2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-16 01:24:08 +08:00
linux-next/kernel/fork.c
Kees Cook e01e80634e fork: unconditionally clear stack on fork
One of the classes of kernel stack content leaks[1] is exposing the
contents of prior heap or stack contents when a new process stack is
allocated.  Normally, those stacks are not zeroed, and the old contents
remain in place.  In the face of stack content exposure flaws, those
contents can leak to userspace.

Fixing this will make the kernel no longer vulnerable to these flaws, as
the stack will be wiped each time a stack is assigned to a new process.
There's not a meaningful change in runtime performance; it almost looks
like it provides a benefit.

Performing back-to-back kernel builds before:
	Run times: 157.86 157.09 158.90 160.94 160.80
	Mean: 159.12
	Std Dev: 1.54

and after:
	Run times: 159.31 157.34 156.71 158.15 160.81
	Mean: 158.46
	Std Dev: 1.46

Instead of making this a build or runtime config, Andy Lutomirski
recommended this just be enabled by default.

[1] A noisy search for many kinds of stack content leaks can be seen here:
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+kernel+stack+leak

I did some more with perf and cycle counts on running 100,000 execs of
/bin/true.

before:
Cycles: 218858861551 218853036130 214727610969 227656844122 224980542841
Mean:  221015379122.60
Std Dev: 4662486552.47

after:
Cycles: 213868945060 213119275204 211820169456 224426673259 225489986348
Mean:  217745009865.40
Std Dev: 5935559279.99

It continues to look like it's faster, though the deviation is rather
wide, but I'm not sure what I could do that would be less noisy.  I'm
open to ideas!

Link: http://lkml.kernel.org/r/20180221021659.GA37073@beast
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Rasmus Villemoes <rasmus.villemoes@prevas.dk>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-20 17:18:35 -07:00

2525 lines
60 KiB
C

/*
* linux/kernel/fork.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
/*
* 'fork.c' contains the help-routines for the 'fork' system call
* (see also entry.S and others).
* Fork is rather simple, once you get the hang of it, but the memory
* management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
*/
#include <linux/slab.h>
#include <linux/sched/autogroup.h>
#include <linux/sched/mm.h>
#include <linux/sched/coredump.h>
#include <linux/sched/user.h>
#include <linux/sched/numa_balancing.h>
#include <linux/sched/stat.h>
#include <linux/sched/task.h>
#include <linux/sched/task_stack.h>
#include <linux/sched/cputime.h>
#include <linux/rtmutex.h>
#include <linux/init.h>
#include <linux/unistd.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/completion.h>
#include <linux/personality.h>
#include <linux/mempolicy.h>
#include <linux/sem.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/iocontext.h>
#include <linux/key.h>
#include <linux/binfmts.h>
#include <linux/mman.h>
#include <linux/mmu_notifier.h>
#include <linux/hmm.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/vmacache.h>
#include <linux/nsproxy.h>
#include <linux/capability.h>
#include <linux/cpu.h>
#include <linux/cgroup.h>
#include <linux/security.h>
#include <linux/hugetlb.h>
#include <linux/seccomp.h>
#include <linux/swap.h>
#include <linux/syscalls.h>
#include <linux/jiffies.h>
#include <linux/futex.h>
#include <linux/compat.h>
#include <linux/kthread.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/rcupdate.h>
#include <linux/ptrace.h>
#include <linux/mount.h>
#include <linux/audit.h>
#include <linux/memcontrol.h>
#include <linux/ftrace.h>
#include <linux/proc_fs.h>
#include <linux/profile.h>
#include <linux/rmap.h>
#include <linux/ksm.h>
#include <linux/acct.h>
#include <linux/userfaultfd_k.h>
#include <linux/tsacct_kern.h>
#include <linux/cn_proc.h>
#include <linux/freezer.h>
#include <linux/delayacct.h>
#include <linux/taskstats_kern.h>
#include <linux/random.h>
#include <linux/tty.h>
#include <linux/blkdev.h>
#include <linux/fs_struct.h>
#include <linux/magic.h>
#include <linux/sched/mm.h>
#include <linux/perf_event.h>
#include <linux/posix-timers.h>
#include <linux/user-return-notifier.h>
#include <linux/oom.h>
#include <linux/khugepaged.h>
#include <linux/signalfd.h>
#include <linux/uprobes.h>
#include <linux/aio.h>
#include <linux/compiler.h>
#include <linux/sysctl.h>
#include <linux/kcov.h>
#include <linux/livepatch.h>
#include <linux/thread_info.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <linux/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <trace/events/sched.h>
#define CREATE_TRACE_POINTS
#include <trace/events/task.h>
/*
* Minimum number of threads to boot the kernel
*/
#define MIN_THREADS 20
/*
* Maximum number of threads
*/
#define MAX_THREADS FUTEX_TID_MASK
/*
* Protected counters by write_lock_irq(&tasklist_lock)
*/
unsigned long total_forks; /* Handle normal Linux uptimes. */
int nr_threads; /* The idle threads do not count.. */
int max_threads; /* tunable limit on nr_threads */
DEFINE_PER_CPU(unsigned long, process_counts) = 0;
__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
#ifdef CONFIG_PROVE_RCU
int lockdep_tasklist_lock_is_held(void)
{
return lockdep_is_held(&tasklist_lock);
}
EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
#endif /* #ifdef CONFIG_PROVE_RCU */
int nr_processes(void)
{
int cpu;
int total = 0;
for_each_possible_cpu(cpu)
total += per_cpu(process_counts, cpu);
return total;
}
void __weak arch_release_task_struct(struct task_struct *tsk)
{
}
#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
static struct kmem_cache *task_struct_cachep;
static inline struct task_struct *alloc_task_struct_node(int node)
{
return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
}
static inline void free_task_struct(struct task_struct *tsk)
{
kmem_cache_free(task_struct_cachep, tsk);
}
#endif
void __weak arch_release_thread_stack(unsigned long *stack)
{
}
#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
/*
* Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
* kmemcache based allocator.
*/
# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
#ifdef CONFIG_VMAP_STACK
/*
* vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
* flush. Try to minimize the number of calls by caching stacks.
*/
#define NR_CACHED_STACKS 2
static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
static int free_vm_stack_cache(unsigned int cpu)
{
struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
int i;
for (i = 0; i < NR_CACHED_STACKS; i++) {
struct vm_struct *vm_stack = cached_vm_stacks[i];
if (!vm_stack)
continue;
vfree(vm_stack->addr);
cached_vm_stacks[i] = NULL;
}
return 0;
}
#endif
static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
{
#ifdef CONFIG_VMAP_STACK
void *stack;
int i;
for (i = 0; i < NR_CACHED_STACKS; i++) {
struct vm_struct *s;
s = this_cpu_xchg(cached_stacks[i], NULL);
if (!s)
continue;
/* Clear stale pointers from reused stack. */
memset(s->addr, 0, THREAD_SIZE);
tsk->stack_vm_area = s;
return s->addr;
}
stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
VMALLOC_START, VMALLOC_END,
THREADINFO_GFP,
PAGE_KERNEL,
0, node, __builtin_return_address(0));
/*
* We can't call find_vm_area() in interrupt context, and
* free_thread_stack() can be called in interrupt context,
* so cache the vm_struct.
*/
if (stack)
tsk->stack_vm_area = find_vm_area(stack);
return stack;
#else
struct page *page = alloc_pages_node(node, THREADINFO_GFP,
THREAD_SIZE_ORDER);
return page ? page_address(page) : NULL;
#endif
}
static inline void free_thread_stack(struct task_struct *tsk)
{
#ifdef CONFIG_VMAP_STACK
if (task_stack_vm_area(tsk)) {
int i;
for (i = 0; i < NR_CACHED_STACKS; i++) {
if (this_cpu_cmpxchg(cached_stacks[i],
NULL, tsk->stack_vm_area) != NULL)
continue;
return;
}
vfree_atomic(tsk->stack);
return;
}
#endif
__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
}
# else
static struct kmem_cache *thread_stack_cache;
static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
int node)
{
return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
}
static void free_thread_stack(struct task_struct *tsk)
{
kmem_cache_free(thread_stack_cache, tsk->stack);
}
void thread_stack_cache_init(void)
{
thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
THREAD_SIZE, THREAD_SIZE, 0, 0,
THREAD_SIZE, NULL);
BUG_ON(thread_stack_cache == NULL);
}
# endif
#endif
/* SLAB cache for signal_struct structures (tsk->signal) */
static struct kmem_cache *signal_cachep;
/* SLAB cache for sighand_struct structures (tsk->sighand) */
struct kmem_cache *sighand_cachep;
/* SLAB cache for files_struct structures (tsk->files) */
struct kmem_cache *files_cachep;
/* SLAB cache for fs_struct structures (tsk->fs) */
struct kmem_cache *fs_cachep;
/* SLAB cache for vm_area_struct structures */
struct kmem_cache *vm_area_cachep;
/* SLAB cache for mm_struct structures (tsk->mm) */
static struct kmem_cache *mm_cachep;
static void account_kernel_stack(struct task_struct *tsk, int account)
{
void *stack = task_stack_page(tsk);
struct vm_struct *vm = task_stack_vm_area(tsk);
BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
if (vm) {
int i;
BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
mod_zone_page_state(page_zone(vm->pages[i]),
NR_KERNEL_STACK_KB,
PAGE_SIZE / 1024 * account);
}
/* All stack pages belong to the same memcg. */
mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
account * (THREAD_SIZE / 1024));
} else {
/*
* All stack pages are in the same zone and belong to the
* same memcg.
*/
struct page *first_page = virt_to_page(stack);
mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
THREAD_SIZE / 1024 * account);
mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
account * (THREAD_SIZE / 1024));
}
}
static void release_task_stack(struct task_struct *tsk)
{
if (WARN_ON(tsk->state != TASK_DEAD))
return; /* Better to leak the stack than to free prematurely */
account_kernel_stack(tsk, -1);
arch_release_thread_stack(tsk->stack);
free_thread_stack(tsk);
tsk->stack = NULL;
#ifdef CONFIG_VMAP_STACK
tsk->stack_vm_area = NULL;
#endif
}
#ifdef CONFIG_THREAD_INFO_IN_TASK
void put_task_stack(struct task_struct *tsk)
{
if (atomic_dec_and_test(&tsk->stack_refcount))
release_task_stack(tsk);
}
#endif
void free_task(struct task_struct *tsk)
{
#ifndef CONFIG_THREAD_INFO_IN_TASK
/*
* The task is finally done with both the stack and thread_info,
* so free both.
*/
release_task_stack(tsk);
#else
/*
* If the task had a separate stack allocation, it should be gone
* by now.
*/
WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
#endif
rt_mutex_debug_task_free(tsk);
ftrace_graph_exit_task(tsk);
put_seccomp_filter(tsk);
arch_release_task_struct(tsk);
if (tsk->flags & PF_KTHREAD)
free_kthread_struct(tsk);
free_task_struct(tsk);
}
EXPORT_SYMBOL(free_task);
#ifdef CONFIG_MMU
static __latent_entropy int dup_mmap(struct mm_struct *mm,
struct mm_struct *oldmm)
{
struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
struct rb_node **rb_link, *rb_parent;
int retval;
unsigned long charge;
LIST_HEAD(uf);
uprobe_start_dup_mmap();
if (down_write_killable(&oldmm->mmap_sem)) {
retval = -EINTR;
goto fail_uprobe_end;
}
flush_cache_dup_mm(oldmm);
uprobe_dup_mmap(oldmm, mm);
/*
* Not linked in yet - no deadlock potential:
*/
down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
/* No ordering required: file already has been exposed. */
RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
mm->total_vm = oldmm->total_vm;
mm->data_vm = oldmm->data_vm;
mm->exec_vm = oldmm->exec_vm;
mm->stack_vm = oldmm->stack_vm;
rb_link = &mm->mm_rb.rb_node;
rb_parent = NULL;
pprev = &mm->mmap;
retval = ksm_fork(mm, oldmm);
if (retval)
goto out;
retval = khugepaged_fork(mm, oldmm);
if (retval)
goto out;
prev = NULL;
for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
struct file *file;
if (mpnt->vm_flags & VM_DONTCOPY) {
vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
continue;
}
charge = 0;
if (mpnt->vm_flags & VM_ACCOUNT) {
unsigned long len = vma_pages(mpnt);
if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
goto fail_nomem;
charge = len;
}
tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
if (!tmp)
goto fail_nomem;
*tmp = *mpnt;
INIT_LIST_HEAD(&tmp->anon_vma_chain);
retval = vma_dup_policy(mpnt, tmp);
if (retval)
goto fail_nomem_policy;
tmp->vm_mm = mm;
retval = dup_userfaultfd(tmp, &uf);
if (retval)
goto fail_nomem_anon_vma_fork;
if (tmp->vm_flags & VM_WIPEONFORK) {
/* VM_WIPEONFORK gets a clean slate in the child. */
tmp->anon_vma = NULL;
if (anon_vma_prepare(tmp))
goto fail_nomem_anon_vma_fork;
} else if (anon_vma_fork(tmp, mpnt))
goto fail_nomem_anon_vma_fork;
tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
tmp->vm_next = tmp->vm_prev = NULL;
file = tmp->vm_file;
if (file) {
struct inode *inode = file_inode(file);
struct address_space *mapping = file->f_mapping;
get_file(file);
if (tmp->vm_flags & VM_DENYWRITE)
atomic_dec(&inode->i_writecount);
i_mmap_lock_write(mapping);
if (tmp->vm_flags & VM_SHARED)
atomic_inc(&mapping->i_mmap_writable);
flush_dcache_mmap_lock(mapping);
/* insert tmp into the share list, just after mpnt */
vma_interval_tree_insert_after(tmp, mpnt,
&mapping->i_mmap);
flush_dcache_mmap_unlock(mapping);
i_mmap_unlock_write(mapping);
}
/*
* Clear hugetlb-related page reserves for children. This only
* affects MAP_PRIVATE mappings. Faults generated by the child
* are not guaranteed to succeed, even if read-only
*/
if (is_vm_hugetlb_page(tmp))
reset_vma_resv_huge_pages(tmp);
/*
* Link in the new vma and copy the page table entries.
*/
*pprev = tmp;
pprev = &tmp->vm_next;
tmp->vm_prev = prev;
prev = tmp;
__vma_link_rb(mm, tmp, rb_link, rb_parent);
rb_link = &tmp->vm_rb.rb_right;
rb_parent = &tmp->vm_rb;
mm->map_count++;
if (!(tmp->vm_flags & VM_WIPEONFORK))
retval = copy_page_range(mm, oldmm, mpnt);
if (tmp->vm_ops && tmp->vm_ops->open)
tmp->vm_ops->open(tmp);
if (retval)
goto out;
}
/* a new mm has just been created */
arch_dup_mmap(oldmm, mm);
retval = 0;
out:
up_write(&mm->mmap_sem);
flush_tlb_mm(oldmm);
up_write(&oldmm->mmap_sem);
dup_userfaultfd_complete(&uf);
fail_uprobe_end:
uprobe_end_dup_mmap();
return retval;
fail_nomem_anon_vma_fork:
mpol_put(vma_policy(tmp));
fail_nomem_policy:
kmem_cache_free(vm_area_cachep, tmp);
fail_nomem:
retval = -ENOMEM;
vm_unacct_memory(charge);
goto out;
}
static inline int mm_alloc_pgd(struct mm_struct *mm)
{
mm->pgd = pgd_alloc(mm);
if (unlikely(!mm->pgd))
return -ENOMEM;
return 0;
}
static inline void mm_free_pgd(struct mm_struct *mm)
{
pgd_free(mm, mm->pgd);
}
#else
static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
{
down_write(&oldmm->mmap_sem);
RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
up_write(&oldmm->mmap_sem);
return 0;
}
#define mm_alloc_pgd(mm) (0)
#define mm_free_pgd(mm)
#endif /* CONFIG_MMU */
static void check_mm(struct mm_struct *mm)
{
int i;
for (i = 0; i < NR_MM_COUNTERS; i++) {
long x = atomic_long_read(&mm->rss_stat.count[i]);
if (unlikely(x))
printk(KERN_ALERT "BUG: Bad rss-counter state "
"mm:%p idx:%d val:%ld\n", mm, i, x);
}
if (mm_pgtables_bytes(mm))
pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
mm_pgtables_bytes(mm));
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
#endif
}
#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
/*
* Called when the last reference to the mm
* is dropped: either by a lazy thread or by
* mmput. Free the page directory and the mm.
*/
void __mmdrop(struct mm_struct *mm)
{
BUG_ON(mm == &init_mm);
WARN_ON_ONCE(mm == current->mm);
WARN_ON_ONCE(mm == current->active_mm);
mm_free_pgd(mm);
destroy_context(mm);
hmm_mm_destroy(mm);
mmu_notifier_mm_destroy(mm);
check_mm(mm);
put_user_ns(mm->user_ns);
free_mm(mm);
}
EXPORT_SYMBOL_GPL(__mmdrop);
static void mmdrop_async_fn(struct work_struct *work)
{
struct mm_struct *mm;
mm = container_of(work, struct mm_struct, async_put_work);
__mmdrop(mm);
}
static void mmdrop_async(struct mm_struct *mm)
{
if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
schedule_work(&mm->async_put_work);
}
}
static inline void free_signal_struct(struct signal_struct *sig)
{
taskstats_tgid_free(sig);
sched_autogroup_exit(sig);
/*
* __mmdrop is not safe to call from softirq context on x86 due to
* pgd_dtor so postpone it to the async context
*/
if (sig->oom_mm)
mmdrop_async(sig->oom_mm);
kmem_cache_free(signal_cachep, sig);
}
static inline void put_signal_struct(struct signal_struct *sig)
{
if (atomic_dec_and_test(&sig->sigcnt))
free_signal_struct(sig);
}
void __put_task_struct(struct task_struct *tsk)
{
WARN_ON(!tsk->exit_state);
WARN_ON(atomic_read(&tsk->usage));
WARN_ON(tsk == current);
cgroup_free(tsk);
task_numa_free(tsk);
security_task_free(tsk);
exit_creds(tsk);
delayacct_tsk_free(tsk);
put_signal_struct(tsk->signal);
if (!profile_handoff_task(tsk))
free_task(tsk);
}
EXPORT_SYMBOL_GPL(__put_task_struct);
void __init __weak arch_task_cache_init(void) { }
/*
* set_max_threads
*/
static void set_max_threads(unsigned int max_threads_suggested)
{
u64 threads;
/*
* The number of threads shall be limited such that the thread
* structures may only consume a small part of the available memory.
*/
if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
threads = MAX_THREADS;
else
threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
(u64) THREAD_SIZE * 8UL);
if (threads > max_threads_suggested)
threads = max_threads_suggested;
max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
}
#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
/* Initialized by the architecture: */
int arch_task_struct_size __read_mostly;
#endif
static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
{
/* Fetch thread_struct whitelist for the architecture. */
arch_thread_struct_whitelist(offset, size);
/*
* Handle zero-sized whitelist or empty thread_struct, otherwise
* adjust offset to position of thread_struct in task_struct.
*/
if (unlikely(*size == 0))
*offset = 0;
else
*offset += offsetof(struct task_struct, thread);
}
void __init fork_init(void)
{
int i;
#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
#ifndef ARCH_MIN_TASKALIGN
#define ARCH_MIN_TASKALIGN 0
#endif
int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
unsigned long useroffset, usersize;
/* create a slab on which task_structs can be allocated */
task_struct_whitelist(&useroffset, &usersize);
task_struct_cachep = kmem_cache_create_usercopy("task_struct",
arch_task_struct_size, align,
SLAB_PANIC|SLAB_ACCOUNT,
useroffset, usersize, NULL);
#endif
/* do the arch specific task caches init */
arch_task_cache_init();
set_max_threads(MAX_THREADS);
init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
init_task.signal->rlim[RLIMIT_SIGPENDING] =
init_task.signal->rlim[RLIMIT_NPROC];
for (i = 0; i < UCOUNT_COUNTS; i++) {
init_user_ns.ucount_max[i] = max_threads/2;
}
#ifdef CONFIG_VMAP_STACK
cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
NULL, free_vm_stack_cache);
#endif
lockdep_init_task(&init_task);
}
int __weak arch_dup_task_struct(struct task_struct *dst,
struct task_struct *src)
{
*dst = *src;
return 0;
}
void set_task_stack_end_magic(struct task_struct *tsk)
{
unsigned long *stackend;
stackend = end_of_stack(tsk);
*stackend = STACK_END_MAGIC; /* for overflow detection */
}
static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
{
struct task_struct *tsk;
unsigned long *stack;
struct vm_struct *stack_vm_area;
int err;
if (node == NUMA_NO_NODE)
node = tsk_fork_get_node(orig);
tsk = alloc_task_struct_node(node);
if (!tsk)
return NULL;
stack = alloc_thread_stack_node(tsk, node);
if (!stack)
goto free_tsk;
stack_vm_area = task_stack_vm_area(tsk);
err = arch_dup_task_struct(tsk, orig);
/*
* arch_dup_task_struct() clobbers the stack-related fields. Make
* sure they're properly initialized before using any stack-related
* functions again.
*/
tsk->stack = stack;
#ifdef CONFIG_VMAP_STACK
tsk->stack_vm_area = stack_vm_area;
#endif
#ifdef CONFIG_THREAD_INFO_IN_TASK
atomic_set(&tsk->stack_refcount, 1);
#endif
if (err)
goto free_stack;
#ifdef CONFIG_SECCOMP
/*
* We must handle setting up seccomp filters once we're under
* the sighand lock in case orig has changed between now and
* then. Until then, filter must be NULL to avoid messing up
* the usage counts on the error path calling free_task.
*/
tsk->seccomp.filter = NULL;
#endif
setup_thread_stack(tsk, orig);
clear_user_return_notifier(tsk);
clear_tsk_need_resched(tsk);
set_task_stack_end_magic(tsk);
#ifdef CONFIG_CC_STACKPROTECTOR
tsk->stack_canary = get_random_canary();
#endif
/*
* One for us, one for whoever does the "release_task()" (usually
* parent)
*/
atomic_set(&tsk->usage, 2);
#ifdef CONFIG_BLK_DEV_IO_TRACE
tsk->btrace_seq = 0;
#endif
tsk->splice_pipe = NULL;
tsk->task_frag.page = NULL;
tsk->wake_q.next = NULL;
account_kernel_stack(tsk, 1);
kcov_task_init(tsk);
#ifdef CONFIG_FAULT_INJECTION
tsk->fail_nth = 0;
#endif
return tsk;
free_stack:
free_thread_stack(tsk);
free_tsk:
free_task_struct(tsk);
return NULL;
}
__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
static int __init coredump_filter_setup(char *s)
{
default_dump_filter =
(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
MMF_DUMP_FILTER_MASK;
return 1;
}
__setup("coredump_filter=", coredump_filter_setup);
#include <linux/init_task.h>
static void mm_init_aio(struct mm_struct *mm)
{
#ifdef CONFIG_AIO
spin_lock_init(&mm->ioctx_lock);
mm->ioctx_table = NULL;
#endif
}
static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
{
#ifdef CONFIG_MEMCG
mm->owner = p;
#endif
}
static void mm_init_uprobes_state(struct mm_struct *mm)
{
#ifdef CONFIG_UPROBES
mm->uprobes_state.xol_area = NULL;
#endif
}
static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
struct user_namespace *user_ns)
{
mm->mmap = NULL;
mm->mm_rb = RB_ROOT;
mm->vmacache_seqnum = 0;
atomic_set(&mm->mm_users, 1);
atomic_set(&mm->mm_count, 1);
init_rwsem(&mm->mmap_sem);
INIT_LIST_HEAD(&mm->mmlist);
mm->core_state = NULL;
mm_pgtables_bytes_init(mm);
mm->map_count = 0;
mm->locked_vm = 0;
mm->pinned_vm = 0;
memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
spin_lock_init(&mm->page_table_lock);
mm_init_cpumask(mm);
mm_init_aio(mm);
mm_init_owner(mm, p);
RCU_INIT_POINTER(mm->exe_file, NULL);
mmu_notifier_mm_init(mm);
hmm_mm_init(mm);
init_tlb_flush_pending(mm);
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
mm->pmd_huge_pte = NULL;
#endif
mm_init_uprobes_state(mm);
if (current->mm) {
mm->flags = current->mm->flags & MMF_INIT_MASK;
mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
} else {
mm->flags = default_dump_filter;
mm->def_flags = 0;
}
if (mm_alloc_pgd(mm))
goto fail_nopgd;
if (init_new_context(p, mm))
goto fail_nocontext;
mm->user_ns = get_user_ns(user_ns);
return mm;
fail_nocontext:
mm_free_pgd(mm);
fail_nopgd:
free_mm(mm);
return NULL;
}
/*
* Allocate and initialize an mm_struct.
*/
struct mm_struct *mm_alloc(void)
{
struct mm_struct *mm;
mm = allocate_mm();
if (!mm)
return NULL;
memset(mm, 0, sizeof(*mm));
return mm_init(mm, current, current_user_ns());
}
static inline void __mmput(struct mm_struct *mm)
{
VM_BUG_ON(atomic_read(&mm->mm_users));
uprobe_clear_state(mm);
exit_aio(mm);
ksm_exit(mm);
khugepaged_exit(mm); /* must run before exit_mmap */
exit_mmap(mm);
mm_put_huge_zero_page(mm);
set_mm_exe_file(mm, NULL);
if (!list_empty(&mm->mmlist)) {
spin_lock(&mmlist_lock);
list_del(&mm->mmlist);
spin_unlock(&mmlist_lock);
}
if (mm->binfmt)
module_put(mm->binfmt->module);
mmdrop(mm);
}
/*
* Decrement the use count and release all resources for an mm.
*/
void mmput(struct mm_struct *mm)
{
might_sleep();
if (atomic_dec_and_test(&mm->mm_users))
__mmput(mm);
}
EXPORT_SYMBOL_GPL(mmput);
#ifdef CONFIG_MMU
static void mmput_async_fn(struct work_struct *work)
{
struct mm_struct *mm = container_of(work, struct mm_struct,
async_put_work);
__mmput(mm);
}
void mmput_async(struct mm_struct *mm)
{
if (atomic_dec_and_test(&mm->mm_users)) {
INIT_WORK(&mm->async_put_work, mmput_async_fn);
schedule_work(&mm->async_put_work);
}
}
#endif
/**
* set_mm_exe_file - change a reference to the mm's executable file
*
* This changes mm's executable file (shown as symlink /proc/[pid]/exe).
*
* Main users are mmput() and sys_execve(). Callers prevent concurrent
* invocations: in mmput() nobody alive left, in execve task is single
* threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
* mm->exe_file, but does so without using set_mm_exe_file() in order
* to do avoid the need for any locks.
*/
void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
{
struct file *old_exe_file;
/*
* It is safe to dereference the exe_file without RCU as
* this function is only called if nobody else can access
* this mm -- see comment above for justification.
*/
old_exe_file = rcu_dereference_raw(mm->exe_file);
if (new_exe_file)
get_file(new_exe_file);
rcu_assign_pointer(mm->exe_file, new_exe_file);
if (old_exe_file)
fput(old_exe_file);
}
/**
* get_mm_exe_file - acquire a reference to the mm's executable file
*
* Returns %NULL if mm has no associated executable file.
* User must release file via fput().
*/
struct file *get_mm_exe_file(struct mm_struct *mm)
{
struct file *exe_file;
rcu_read_lock();
exe_file = rcu_dereference(mm->exe_file);
if (exe_file && !get_file_rcu(exe_file))
exe_file = NULL;
rcu_read_unlock();
return exe_file;
}
EXPORT_SYMBOL(get_mm_exe_file);
/**
* get_task_exe_file - acquire a reference to the task's executable file
*
* Returns %NULL if task's mm (if any) has no associated executable file or
* this is a kernel thread with borrowed mm (see the comment above get_task_mm).
* User must release file via fput().
*/
struct file *get_task_exe_file(struct task_struct *task)
{
struct file *exe_file = NULL;
struct mm_struct *mm;
task_lock(task);
mm = task->mm;
if (mm) {
if (!(task->flags & PF_KTHREAD))
exe_file = get_mm_exe_file(mm);
}
task_unlock(task);
return exe_file;
}
EXPORT_SYMBOL(get_task_exe_file);
/**
* get_task_mm - acquire a reference to the task's mm
*
* Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
* this kernel workthread has transiently adopted a user mm with use_mm,
* to do its AIO) is not set and if so returns a reference to it, after
* bumping up the use count. User must release the mm via mmput()
* after use. Typically used by /proc and ptrace.
*/
struct mm_struct *get_task_mm(struct task_struct *task)
{
struct mm_struct *mm;
task_lock(task);
mm = task->mm;
if (mm) {
if (task->flags & PF_KTHREAD)
mm = NULL;
else
mmget(mm);
}
task_unlock(task);
return mm;
}
EXPORT_SYMBOL_GPL(get_task_mm);
struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
{
struct mm_struct *mm;
int err;
err = mutex_lock_killable(&task->signal->cred_guard_mutex);
if (err)
return ERR_PTR(err);
mm = get_task_mm(task);
if (mm && mm != current->mm &&
!ptrace_may_access(task, mode)) {
mmput(mm);
mm = ERR_PTR(-EACCES);
}
mutex_unlock(&task->signal->cred_guard_mutex);
return mm;
}
static void complete_vfork_done(struct task_struct *tsk)
{
struct completion *vfork;
task_lock(tsk);
vfork = tsk->vfork_done;
if (likely(vfork)) {
tsk->vfork_done = NULL;
complete(vfork);
}
task_unlock(tsk);
}
static int wait_for_vfork_done(struct task_struct *child,
struct completion *vfork)
{
int killed;
freezer_do_not_count();
killed = wait_for_completion_killable(vfork);
freezer_count();
if (killed) {
task_lock(child);
child->vfork_done = NULL;
task_unlock(child);
}
put_task_struct(child);
return killed;
}
/* Please note the differences between mmput and mm_release.
* mmput is called whenever we stop holding onto a mm_struct,
* error success whatever.
*
* mm_release is called after a mm_struct has been removed
* from the current process.
*
* This difference is important for error handling, when we
* only half set up a mm_struct for a new process and need to restore
* the old one. Because we mmput the new mm_struct before
* restoring the old one. . .
* Eric Biederman 10 January 1998
*/
void mm_release(struct task_struct *tsk, struct mm_struct *mm)
{
/* Get rid of any futexes when releasing the mm */
#ifdef CONFIG_FUTEX
if (unlikely(tsk->robust_list)) {
exit_robust_list(tsk);
tsk->robust_list = NULL;
}
#ifdef CONFIG_COMPAT
if (unlikely(tsk->compat_robust_list)) {
compat_exit_robust_list(tsk);
tsk->compat_robust_list = NULL;
}
#endif
if (unlikely(!list_empty(&tsk->pi_state_list)))
exit_pi_state_list(tsk);
#endif
uprobe_free_utask(tsk);
/* Get rid of any cached register state */
deactivate_mm(tsk, mm);
/*
* Signal userspace if we're not exiting with a core dump
* because we want to leave the value intact for debugging
* purposes.
*/
if (tsk->clear_child_tid) {
if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
atomic_read(&mm->mm_users) > 1) {
/*
* We don't check the error code - if userspace has
* not set up a proper pointer then tough luck.
*/
put_user(0, tsk->clear_child_tid);
do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1, NULL, NULL, 0, 0);
}
tsk->clear_child_tid = NULL;
}
/*
* All done, finally we can wake up parent and return this mm to him.
* Also kthread_stop() uses this completion for synchronization.
*/
if (tsk->vfork_done)
complete_vfork_done(tsk);
}
/*
* Allocate a new mm structure and copy contents from the
* mm structure of the passed in task structure.
*/
static struct mm_struct *dup_mm(struct task_struct *tsk)
{
struct mm_struct *mm, *oldmm = current->mm;
int err;
mm = allocate_mm();
if (!mm)
goto fail_nomem;
memcpy(mm, oldmm, sizeof(*mm));
if (!mm_init(mm, tsk, mm->user_ns))
goto fail_nomem;
err = dup_mmap(mm, oldmm);
if (err)
goto free_pt;
mm->hiwater_rss = get_mm_rss(mm);
mm->hiwater_vm = mm->total_vm;
if (mm->binfmt && !try_module_get(mm->binfmt->module))
goto free_pt;
return mm;
free_pt:
/* don't put binfmt in mmput, we haven't got module yet */
mm->binfmt = NULL;
mmput(mm);
fail_nomem:
return NULL;
}
static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
{
struct mm_struct *mm, *oldmm;
int retval;
tsk->min_flt = tsk->maj_flt = 0;
tsk->nvcsw = tsk->nivcsw = 0;
#ifdef CONFIG_DETECT_HUNG_TASK
tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
#endif
tsk->mm = NULL;
tsk->active_mm = NULL;
/*
* Are we cloning a kernel thread?
*
* We need to steal a active VM for that..
*/
oldmm = current->mm;
if (!oldmm)
return 0;
/* initialize the new vmacache entries */
vmacache_flush(tsk);
if (clone_flags & CLONE_VM) {
mmget(oldmm);
mm = oldmm;
goto good_mm;
}
retval = -ENOMEM;
mm = dup_mm(tsk);
if (!mm)
goto fail_nomem;
good_mm:
tsk->mm = mm;
tsk->active_mm = mm;
return 0;
fail_nomem:
return retval;
}
static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
{
struct fs_struct *fs = current->fs;
if (clone_flags & CLONE_FS) {
/* tsk->fs is already what we want */
spin_lock(&fs->lock);
if (fs->in_exec) {
spin_unlock(&fs->lock);
return -EAGAIN;
}
fs->users++;
spin_unlock(&fs->lock);
return 0;
}
tsk->fs = copy_fs_struct(fs);
if (!tsk->fs)
return -ENOMEM;
return 0;
}
static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
{
struct files_struct *oldf, *newf;
int error = 0;
/*
* A background process may not have any files ...
*/
oldf = current->files;
if (!oldf)
goto out;
if (clone_flags & CLONE_FILES) {
atomic_inc(&oldf->count);
goto out;
}
newf = dup_fd(oldf, &error);
if (!newf)
goto out;
tsk->files = newf;
error = 0;
out:
return error;
}
static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
{
#ifdef CONFIG_BLOCK
struct io_context *ioc = current->io_context;
struct io_context *new_ioc;
if (!ioc)
return 0;
/*
* Share io context with parent, if CLONE_IO is set
*/
if (clone_flags & CLONE_IO) {
ioc_task_link(ioc);
tsk->io_context = ioc;
} else if (ioprio_valid(ioc->ioprio)) {
new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
if (unlikely(!new_ioc))
return -ENOMEM;
new_ioc->ioprio = ioc->ioprio;
put_io_context(new_ioc);
}
#endif
return 0;
}
static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
{
struct sighand_struct *sig;
if (clone_flags & CLONE_SIGHAND) {
atomic_inc(&current->sighand->count);
return 0;
}
sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
rcu_assign_pointer(tsk->sighand, sig);
if (!sig)
return -ENOMEM;
atomic_set(&sig->count, 1);
memcpy(sig->action, current->sighand->action, sizeof(sig->action));
return 0;
}
void __cleanup_sighand(struct sighand_struct *sighand)
{
if (atomic_dec_and_test(&sighand->count)) {
signalfd_cleanup(sighand);
/*
* sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
* without an RCU grace period, see __lock_task_sighand().
*/
kmem_cache_free(sighand_cachep, sighand);
}
}
#ifdef CONFIG_POSIX_TIMERS
/*
* Initialize POSIX timer handling for a thread group.
*/
static void posix_cpu_timers_init_group(struct signal_struct *sig)
{
unsigned long cpu_limit;
cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
if (cpu_limit != RLIM_INFINITY) {
sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
sig->cputimer.running = true;
}
/* The timer lists. */
INIT_LIST_HEAD(&sig->cpu_timers[0]);
INIT_LIST_HEAD(&sig->cpu_timers[1]);
INIT_LIST_HEAD(&sig->cpu_timers[2]);
}
#else
static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
#endif
static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
{
struct signal_struct *sig;
if (clone_flags & CLONE_THREAD)
return 0;
sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
tsk->signal = sig;
if (!sig)
return -ENOMEM;
sig->nr_threads = 1;
atomic_set(&sig->live, 1);
atomic_set(&sig->sigcnt, 1);
/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
init_waitqueue_head(&sig->wait_chldexit);
sig->curr_target = tsk;
init_sigpending(&sig->shared_pending);
seqlock_init(&sig->stats_lock);
prev_cputime_init(&sig->prev_cputime);
#ifdef CONFIG_POSIX_TIMERS
INIT_LIST_HEAD(&sig->posix_timers);
hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
sig->real_timer.function = it_real_fn;
#endif
task_lock(current->group_leader);
memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
task_unlock(current->group_leader);
posix_cpu_timers_init_group(sig);
tty_audit_fork(sig);
sched_autogroup_fork(sig);
sig->oom_score_adj = current->signal->oom_score_adj;
sig->oom_score_adj_min = current->signal->oom_score_adj_min;
mutex_init(&sig->cred_guard_mutex);
return 0;
}
static void copy_seccomp(struct task_struct *p)
{
#ifdef CONFIG_SECCOMP
/*
* Must be called with sighand->lock held, which is common to
* all threads in the group. Holding cred_guard_mutex is not
* needed because this new task is not yet running and cannot
* be racing exec.
*/
assert_spin_locked(&current->sighand->siglock);
/* Ref-count the new filter user, and assign it. */
get_seccomp_filter(current);
p->seccomp = current->seccomp;
/*
* Explicitly enable no_new_privs here in case it got set
* between the task_struct being duplicated and holding the
* sighand lock. The seccomp state and nnp must be in sync.
*/
if (task_no_new_privs(current))
task_set_no_new_privs(p);
/*
* If the parent gained a seccomp mode after copying thread
* flags and between before we held the sighand lock, we have
* to manually enable the seccomp thread flag here.
*/
if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
set_tsk_thread_flag(p, TIF_SECCOMP);
#endif
}
SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
{
current->clear_child_tid = tidptr;
return task_pid_vnr(current);
}
static void rt_mutex_init_task(struct task_struct *p)
{
raw_spin_lock_init(&p->pi_lock);
#ifdef CONFIG_RT_MUTEXES
p->pi_waiters = RB_ROOT_CACHED;
p->pi_top_task = NULL;
p->pi_blocked_on = NULL;
#endif
}
#ifdef CONFIG_POSIX_TIMERS
/*
* Initialize POSIX timer handling for a single task.
*/
static void posix_cpu_timers_init(struct task_struct *tsk)
{
tsk->cputime_expires.prof_exp = 0;
tsk->cputime_expires.virt_exp = 0;
tsk->cputime_expires.sched_exp = 0;
INIT_LIST_HEAD(&tsk->cpu_timers[0]);
INIT_LIST_HEAD(&tsk->cpu_timers[1]);
INIT_LIST_HEAD(&tsk->cpu_timers[2]);
}
#else
static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
#endif
static inline void
init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
{
task->pids[type].pid = pid;
}
static inline void rcu_copy_process(struct task_struct *p)
{
#ifdef CONFIG_PREEMPT_RCU
p->rcu_read_lock_nesting = 0;
p->rcu_read_unlock_special.s = 0;
p->rcu_blocked_node = NULL;
INIT_LIST_HEAD(&p->rcu_node_entry);
#endif /* #ifdef CONFIG_PREEMPT_RCU */
#ifdef CONFIG_TASKS_RCU
p->rcu_tasks_holdout = false;
INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
p->rcu_tasks_idle_cpu = -1;
#endif /* #ifdef CONFIG_TASKS_RCU */
}
/*
* This creates a new process as a copy of the old one,
* but does not actually start it yet.
*
* It copies the registers, and all the appropriate
* parts of the process environment (as per the clone
* flags). The actual kick-off is left to the caller.
*/
static __latent_entropy struct task_struct *copy_process(
unsigned long clone_flags,
unsigned long stack_start,
unsigned long stack_size,
int __user *child_tidptr,
struct pid *pid,
int trace,
unsigned long tls,
int node)
{
int retval;
struct task_struct *p;
/*
* Don't allow sharing the root directory with processes in a different
* namespace
*/
if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
return ERR_PTR(-EINVAL);
if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
return ERR_PTR(-EINVAL);
/*
* Thread groups must share signals as well, and detached threads
* can only be started up within the thread group.
*/
if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
return ERR_PTR(-EINVAL);
/*
* Shared signal handlers imply shared VM. By way of the above,
* thread groups also imply shared VM. Blocking this case allows
* for various simplifications in other code.
*/
if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
return ERR_PTR(-EINVAL);
/*
* Siblings of global init remain as zombies on exit since they are
* not reaped by their parent (swapper). To solve this and to avoid
* multi-rooted process trees, prevent global and container-inits
* from creating siblings.
*/
if ((clone_flags & CLONE_PARENT) &&
current->signal->flags & SIGNAL_UNKILLABLE)
return ERR_PTR(-EINVAL);
/*
* If the new process will be in a different pid or user namespace
* do not allow it to share a thread group with the forking task.
*/
if (clone_flags & CLONE_THREAD) {
if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
(task_active_pid_ns(current) !=
current->nsproxy->pid_ns_for_children))
return ERR_PTR(-EINVAL);
}
retval = -ENOMEM;
p = dup_task_struct(current, node);
if (!p)
goto fork_out;
/*
* This _must_ happen before we call free_task(), i.e. before we jump
* to any of the bad_fork_* labels. This is to avoid freeing
* p->set_child_tid which is (ab)used as a kthread's data pointer for
* kernel threads (PF_KTHREAD).
*/
p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
/*
* Clear TID on mm_release()?
*/
p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
ftrace_graph_init_task(p);
rt_mutex_init_task(p);
#ifdef CONFIG_PROVE_LOCKING
DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
#endif
retval = -EAGAIN;
if (atomic_read(&p->real_cred->user->processes) >=
task_rlimit(p, RLIMIT_NPROC)) {
if (p->real_cred->user != INIT_USER &&
!capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
goto bad_fork_free;
}
current->flags &= ~PF_NPROC_EXCEEDED;
retval = copy_creds(p, clone_flags);
if (retval < 0)
goto bad_fork_free;
/*
* If multiple threads are within copy_process(), then this check
* triggers too late. This doesn't hurt, the check is only there
* to stop root fork bombs.
*/
retval = -EAGAIN;
if (nr_threads >= max_threads)
goto bad_fork_cleanup_count;
delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
p->flags |= PF_FORKNOEXEC;
INIT_LIST_HEAD(&p->children);
INIT_LIST_HEAD(&p->sibling);
rcu_copy_process(p);
p->vfork_done = NULL;
spin_lock_init(&p->alloc_lock);
init_sigpending(&p->pending);
p->utime = p->stime = p->gtime = 0;
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
p->utimescaled = p->stimescaled = 0;
#endif
prev_cputime_init(&p->prev_cputime);
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
seqcount_init(&p->vtime.seqcount);
p->vtime.starttime = 0;
p->vtime.state = VTIME_INACTIVE;
#endif
#if defined(SPLIT_RSS_COUNTING)
memset(&p->rss_stat, 0, sizeof(p->rss_stat));
#endif
p->default_timer_slack_ns = current->timer_slack_ns;
task_io_accounting_init(&p->ioac);
acct_clear_integrals(p);
posix_cpu_timers_init(p);
p->start_time = ktime_get_ns();
p->real_start_time = ktime_get_boot_ns();
p->io_context = NULL;
p->audit_context = NULL;
cgroup_fork(p);
#ifdef CONFIG_NUMA
p->mempolicy = mpol_dup(p->mempolicy);
if (IS_ERR(p->mempolicy)) {
retval = PTR_ERR(p->mempolicy);
p->mempolicy = NULL;
goto bad_fork_cleanup_threadgroup_lock;
}
#endif
#ifdef CONFIG_CPUSETS
p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
seqcount_init(&p->mems_allowed_seq);
#endif
#ifdef CONFIG_TRACE_IRQFLAGS
p->irq_events = 0;
p->hardirqs_enabled = 0;
p->hardirq_enable_ip = 0;
p->hardirq_enable_event = 0;
p->hardirq_disable_ip = _THIS_IP_;
p->hardirq_disable_event = 0;
p->softirqs_enabled = 1;
p->softirq_enable_ip = _THIS_IP_;
p->softirq_enable_event = 0;
p->softirq_disable_ip = 0;
p->softirq_disable_event = 0;
p->hardirq_context = 0;
p->softirq_context = 0;
#endif
p->pagefault_disabled = 0;
#ifdef CONFIG_LOCKDEP
p->lockdep_depth = 0; /* no locks held yet */
p->curr_chain_key = 0;
p->lockdep_recursion = 0;
lockdep_init_task(p);
#endif
#ifdef CONFIG_DEBUG_MUTEXES
p->blocked_on = NULL; /* not blocked yet */
#endif
#ifdef CONFIG_BCACHE
p->sequential_io = 0;
p->sequential_io_avg = 0;
#endif
/* Perform scheduler related setup. Assign this task to a CPU. */
retval = sched_fork(clone_flags, p);
if (retval)
goto bad_fork_cleanup_policy;
retval = perf_event_init_task(p);
if (retval)
goto bad_fork_cleanup_policy;
retval = audit_alloc(p);
if (retval)
goto bad_fork_cleanup_perf;
/* copy all the process information */
shm_init_task(p);
retval = security_task_alloc(p, clone_flags);
if (retval)
goto bad_fork_cleanup_audit;
retval = copy_semundo(clone_flags, p);
if (retval)
goto bad_fork_cleanup_security;
retval = copy_files(clone_flags, p);
if (retval)
goto bad_fork_cleanup_semundo;
retval = copy_fs(clone_flags, p);
if (retval)
goto bad_fork_cleanup_files;
retval = copy_sighand(clone_flags, p);
if (retval)
goto bad_fork_cleanup_fs;
retval = copy_signal(clone_flags, p);
if (retval)
goto bad_fork_cleanup_sighand;
retval = copy_mm(clone_flags, p);
if (retval)
goto bad_fork_cleanup_signal;
retval = copy_namespaces(clone_flags, p);
if (retval)
goto bad_fork_cleanup_mm;
retval = copy_io(clone_flags, p);
if (retval)
goto bad_fork_cleanup_namespaces;
retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
if (retval)
goto bad_fork_cleanup_io;
if (pid != &init_struct_pid) {
pid = alloc_pid(p->nsproxy->pid_ns_for_children);
if (IS_ERR(pid)) {
retval = PTR_ERR(pid);
goto bad_fork_cleanup_thread;
}
}
#ifdef CONFIG_BLOCK
p->plug = NULL;
#endif
#ifdef CONFIG_FUTEX
p->robust_list = NULL;
#ifdef CONFIG_COMPAT
p->compat_robust_list = NULL;
#endif
INIT_LIST_HEAD(&p->pi_state_list);
p->pi_state_cache = NULL;
#endif
/*
* sigaltstack should be cleared when sharing the same VM
*/
if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
sas_ss_reset(p);
/*
* Syscall tracing and stepping should be turned off in the
* child regardless of CLONE_PTRACE.
*/
user_disable_single_step(p);
clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
#ifdef TIF_SYSCALL_EMU
clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
#endif
clear_all_latency_tracing(p);
/* ok, now we should be set up.. */
p->pid = pid_nr(pid);
if (clone_flags & CLONE_THREAD) {
p->exit_signal = -1;
p->group_leader = current->group_leader;
p->tgid = current->tgid;
} else {
if (clone_flags & CLONE_PARENT)
p->exit_signal = current->group_leader->exit_signal;
else
p->exit_signal = (clone_flags & CSIGNAL);
p->group_leader = p;
p->tgid = p->pid;
}
p->nr_dirtied = 0;
p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
p->dirty_paused_when = 0;
p->pdeath_signal = 0;
INIT_LIST_HEAD(&p->thread_group);
p->task_works = NULL;
cgroup_threadgroup_change_begin(current);
/*
* Ensure that the cgroup subsystem policies allow the new process to be
* forked. It should be noted the the new process's css_set can be changed
* between here and cgroup_post_fork() if an organisation operation is in
* progress.
*/
retval = cgroup_can_fork(p);
if (retval)
goto bad_fork_free_pid;
/*
* Make it visible to the rest of the system, but dont wake it up yet.
* Need tasklist lock for parent etc handling!
*/
write_lock_irq(&tasklist_lock);
/* CLONE_PARENT re-uses the old parent */
if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
p->real_parent = current->real_parent;
p->parent_exec_id = current->parent_exec_id;
} else {
p->real_parent = current;
p->parent_exec_id = current->self_exec_id;
}
klp_copy_process(p);
spin_lock(&current->sighand->siglock);
/*
* Copy seccomp details explicitly here, in case they were changed
* before holding sighand lock.
*/
copy_seccomp(p);
/*
* Process group and session signals need to be delivered to just the
* parent before the fork or both the parent and the child after the
* fork. Restart if a signal comes in before we add the new process to
* it's process group.
* A fatal signal pending means that current will exit, so the new
* thread can't slip out of an OOM kill (or normal SIGKILL).
*/
recalc_sigpending();
if (signal_pending(current)) {
retval = -ERESTARTNOINTR;
goto bad_fork_cancel_cgroup;
}
if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
retval = -ENOMEM;
goto bad_fork_cancel_cgroup;
}
if (likely(p->pid)) {
ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
init_task_pid(p, PIDTYPE_PID, pid);
if (thread_group_leader(p)) {
init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
init_task_pid(p, PIDTYPE_SID, task_session(current));
if (is_child_reaper(pid)) {
ns_of_pid(pid)->child_reaper = p;
p->signal->flags |= SIGNAL_UNKILLABLE;
}
p->signal->leader_pid = pid;
p->signal->tty = tty_kref_get(current->signal->tty);
/*
* Inherit has_child_subreaper flag under the same
* tasklist_lock with adding child to the process tree
* for propagate_has_child_subreaper optimization.
*/
p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
p->real_parent->signal->is_child_subreaper;
list_add_tail(&p->sibling, &p->real_parent->children);
list_add_tail_rcu(&p->tasks, &init_task.tasks);
attach_pid(p, PIDTYPE_PGID);
attach_pid(p, PIDTYPE_SID);
__this_cpu_inc(process_counts);
} else {
current->signal->nr_threads++;
atomic_inc(&current->signal->live);
atomic_inc(&current->signal->sigcnt);
list_add_tail_rcu(&p->thread_group,
&p->group_leader->thread_group);
list_add_tail_rcu(&p->thread_node,
&p->signal->thread_head);
}
attach_pid(p, PIDTYPE_PID);
nr_threads++;
}
total_forks++;
spin_unlock(&current->sighand->siglock);
syscall_tracepoint_update(p);
write_unlock_irq(&tasklist_lock);
proc_fork_connector(p);
cgroup_post_fork(p);
cgroup_threadgroup_change_end(current);
perf_event_fork(p);
trace_task_newtask(p, clone_flags);
uprobe_copy_process(p, clone_flags);
return p;
bad_fork_cancel_cgroup:
spin_unlock(&current->sighand->siglock);
write_unlock_irq(&tasklist_lock);
cgroup_cancel_fork(p);
bad_fork_free_pid:
cgroup_threadgroup_change_end(current);
if (pid != &init_struct_pid)
free_pid(pid);
bad_fork_cleanup_thread:
exit_thread(p);
bad_fork_cleanup_io:
if (p->io_context)
exit_io_context(p);
bad_fork_cleanup_namespaces:
exit_task_namespaces(p);
bad_fork_cleanup_mm:
if (p->mm)
mmput(p->mm);
bad_fork_cleanup_signal:
if (!(clone_flags & CLONE_THREAD))
free_signal_struct(p->signal);
bad_fork_cleanup_sighand:
__cleanup_sighand(p->sighand);
bad_fork_cleanup_fs:
exit_fs(p); /* blocking */
bad_fork_cleanup_files:
exit_files(p); /* blocking */
bad_fork_cleanup_semundo:
exit_sem(p);
bad_fork_cleanup_security:
security_task_free(p);
bad_fork_cleanup_audit:
audit_free(p);
bad_fork_cleanup_perf:
perf_event_free_task(p);
bad_fork_cleanup_policy:
lockdep_free_task(p);
#ifdef CONFIG_NUMA
mpol_put(p->mempolicy);
bad_fork_cleanup_threadgroup_lock:
#endif
delayacct_tsk_free(p);
bad_fork_cleanup_count:
atomic_dec(&p->cred->user->processes);
exit_creds(p);
bad_fork_free:
p->state = TASK_DEAD;
put_task_stack(p);
free_task(p);
fork_out:
return ERR_PTR(retval);
}
static inline void init_idle_pids(struct pid_link *links)
{
enum pid_type type;
for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
INIT_HLIST_NODE(&links[type].node); /* not really needed */
links[type].pid = &init_struct_pid;
}
}
struct task_struct *fork_idle(int cpu)
{
struct task_struct *task;
task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
cpu_to_node(cpu));
if (!IS_ERR(task)) {
init_idle_pids(task->pids);
init_idle(task, cpu);
}
return task;
}
/*
* Ok, this is the main fork-routine.
*
* It copies the process, and if successful kick-starts
* it and waits for it to finish using the VM if required.
*/
long _do_fork(unsigned long clone_flags,
unsigned long stack_start,
unsigned long stack_size,
int __user *parent_tidptr,
int __user *child_tidptr,
unsigned long tls)
{
struct completion vfork;
struct pid *pid;
struct task_struct *p;
int trace = 0;
long nr;
/*
* Determine whether and which event to report to ptracer. When
* called from kernel_thread or CLONE_UNTRACED is explicitly
* requested, no event is reported; otherwise, report if the event
* for the type of forking is enabled.
*/
if (!(clone_flags & CLONE_UNTRACED)) {
if (clone_flags & CLONE_VFORK)
trace = PTRACE_EVENT_VFORK;
else if ((clone_flags & CSIGNAL) != SIGCHLD)
trace = PTRACE_EVENT_CLONE;
else
trace = PTRACE_EVENT_FORK;
if (likely(!ptrace_event_enabled(current, trace)))
trace = 0;
}
p = copy_process(clone_flags, stack_start, stack_size,
child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
add_latent_entropy();
if (IS_ERR(p))
return PTR_ERR(p);
/*
* Do this prior waking up the new thread - the thread pointer
* might get invalid after that point, if the thread exits quickly.
*/
trace_sched_process_fork(current, p);
pid = get_task_pid(p, PIDTYPE_PID);
nr = pid_vnr(pid);
if (clone_flags & CLONE_PARENT_SETTID)
put_user(nr, parent_tidptr);
if (clone_flags & CLONE_VFORK) {
p->vfork_done = &vfork;
init_completion(&vfork);
get_task_struct(p);
}
wake_up_new_task(p);
/* forking complete and child started to run, tell ptracer */
if (unlikely(trace))
ptrace_event_pid(trace, pid);
if (clone_flags & CLONE_VFORK) {
if (!wait_for_vfork_done(p, &vfork))
ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
}
put_pid(pid);
return nr;
}
#ifndef CONFIG_HAVE_COPY_THREAD_TLS
/* For compatibility with architectures that call do_fork directly rather than
* using the syscall entry points below. */
long do_fork(unsigned long clone_flags,
unsigned long stack_start,
unsigned long stack_size,
int __user *parent_tidptr,
int __user *child_tidptr)
{
return _do_fork(clone_flags, stack_start, stack_size,
parent_tidptr, child_tidptr, 0);
}
#endif
/*
* Create a kernel thread.
*/
pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
{
return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
(unsigned long)arg, NULL, NULL, 0);
}
#ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)
{
#ifdef CONFIG_MMU
return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
#else
/* can not support in nommu mode */
return -EINVAL;
#endif
}
#endif
#ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)
{
return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
0, NULL, NULL, 0);
}
#endif
#ifdef __ARCH_WANT_SYS_CLONE
#ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
int __user *, parent_tidptr,
unsigned long, tls,
int __user *, child_tidptr)
#elif defined(CONFIG_CLONE_BACKWARDS2)
SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
int __user *, parent_tidptr,
int __user *, child_tidptr,
unsigned long, tls)
#elif defined(CONFIG_CLONE_BACKWARDS3)
SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
int, stack_size,
int __user *, parent_tidptr,
int __user *, child_tidptr,
unsigned long, tls)
#else
SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
int __user *, parent_tidptr,
int __user *, child_tidptr,
unsigned long, tls)
#endif
{
return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
}
#endif
void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
{
struct task_struct *leader, *parent, *child;
int res;
read_lock(&tasklist_lock);
leader = top = top->group_leader;
down:
for_each_thread(leader, parent) {
list_for_each_entry(child, &parent->children, sibling) {
res = visitor(child, data);
if (res) {
if (res < 0)
goto out;
leader = child;
goto down;
}
up:
;
}
}
if (leader != top) {
child = leader;
parent = child->real_parent;
leader = parent->group_leader;
goto up;
}
out:
read_unlock(&tasklist_lock);
}
#ifndef ARCH_MIN_MMSTRUCT_ALIGN
#define ARCH_MIN_MMSTRUCT_ALIGN 0
#endif
static void sighand_ctor(void *data)
{
struct sighand_struct *sighand = data;
spin_lock_init(&sighand->siglock);
init_waitqueue_head(&sighand->signalfd_wqh);
}
void __init proc_caches_init(void)
{
sighand_cachep = kmem_cache_create("sighand_cache",
sizeof(struct sighand_struct), 0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
SLAB_ACCOUNT, sighand_ctor);
signal_cachep = kmem_cache_create("signal_cache",
sizeof(struct signal_struct), 0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
NULL);
files_cachep = kmem_cache_create("files_cache",
sizeof(struct files_struct), 0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
NULL);
fs_cachep = kmem_cache_create("fs_cache",
sizeof(struct fs_struct), 0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
NULL);
/*
* FIXME! The "sizeof(struct mm_struct)" currently includes the
* whole struct cpumask for the OFFSTACK case. We could change
* this to *only* allocate as much of it as required by the
* maximum number of CPU's we can ever have. The cpumask_allocation
* is at the end of the structure, exactly for that reason.
*/
mm_cachep = kmem_cache_create_usercopy("mm_struct",
sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
offsetof(struct mm_struct, saved_auxv),
sizeof_field(struct mm_struct, saved_auxv),
NULL);
vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
mmap_init();
nsproxy_cache_init();
}
/*
* Check constraints on flags passed to the unshare system call.
*/
static int check_unshare_flags(unsigned long unshare_flags)
{
if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
return -EINVAL;
/*
* Not implemented, but pretend it works if there is nothing
* to unshare. Note that unsharing the address space or the
* signal handlers also need to unshare the signal queues (aka
* CLONE_THREAD).
*/
if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
if (!thread_group_empty(current))
return -EINVAL;
}
if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
if (atomic_read(&current->sighand->count) > 1)
return -EINVAL;
}
if (unshare_flags & CLONE_VM) {
if (!current_is_single_threaded())
return -EINVAL;
}
return 0;
}
/*
* Unshare the filesystem structure if it is being shared
*/
static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
{
struct fs_struct *fs = current->fs;
if (!(unshare_flags & CLONE_FS) || !fs)
return 0;
/* don't need lock here; in the worst case we'll do useless copy */
if (fs->users == 1)
return 0;
*new_fsp = copy_fs_struct(fs);
if (!*new_fsp)
return -ENOMEM;
return 0;
}
/*
* Unshare file descriptor table if it is being shared
*/
static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
{
struct files_struct *fd = current->files;
int error = 0;
if ((unshare_flags & CLONE_FILES) &&
(fd && atomic_read(&fd->count) > 1)) {
*new_fdp = dup_fd(fd, &error);
if (!*new_fdp)
return error;
}
return 0;
}
/*
* unshare allows a process to 'unshare' part of the process
* context which was originally shared using clone. copy_*
* functions used by do_fork() cannot be used here directly
* because they modify an inactive task_struct that is being
* constructed. Here we are modifying the current, active,
* task_struct.
*/
int ksys_unshare(unsigned long unshare_flags)
{
struct fs_struct *fs, *new_fs = NULL;
struct files_struct *fd, *new_fd = NULL;
struct cred *new_cred = NULL;
struct nsproxy *new_nsproxy = NULL;
int do_sysvsem = 0;
int err;
/*
* If unsharing a user namespace must also unshare the thread group
* and unshare the filesystem root and working directories.
*/
if (unshare_flags & CLONE_NEWUSER)
unshare_flags |= CLONE_THREAD | CLONE_FS;
/*
* If unsharing vm, must also unshare signal handlers.
*/
if (unshare_flags & CLONE_VM)
unshare_flags |= CLONE_SIGHAND;
/*
* If unsharing a signal handlers, must also unshare the signal queues.
*/
if (unshare_flags & CLONE_SIGHAND)
unshare_flags |= CLONE_THREAD;
/*
* If unsharing namespace, must also unshare filesystem information.
*/
if (unshare_flags & CLONE_NEWNS)
unshare_flags |= CLONE_FS;
err = check_unshare_flags(unshare_flags);
if (err)
goto bad_unshare_out;
/*
* CLONE_NEWIPC must also detach from the undolist: after switching
* to a new ipc namespace, the semaphore arrays from the old
* namespace are unreachable.
*/
if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
do_sysvsem = 1;
err = unshare_fs(unshare_flags, &new_fs);
if (err)
goto bad_unshare_out;
err = unshare_fd(unshare_flags, &new_fd);
if (err)
goto bad_unshare_cleanup_fs;
err = unshare_userns(unshare_flags, &new_cred);
if (err)
goto bad_unshare_cleanup_fd;
err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
new_cred, new_fs);
if (err)
goto bad_unshare_cleanup_cred;
if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
if (do_sysvsem) {
/*
* CLONE_SYSVSEM is equivalent to sys_exit().
*/
exit_sem(current);
}
if (unshare_flags & CLONE_NEWIPC) {
/* Orphan segments in old ns (see sem above). */
exit_shm(current);
shm_init_task(current);
}
if (new_nsproxy)
switch_task_namespaces(current, new_nsproxy);
task_lock(current);
if (new_fs) {
fs = current->fs;
spin_lock(&fs->lock);
current->fs = new_fs;
if (--fs->users)
new_fs = NULL;
else
new_fs = fs;
spin_unlock(&fs->lock);
}
if (new_fd) {
fd = current->files;
current->files = new_fd;
new_fd = fd;
}
task_unlock(current);
if (new_cred) {
/* Install the new user namespace */
commit_creds(new_cred);
new_cred = NULL;
}
}
perf_event_namespaces(current);
bad_unshare_cleanup_cred:
if (new_cred)
put_cred(new_cred);
bad_unshare_cleanup_fd:
if (new_fd)
put_files_struct(new_fd);
bad_unshare_cleanup_fs:
if (new_fs)
free_fs_struct(new_fs);
bad_unshare_out:
return err;
}
SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
{
return ksys_unshare(unshare_flags);
}
/*
* Helper to unshare the files of the current task.
* We don't want to expose copy_files internals to
* the exec layer of the kernel.
*/
int unshare_files(struct files_struct **displaced)
{
struct task_struct *task = current;
struct files_struct *copy = NULL;
int error;
error = unshare_fd(CLONE_FILES, &copy);
if (error || !copy) {
*displaced = NULL;
return error;
}
*displaced = task->files;
task_lock(task);
task->files = copy;
task_unlock(task);
return 0;
}
int sysctl_max_threads(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
struct ctl_table t;
int ret;
int threads = max_threads;
int min = MIN_THREADS;
int max = MAX_THREADS;
t = *table;
t.data = &threads;
t.extra1 = &min;
t.extra2 = &max;
ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
if (ret || !write)
return ret;
set_max_threads(threads);
return 0;
}