2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 22:54:11 +08:00
linux-next/mm/truncate.c
Matthew Wilcox b93b016313 page cache: use xa_lock
Remove the address_space ->tree_lock and use the xa_lock newly added to
the radix_tree_root.  Rename the address_space ->page_tree to ->i_pages,
since we don't really care that it's a tree.

[willy@infradead.org: fix nds32, fs/dax.c]
  Link: http://lkml.kernel.org/r/20180406145415.GB20605@bombadil.infradead.orgLink: http://lkml.kernel.org/r/20180313132639.17387-9-willy@infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:39 -07:00

918 lines
26 KiB
C

/*
* mm/truncate.c - code for taking down pages from address_spaces
*
* Copyright (C) 2002, Linus Torvalds
*
* 10Sep2002 Andrew Morton
* Initial version.
*/
#include <linux/kernel.h>
#include <linux/backing-dev.h>
#include <linux/dax.h>
#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/export.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/pagevec.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/buffer_head.h> /* grr. try_to_release_page,
do_invalidatepage */
#include <linux/shmem_fs.h>
#include <linux/cleancache.h>
#include <linux/rmap.h>
#include "internal.h"
/*
* Regular page slots are stabilized by the page lock even without the tree
* itself locked. These unlocked entries need verification under the tree
* lock.
*/
static inline void __clear_shadow_entry(struct address_space *mapping,
pgoff_t index, void *entry)
{
struct radix_tree_node *node;
void **slot;
if (!__radix_tree_lookup(&mapping->i_pages, index, &node, &slot))
return;
if (*slot != entry)
return;
__radix_tree_replace(&mapping->i_pages, node, slot, NULL,
workingset_update_node);
mapping->nrexceptional--;
}
static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
void *entry)
{
xa_lock_irq(&mapping->i_pages);
__clear_shadow_entry(mapping, index, entry);
xa_unlock_irq(&mapping->i_pages);
}
/*
* Unconditionally remove exceptional entries. Usually called from truncate
* path. Note that the pagevec may be altered by this function by removing
* exceptional entries similar to what pagevec_remove_exceptionals does.
*/
static void truncate_exceptional_pvec_entries(struct address_space *mapping,
struct pagevec *pvec, pgoff_t *indices,
pgoff_t end)
{
int i, j;
bool dax, lock;
/* Handled by shmem itself */
if (shmem_mapping(mapping))
return;
for (j = 0; j < pagevec_count(pvec); j++)
if (radix_tree_exceptional_entry(pvec->pages[j]))
break;
if (j == pagevec_count(pvec))
return;
dax = dax_mapping(mapping);
lock = !dax && indices[j] < end;
if (lock)
xa_lock_irq(&mapping->i_pages);
for (i = j; i < pagevec_count(pvec); i++) {
struct page *page = pvec->pages[i];
pgoff_t index = indices[i];
if (!radix_tree_exceptional_entry(page)) {
pvec->pages[j++] = page;
continue;
}
if (index >= end)
continue;
if (unlikely(dax)) {
dax_delete_mapping_entry(mapping, index);
continue;
}
__clear_shadow_entry(mapping, index, page);
}
if (lock)
xa_unlock_irq(&mapping->i_pages);
pvec->nr = j;
}
/*
* Invalidate exceptional entry if easily possible. This handles exceptional
* entries for invalidate_inode_pages().
*/
static int invalidate_exceptional_entry(struct address_space *mapping,
pgoff_t index, void *entry)
{
/* Handled by shmem itself, or for DAX we do nothing. */
if (shmem_mapping(mapping) || dax_mapping(mapping))
return 1;
clear_shadow_entry(mapping, index, entry);
return 1;
}
/*
* Invalidate exceptional entry if clean. This handles exceptional entries for
* invalidate_inode_pages2() so for DAX it evicts only clean entries.
*/
static int invalidate_exceptional_entry2(struct address_space *mapping,
pgoff_t index, void *entry)
{
/* Handled by shmem itself */
if (shmem_mapping(mapping))
return 1;
if (dax_mapping(mapping))
return dax_invalidate_mapping_entry_sync(mapping, index);
clear_shadow_entry(mapping, index, entry);
return 1;
}
/**
* do_invalidatepage - invalidate part or all of a page
* @page: the page which is affected
* @offset: start of the range to invalidate
* @length: length of the range to invalidate
*
* do_invalidatepage() is called when all or part of the page has become
* invalidated by a truncate operation.
*
* do_invalidatepage() does not have to release all buffers, but it must
* ensure that no dirty buffer is left outside @offset and that no I/O
* is underway against any of the blocks which are outside the truncation
* point. Because the caller is about to free (and possibly reuse) those
* blocks on-disk.
*/
void do_invalidatepage(struct page *page, unsigned int offset,
unsigned int length)
{
void (*invalidatepage)(struct page *, unsigned int, unsigned int);
invalidatepage = page->mapping->a_ops->invalidatepage;
#ifdef CONFIG_BLOCK
if (!invalidatepage)
invalidatepage = block_invalidatepage;
#endif
if (invalidatepage)
(*invalidatepage)(page, offset, length);
}
/*
* If truncate cannot remove the fs-private metadata from the page, the page
* becomes orphaned. It will be left on the LRU and may even be mapped into
* user pagetables if we're racing with filemap_fault().
*
* We need to bale out if page->mapping is no longer equal to the original
* mapping. This happens a) when the VM reclaimed the page while we waited on
* its lock, b) when a concurrent invalidate_mapping_pages got there first and
* c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
*/
static void
truncate_cleanup_page(struct address_space *mapping, struct page *page)
{
if (page_mapped(page)) {
pgoff_t nr = PageTransHuge(page) ? HPAGE_PMD_NR : 1;
unmap_mapping_pages(mapping, page->index, nr, false);
}
if (page_has_private(page))
do_invalidatepage(page, 0, PAGE_SIZE);
/*
* Some filesystems seem to re-dirty the page even after
* the VM has canceled the dirty bit (eg ext3 journaling).
* Hence dirty accounting check is placed after invalidation.
*/
cancel_dirty_page(page);
ClearPageMappedToDisk(page);
}
/*
* This is for invalidate_mapping_pages(). That function can be called at
* any time, and is not supposed to throw away dirty pages. But pages can
* be marked dirty at any time too, so use remove_mapping which safely
* discards clean, unused pages.
*
* Returns non-zero if the page was successfully invalidated.
*/
static int
invalidate_complete_page(struct address_space *mapping, struct page *page)
{
int ret;
if (page->mapping != mapping)
return 0;
if (page_has_private(page) && !try_to_release_page(page, 0))
return 0;
ret = remove_mapping(mapping, page);
return ret;
}
int truncate_inode_page(struct address_space *mapping, struct page *page)
{
VM_BUG_ON_PAGE(PageTail(page), page);
if (page->mapping != mapping)
return -EIO;
truncate_cleanup_page(mapping, page);
delete_from_page_cache(page);
return 0;
}
/*
* Used to get rid of pages on hardware memory corruption.
*/
int generic_error_remove_page(struct address_space *mapping, struct page *page)
{
if (!mapping)
return -EINVAL;
/*
* Only punch for normal data pages for now.
* Handling other types like directories would need more auditing.
*/
if (!S_ISREG(mapping->host->i_mode))
return -EIO;
return truncate_inode_page(mapping, page);
}
EXPORT_SYMBOL(generic_error_remove_page);
/*
* Safely invalidate one page from its pagecache mapping.
* It only drops clean, unused pages. The page must be locked.
*
* Returns 1 if the page is successfully invalidated, otherwise 0.
*/
int invalidate_inode_page(struct page *page)
{
struct address_space *mapping = page_mapping(page);
if (!mapping)
return 0;
if (PageDirty(page) || PageWriteback(page))
return 0;
if (page_mapped(page))
return 0;
return invalidate_complete_page(mapping, page);
}
/**
* truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
* @mapping: mapping to truncate
* @lstart: offset from which to truncate
* @lend: offset to which to truncate (inclusive)
*
* Truncate the page cache, removing the pages that are between
* specified offsets (and zeroing out partial pages
* if lstart or lend + 1 is not page aligned).
*
* Truncate takes two passes - the first pass is nonblocking. It will not
* block on page locks and it will not block on writeback. The second pass
* will wait. This is to prevent as much IO as possible in the affected region.
* The first pass will remove most pages, so the search cost of the second pass
* is low.
*
* We pass down the cache-hot hint to the page freeing code. Even if the
* mapping is large, it is probably the case that the final pages are the most
* recently touched, and freeing happens in ascending file offset order.
*
* Note that since ->invalidatepage() accepts range to invalidate
* truncate_inode_pages_range is able to handle cases where lend + 1 is not
* page aligned properly.
*/
void truncate_inode_pages_range(struct address_space *mapping,
loff_t lstart, loff_t lend)
{
pgoff_t start; /* inclusive */
pgoff_t end; /* exclusive */
unsigned int partial_start; /* inclusive */
unsigned int partial_end; /* exclusive */
struct pagevec pvec;
pgoff_t indices[PAGEVEC_SIZE];
pgoff_t index;
int i;
if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
goto out;
/* Offsets within partial pages */
partial_start = lstart & (PAGE_SIZE - 1);
partial_end = (lend + 1) & (PAGE_SIZE - 1);
/*
* 'start' and 'end' always covers the range of pages to be fully
* truncated. Partial pages are covered with 'partial_start' at the
* start of the range and 'partial_end' at the end of the range.
* Note that 'end' is exclusive while 'lend' is inclusive.
*/
start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (lend == -1)
/*
* lend == -1 indicates end-of-file so we have to set 'end'
* to the highest possible pgoff_t and since the type is
* unsigned we're using -1.
*/
end = -1;
else
end = (lend + 1) >> PAGE_SHIFT;
pagevec_init(&pvec);
index = start;
while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
min(end - index, (pgoff_t)PAGEVEC_SIZE),
indices)) {
/*
* Pagevec array has exceptional entries and we may also fail
* to lock some pages. So we store pages that can be deleted
* in a new pagevec.
*/
struct pagevec locked_pvec;
pagevec_init(&locked_pvec);
for (i = 0; i < pagevec_count(&pvec); i++) {
struct page *page = pvec.pages[i];
/* We rely upon deletion not changing page->index */
index = indices[i];
if (index >= end)
break;
if (radix_tree_exceptional_entry(page))
continue;
if (!trylock_page(page))
continue;
WARN_ON(page_to_index(page) != index);
if (PageWriteback(page)) {
unlock_page(page);
continue;
}
if (page->mapping != mapping) {
unlock_page(page);
continue;
}
pagevec_add(&locked_pvec, page);
}
for (i = 0; i < pagevec_count(&locked_pvec); i++)
truncate_cleanup_page(mapping, locked_pvec.pages[i]);
delete_from_page_cache_batch(mapping, &locked_pvec);
for (i = 0; i < pagevec_count(&locked_pvec); i++)
unlock_page(locked_pvec.pages[i]);
truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
pagevec_release(&pvec);
cond_resched();
index++;
}
if (partial_start) {
struct page *page = find_lock_page(mapping, start - 1);
if (page) {
unsigned int top = PAGE_SIZE;
if (start > end) {
/* Truncation within a single page */
top = partial_end;
partial_end = 0;
}
wait_on_page_writeback(page);
zero_user_segment(page, partial_start, top);
cleancache_invalidate_page(mapping, page);
if (page_has_private(page))
do_invalidatepage(page, partial_start,
top - partial_start);
unlock_page(page);
put_page(page);
}
}
if (partial_end) {
struct page *page = find_lock_page(mapping, end);
if (page) {
wait_on_page_writeback(page);
zero_user_segment(page, 0, partial_end);
cleancache_invalidate_page(mapping, page);
if (page_has_private(page))
do_invalidatepage(page, 0,
partial_end);
unlock_page(page);
put_page(page);
}
}
/*
* If the truncation happened within a single page no pages
* will be released, just zeroed, so we can bail out now.
*/
if (start >= end)
goto out;
index = start;
for ( ; ; ) {
cond_resched();
if (!pagevec_lookup_entries(&pvec, mapping, index,
min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
/* If all gone from start onwards, we're done */
if (index == start)
break;
/* Otherwise restart to make sure all gone */
index = start;
continue;
}
if (index == start && indices[0] >= end) {
/* All gone out of hole to be punched, we're done */
pagevec_remove_exceptionals(&pvec);
pagevec_release(&pvec);
break;
}
for (i = 0; i < pagevec_count(&pvec); i++) {
struct page *page = pvec.pages[i];
/* We rely upon deletion not changing page->index */
index = indices[i];
if (index >= end) {
/* Restart punch to make sure all gone */
index = start - 1;
break;
}
if (radix_tree_exceptional_entry(page))
continue;
lock_page(page);
WARN_ON(page_to_index(page) != index);
wait_on_page_writeback(page);
truncate_inode_page(mapping, page);
unlock_page(page);
}
truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
pagevec_release(&pvec);
index++;
}
out:
cleancache_invalidate_inode(mapping);
}
EXPORT_SYMBOL(truncate_inode_pages_range);
/**
* truncate_inode_pages - truncate *all* the pages from an offset
* @mapping: mapping to truncate
* @lstart: offset from which to truncate
*
* Called under (and serialised by) inode->i_mutex.
*
* Note: When this function returns, there can be a page in the process of
* deletion (inside __delete_from_page_cache()) in the specified range. Thus
* mapping->nrpages can be non-zero when this function returns even after
* truncation of the whole mapping.
*/
void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
{
truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
}
EXPORT_SYMBOL(truncate_inode_pages);
/**
* truncate_inode_pages_final - truncate *all* pages before inode dies
* @mapping: mapping to truncate
*
* Called under (and serialized by) inode->i_mutex.
*
* Filesystems have to use this in the .evict_inode path to inform the
* VM that this is the final truncate and the inode is going away.
*/
void truncate_inode_pages_final(struct address_space *mapping)
{
unsigned long nrexceptional;
unsigned long nrpages;
/*
* Page reclaim can not participate in regular inode lifetime
* management (can't call iput()) and thus can race with the
* inode teardown. Tell it when the address space is exiting,
* so that it does not install eviction information after the
* final truncate has begun.
*/
mapping_set_exiting(mapping);
/*
* When reclaim installs eviction entries, it increases
* nrexceptional first, then decreases nrpages. Make sure we see
* this in the right order or we might miss an entry.
*/
nrpages = mapping->nrpages;
smp_rmb();
nrexceptional = mapping->nrexceptional;
if (nrpages || nrexceptional) {
/*
* As truncation uses a lockless tree lookup, cycle
* the tree lock to make sure any ongoing tree
* modification that does not see AS_EXITING is
* completed before starting the final truncate.
*/
xa_lock_irq(&mapping->i_pages);
xa_unlock_irq(&mapping->i_pages);
truncate_inode_pages(mapping, 0);
}
}
EXPORT_SYMBOL(truncate_inode_pages_final);
/**
* invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
* @mapping: the address_space which holds the pages to invalidate
* @start: the offset 'from' which to invalidate
* @end: the offset 'to' which to invalidate (inclusive)
*
* This function only removes the unlocked pages, if you want to
* remove all the pages of one inode, you must call truncate_inode_pages.
*
* invalidate_mapping_pages() will not block on IO activity. It will not
* invalidate pages which are dirty, locked, under writeback or mapped into
* pagetables.
*/
unsigned long invalidate_mapping_pages(struct address_space *mapping,
pgoff_t start, pgoff_t end)
{
pgoff_t indices[PAGEVEC_SIZE];
struct pagevec pvec;
pgoff_t index = start;
unsigned long ret;
unsigned long count = 0;
int i;
pagevec_init(&pvec);
while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
indices)) {
for (i = 0; i < pagevec_count(&pvec); i++) {
struct page *page = pvec.pages[i];
/* We rely upon deletion not changing page->index */
index = indices[i];
if (index > end)
break;
if (radix_tree_exceptional_entry(page)) {
invalidate_exceptional_entry(mapping, index,
page);
continue;
}
if (!trylock_page(page))
continue;
WARN_ON(page_to_index(page) != index);
/* Middle of THP: skip */
if (PageTransTail(page)) {
unlock_page(page);
continue;
} else if (PageTransHuge(page)) {
index += HPAGE_PMD_NR - 1;
i += HPAGE_PMD_NR - 1;
/*
* 'end' is in the middle of THP. Don't
* invalidate the page as the part outside of
* 'end' could be still useful.
*/
if (index > end) {
unlock_page(page);
continue;
}
}
ret = invalidate_inode_page(page);
unlock_page(page);
/*
* Invalidation is a hint that the page is no longer
* of interest and try to speed up its reclaim.
*/
if (!ret)
deactivate_file_page(page);
count += ret;
}
pagevec_remove_exceptionals(&pvec);
pagevec_release(&pvec);
cond_resched();
index++;
}
return count;
}
EXPORT_SYMBOL(invalidate_mapping_pages);
/*
* This is like invalidate_complete_page(), except it ignores the page's
* refcount. We do this because invalidate_inode_pages2() needs stronger
* invalidation guarantees, and cannot afford to leave pages behind because
* shrink_page_list() has a temp ref on them, or because they're transiently
* sitting in the lru_cache_add() pagevecs.
*/
static int
invalidate_complete_page2(struct address_space *mapping, struct page *page)
{
unsigned long flags;
if (page->mapping != mapping)
return 0;
if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
return 0;
xa_lock_irqsave(&mapping->i_pages, flags);
if (PageDirty(page))
goto failed;
BUG_ON(page_has_private(page));
__delete_from_page_cache(page, NULL);
xa_unlock_irqrestore(&mapping->i_pages, flags);
if (mapping->a_ops->freepage)
mapping->a_ops->freepage(page);
put_page(page); /* pagecache ref */
return 1;
failed:
xa_unlock_irqrestore(&mapping->i_pages, flags);
return 0;
}
static int do_launder_page(struct address_space *mapping, struct page *page)
{
if (!PageDirty(page))
return 0;
if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
return 0;
return mapping->a_ops->launder_page(page);
}
/**
* invalidate_inode_pages2_range - remove range of pages from an address_space
* @mapping: the address_space
* @start: the page offset 'from' which to invalidate
* @end: the page offset 'to' which to invalidate (inclusive)
*
* Any pages which are found to be mapped into pagetables are unmapped prior to
* invalidation.
*
* Returns -EBUSY if any pages could not be invalidated.
*/
int invalidate_inode_pages2_range(struct address_space *mapping,
pgoff_t start, pgoff_t end)
{
pgoff_t indices[PAGEVEC_SIZE];
struct pagevec pvec;
pgoff_t index;
int i;
int ret = 0;
int ret2 = 0;
int did_range_unmap = 0;
if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
goto out;
pagevec_init(&pvec);
index = start;
while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
indices)) {
for (i = 0; i < pagevec_count(&pvec); i++) {
struct page *page = pvec.pages[i];
/* We rely upon deletion not changing page->index */
index = indices[i];
if (index > end)
break;
if (radix_tree_exceptional_entry(page)) {
if (!invalidate_exceptional_entry2(mapping,
index, page))
ret = -EBUSY;
continue;
}
lock_page(page);
WARN_ON(page_to_index(page) != index);
if (page->mapping != mapping) {
unlock_page(page);
continue;
}
wait_on_page_writeback(page);
if (page_mapped(page)) {
if (!did_range_unmap) {
/*
* Zap the rest of the file in one hit.
*/
unmap_mapping_pages(mapping, index,
(1 + end - index), false);
did_range_unmap = 1;
} else {
/*
* Just zap this page
*/
unmap_mapping_pages(mapping, index,
1, false);
}
}
BUG_ON(page_mapped(page));
ret2 = do_launder_page(mapping, page);
if (ret2 == 0) {
if (!invalidate_complete_page2(mapping, page))
ret2 = -EBUSY;
}
if (ret2 < 0)
ret = ret2;
unlock_page(page);
}
pagevec_remove_exceptionals(&pvec);
pagevec_release(&pvec);
cond_resched();
index++;
}
/*
* For DAX we invalidate page tables after invalidating radix tree. We
* could invalidate page tables while invalidating each entry however
* that would be expensive. And doing range unmapping before doesn't
* work as we have no cheap way to find whether radix tree entry didn't
* get remapped later.
*/
if (dax_mapping(mapping)) {
unmap_mapping_pages(mapping, start, end - start + 1, false);
}
out:
cleancache_invalidate_inode(mapping);
return ret;
}
EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
/**
* invalidate_inode_pages2 - remove all pages from an address_space
* @mapping: the address_space
*
* Any pages which are found to be mapped into pagetables are unmapped prior to
* invalidation.
*
* Returns -EBUSY if any pages could not be invalidated.
*/
int invalidate_inode_pages2(struct address_space *mapping)
{
return invalidate_inode_pages2_range(mapping, 0, -1);
}
EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
/**
* truncate_pagecache - unmap and remove pagecache that has been truncated
* @inode: inode
* @newsize: new file size
*
* inode's new i_size must already be written before truncate_pagecache
* is called.
*
* This function should typically be called before the filesystem
* releases resources associated with the freed range (eg. deallocates
* blocks). This way, pagecache will always stay logically coherent
* with on-disk format, and the filesystem would not have to deal with
* situations such as writepage being called for a page that has already
* had its underlying blocks deallocated.
*/
void truncate_pagecache(struct inode *inode, loff_t newsize)
{
struct address_space *mapping = inode->i_mapping;
loff_t holebegin = round_up(newsize, PAGE_SIZE);
/*
* unmap_mapping_range is called twice, first simply for
* efficiency so that truncate_inode_pages does fewer
* single-page unmaps. However after this first call, and
* before truncate_inode_pages finishes, it is possible for
* private pages to be COWed, which remain after
* truncate_inode_pages finishes, hence the second
* unmap_mapping_range call must be made for correctness.
*/
unmap_mapping_range(mapping, holebegin, 0, 1);
truncate_inode_pages(mapping, newsize);
unmap_mapping_range(mapping, holebegin, 0, 1);
}
EXPORT_SYMBOL(truncate_pagecache);
/**
* truncate_setsize - update inode and pagecache for a new file size
* @inode: inode
* @newsize: new file size
*
* truncate_setsize updates i_size and performs pagecache truncation (if
* necessary) to @newsize. It will be typically be called from the filesystem's
* setattr function when ATTR_SIZE is passed in.
*
* Must be called with a lock serializing truncates and writes (generally
* i_mutex but e.g. xfs uses a different lock) and before all filesystem
* specific block truncation has been performed.
*/
void truncate_setsize(struct inode *inode, loff_t newsize)
{
loff_t oldsize = inode->i_size;
i_size_write(inode, newsize);
if (newsize > oldsize)
pagecache_isize_extended(inode, oldsize, newsize);
truncate_pagecache(inode, newsize);
}
EXPORT_SYMBOL(truncate_setsize);
/**
* pagecache_isize_extended - update pagecache after extension of i_size
* @inode: inode for which i_size was extended
* @from: original inode size
* @to: new inode size
*
* Handle extension of inode size either caused by extending truncate or by
* write starting after current i_size. We mark the page straddling current
* i_size RO so that page_mkwrite() is called on the nearest write access to
* the page. This way filesystem can be sure that page_mkwrite() is called on
* the page before user writes to the page via mmap after the i_size has been
* changed.
*
* The function must be called after i_size is updated so that page fault
* coming after we unlock the page will already see the new i_size.
* The function must be called while we still hold i_mutex - this not only
* makes sure i_size is stable but also that userspace cannot observe new
* i_size value before we are prepared to store mmap writes at new inode size.
*/
void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
{
int bsize = i_blocksize(inode);
loff_t rounded_from;
struct page *page;
pgoff_t index;
WARN_ON(to > inode->i_size);
if (from >= to || bsize == PAGE_SIZE)
return;
/* Page straddling @from will not have any hole block created? */
rounded_from = round_up(from, bsize);
if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
return;
index = from >> PAGE_SHIFT;
page = find_lock_page(inode->i_mapping, index);
/* Page not cached? Nothing to do */
if (!page)
return;
/*
* See clear_page_dirty_for_io() for details why set_page_dirty()
* is needed.
*/
if (page_mkclean(page))
set_page_dirty(page);
unlock_page(page);
put_page(page);
}
EXPORT_SYMBOL(pagecache_isize_extended);
/**
* truncate_pagecache_range - unmap and remove pagecache that is hole-punched
* @inode: inode
* @lstart: offset of beginning of hole
* @lend: offset of last byte of hole
*
* This function should typically be called before the filesystem
* releases resources associated with the freed range (eg. deallocates
* blocks). This way, pagecache will always stay logically coherent
* with on-disk format, and the filesystem would not have to deal with
* situations such as writepage being called for a page that has already
* had its underlying blocks deallocated.
*/
void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
{
struct address_space *mapping = inode->i_mapping;
loff_t unmap_start = round_up(lstart, PAGE_SIZE);
loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
/*
* This rounding is currently just for example: unmap_mapping_range
* expands its hole outwards, whereas we want it to contract the hole
* inwards. However, existing callers of truncate_pagecache_range are
* doing their own page rounding first. Note that unmap_mapping_range
* allows holelen 0 for all, and we allow lend -1 for end of file.
*/
/*
* Unlike in truncate_pagecache, unmap_mapping_range is called only
* once (before truncating pagecache), and without "even_cows" flag:
* hole-punching should not remove private COWed pages from the hole.
*/
if ((u64)unmap_end > (u64)unmap_start)
unmap_mapping_range(mapping, unmap_start,
1 + unmap_end - unmap_start, 0);
truncate_inode_pages_range(mapping, lstart, lend);
}
EXPORT_SYMBOL(truncate_pagecache_range);