry_safe(et, next, &sbi->zombie_list, list) {
if (atomic_read(&et->node_cnt)) {
write_lock(&et->lock);
node_cnt += __free_extent_tree(sbi, et);
write_unlock(&et->lock);
}
f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
list_del_init(&et->list);
radix_tree_delete(&sbi->extent_tree_root, et->ino);
kmem_cache_free(extent_tree_slab, et);
atomic_dec(&sbi->total_ext_tree);
atomic_dec(&sbi->total_zombie_tree);
tree_cnt++;
if (node_cnt + tree_cnt >= nr_shrink)
goto unlock_out;
cond_resched();
}
up_write(&sbi->extent_tree_lock);
free_node:
/* 2. remove LRU extent entries */
if (!down_write_trylock(&sbi->extent_tree_lock))
goto out;
remained = nr_shrink - (node_cnt + tree_cnt);
spin_lock(&sbi->extent_lock);
for (; remained > 0; remained--) {
if (list_empty(&sbi->extent_list))
break;
en = list_first_entry(&sbi->extent_list,
struct extent_node, list);
et = en->et;
if (!write_trylock(&et->lock)) {
/* refresh this extent node's position in extent list */
list_move_tail(&en->list, &sbi->extent_list);
continue;
}
list_del_init(&en->list);
spin_unlock(&sbi->extent_lock);
__detach_extent_node(sbi, et, en);
write_unlock(&et->lock);
node_cnt++;
spin_lock(&sbi->extent_lock);
}
spin_unlock(&sbi->extent_lock);
unlock_out:
up_write(&sbi->extent_tree_lock);
out:
trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
return node_cnt + tree_cnt;
}
unsigned int f2fs_destroy_extent_node(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et = F2FS_I(inode)->extent_tree;
unsigned int node_cnt = 0;
if (!et || !atomic_read(&et->node_cnt))
return 0;
write_lock(&et->lock);
node_cnt = __free_extent_tree(sbi, et);
write_unlock(&et->lock);
return node_cnt;
}
void f2fs_drop_extent_tree(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et = F2FS_I(inode)->extent_tree;
set_inode_flag(inode, FI_NO_EXTENT);
write_lock(&et->lock);
__free_extent_tree(sbi, et);
__drop_largest_extent(inode, 0, UINT_MAX);
write_unlock(&et->lock);
}
void f2fs_destroy_extent_tree(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et = F2FS_I(inode)->extent_tree;
unsigned int node_cnt = 0;
if (!et)
return;
if (inode->i_nlink && !is_bad_inode(inode) &&
atomic_read(&et->node_cnt)) {
down_write(&sbi->extent_tree_lock);
list_add_tail(&et->list, &sbi->zombie_list);
atomic_inc(&sbi->total_zombie_tree);
up_write(&sbi->extent_tree_lock);
return;
}
/* free all extent info belong to this extent tree */
node_cnt = f2fs_destroy_extent_node(inode);
/* delete extent tree entry in radix tree */
down_write(&sbi->extent_tree_lock);
f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
kmem_cache_free(extent_tree_slab, et);
atomic_dec(&sbi->total_ext_tree);
up_write(&sbi->extent_tree_lock);
F2FS_I(inode)->extent_tree = NULL;
trace_f2fs_destroy_extent_tree(inode, node_cnt);
}
bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
struct extent_info *ei)
{
if (!f2fs_may_extent_tree(inode))
return false;
return f2fs_lookup_extent_tree(inode, pgofs, ei);
}
void f2fs_update_extent_cache(struct dnode_of_data *dn)
{
pgoff_t fofs;
block_t blkaddr;
if (!f2fs_may_extent_tree(dn->inode))
return;
if (dn->data_blkaddr == NEW_ADDR)
blkaddr = NULL_ADDR;
else
blkaddr = dn->data_blkaddr;
fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
dn->ofs_in_node;
f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, 1);
}
void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
pgoff_t fofs, block_t blkaddr, unsigned int len)
{
if (!f2fs_may_extent_tree(dn->inode))
return;
f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len);
}
void init_extent_cache_info(struct f2fs_sb_info *sbi)
{
INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
init_rwsem(&sbi->extent_tree_lock);
INIT_LIST_HEAD(&sbi->extent_list);
spin_lock_init(&sbi->extent_lock);
atomic_set(&sbi->total_ext_tree, 0);
INIT_LIST_HEAD(&sbi->zombie_list);
atomic_set(&sbi->total_zombie_tree, 0);
atomic_set(&sbi->total_ext_node, 0);
}
int __init create_extent_cache(void)
{
extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
sizeof(struct extent_tree));
if (!extent_tree_slab)
return -ENOMEM;
extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
sizeof(struct extent_node));
if (!extent_node_slab) {
kmem_cache_destroy(extent_tree_slab);
return -ENOMEM;
}
return 0;
}
void destroy_extent_cache(void)
{
kmem_cache_destroy(extent_node_slab);
kmem_cache_destroy(extent_tree_slab);
}