2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 20:53:53 +08:00
linux-next/drivers/base/component.c
Daniel Vetter e4246b0550 drivers/component: kerneldoc polish
Polish the kerneldoc a bit with suggestions from Randy.

v2: Randy found another typo: s/compent/component/

Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Ramalingam C <ramalingam.c@intel.com>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-19 13:20:35 +01:00

780 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Componentized device handling.
*
* This is work in progress. We gather up the component devices into a list,
* and bind them when instructed. At the moment, we're specific to the DRM
* subsystem, and only handles one master device, but this doesn't have to be
* the case.
*/
#include <linux/component.h>
#include <linux/device.h>
#include <linux/kref.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/debugfs.h>
/**
* DOC: overview
*
* The component helper allows drivers to collect a pile of sub-devices,
* including their bound drivers, into an aggregate driver. Various subsystems
* already provide functions to get hold of such components, e.g.
* of_clk_get_by_name(). The component helper can be used when such a
* subsystem-specific way to find a device is not available: The component
* helper fills the niche of aggregate drivers for specific hardware, where
* further standardization into a subsystem would not be practical. The common
* example is when a logical device (e.g. a DRM display driver) is spread around
* the SoC on various components (scanout engines, blending blocks, transcoders
* for various outputs and so on).
*
* The component helper also doesn't solve runtime dependencies, e.g. for system
* suspend and resume operations. See also :ref:`device links<device_link>`.
*
* Components are registered using component_add() and unregistered with
* component_del(), usually from the driver's probe and disconnect functions.
*
* Aggregate drivers first assemble a component match list of what they need
* using component_match_add(). This is then registered as an aggregate driver
* using component_master_add_with_match(), and unregistered using
* component_master_del().
*/
struct component;
struct component_match_array {
void *data;
int (*compare)(struct device *, void *);
int (*compare_typed)(struct device *, int, void *);
void (*release)(struct device *, void *);
struct component *component;
bool duplicate;
};
struct component_match {
size_t alloc;
size_t num;
struct component_match_array *compare;
};
struct master {
struct list_head node;
bool bound;
const struct component_master_ops *ops;
struct device *dev;
struct component_match *match;
struct dentry *dentry;
};
struct component {
struct list_head node;
struct master *master;
bool bound;
const struct component_ops *ops;
int subcomponent;
struct device *dev;
};
static DEFINE_MUTEX(component_mutex);
static LIST_HEAD(component_list);
static LIST_HEAD(masters);
#ifdef CONFIG_DEBUG_FS
static struct dentry *component_debugfs_dir;
static int component_devices_show(struct seq_file *s, void *data)
{
struct master *m = s->private;
struct component_match *match = m->match;
size_t i;
mutex_lock(&component_mutex);
seq_printf(s, "%-40s %20s\n", "master name", "status");
seq_puts(s, "-------------------------------------------------------------\n");
seq_printf(s, "%-40s %20s\n\n",
dev_name(m->dev), m->bound ? "bound" : "not bound");
seq_printf(s, "%-40s %20s\n", "device name", "status");
seq_puts(s, "-------------------------------------------------------------\n");
for (i = 0; i < match->num; i++) {
struct device *d = (struct device *)match->compare[i].data;
seq_printf(s, "%-40s %20s\n", dev_name(d),
match->compare[i].component ?
"registered" : "not registered");
}
mutex_unlock(&component_mutex);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(component_devices);
static int __init component_debug_init(void)
{
component_debugfs_dir = debugfs_create_dir("device_component", NULL);
return 0;
}
core_initcall(component_debug_init);
static void component_master_debugfs_add(struct master *m)
{
m->dentry = debugfs_create_file(dev_name(m->dev), 0444,
component_debugfs_dir,
m, &component_devices_fops);
}
static void component_master_debugfs_del(struct master *m)
{
debugfs_remove(m->dentry);
m->dentry = NULL;
}
#else
static void component_master_debugfs_add(struct master *m)
{ }
static void component_master_debugfs_del(struct master *m)
{ }
#endif
static struct master *__master_find(struct device *dev,
const struct component_master_ops *ops)
{
struct master *m;
list_for_each_entry(m, &masters, node)
if (m->dev == dev && (!ops || m->ops == ops))
return m;
return NULL;
}
static struct component *find_component(struct master *master,
struct component_match_array *mc)
{
struct component *c;
list_for_each_entry(c, &component_list, node) {
if (c->master && c->master != master)
continue;
if (mc->compare && mc->compare(c->dev, mc->data))
return c;
if (mc->compare_typed &&
mc->compare_typed(c->dev, c->subcomponent, mc->data))
return c;
}
return NULL;
}
static int find_components(struct master *master)
{
struct component_match *match = master->match;
size_t i;
int ret = 0;
/*
* Scan the array of match functions and attach
* any components which are found to this master.
*/
for (i = 0; i < match->num; i++) {
struct component_match_array *mc = &match->compare[i];
struct component *c;
dev_dbg(master->dev, "Looking for component %zu\n", i);
if (match->compare[i].component)
continue;
c = find_component(master, mc);
if (!c) {
ret = -ENXIO;
break;
}
dev_dbg(master->dev, "found component %s, duplicate %u\n", dev_name(c->dev), !!c->master);
/* Attach this component to the master */
match->compare[i].duplicate = !!c->master;
match->compare[i].component = c;
c->master = master;
}
return ret;
}
/* Detach component from associated master */
static void remove_component(struct master *master, struct component *c)
{
size_t i;
/* Detach the component from this master. */
for (i = 0; i < master->match->num; i++)
if (master->match->compare[i].component == c)
master->match->compare[i].component = NULL;
}
/*
* Try to bring up a master. If component is NULL, we're interested in
* this master, otherwise it's a component which must be present to try
* and bring up the master.
*
* Returns 1 for successful bringup, 0 if not ready, or -ve errno.
*/
static int try_to_bring_up_master(struct master *master,
struct component *component)
{
int ret;
dev_dbg(master->dev, "trying to bring up master\n");
if (find_components(master)) {
dev_dbg(master->dev, "master has incomplete components\n");
return 0;
}
if (component && component->master != master) {
dev_dbg(master->dev, "master is not for this component (%s)\n",
dev_name(component->dev));
return 0;
}
if (!devres_open_group(master->dev, NULL, GFP_KERNEL))
return -ENOMEM;
/* Found all components */
ret = master->ops->bind(master->dev);
if (ret < 0) {
devres_release_group(master->dev, NULL);
dev_info(master->dev, "master bind failed: %d\n", ret);
return ret;
}
master->bound = true;
return 1;
}
static int try_to_bring_up_masters(struct component *component)
{
struct master *m;
int ret = 0;
list_for_each_entry(m, &masters, node) {
if (!m->bound) {
ret = try_to_bring_up_master(m, component);
if (ret != 0)
break;
}
}
return ret;
}
static void take_down_master(struct master *master)
{
if (master->bound) {
master->ops->unbind(master->dev);
devres_release_group(master->dev, NULL);
master->bound = false;
}
}
static void component_match_release(struct device *master,
struct component_match *match)
{
unsigned int i;
for (i = 0; i < match->num; i++) {
struct component_match_array *mc = &match->compare[i];
if (mc->release)
mc->release(master, mc->data);
}
kfree(match->compare);
}
static void devm_component_match_release(struct device *dev, void *res)
{
component_match_release(dev, res);
}
static int component_match_realloc(struct device *dev,
struct component_match *match, size_t num)
{
struct component_match_array *new;
if (match->alloc == num)
return 0;
new = kmalloc_array(num, sizeof(*new), GFP_KERNEL);
if (!new)
return -ENOMEM;
if (match->compare) {
memcpy(new, match->compare, sizeof(*new) *
min(match->num, num));
kfree(match->compare);
}
match->compare = new;
match->alloc = num;
return 0;
}
static void __component_match_add(struct device *master,
struct component_match **matchptr,
void (*release)(struct device *, void *),
int (*compare)(struct device *, void *),
int (*compare_typed)(struct device *, int, void *),
void *compare_data)
{
struct component_match *match = *matchptr;
if (IS_ERR(match))
return;
if (!match) {
match = devres_alloc(devm_component_match_release,
sizeof(*match), GFP_KERNEL);
if (!match) {
*matchptr = ERR_PTR(-ENOMEM);
return;
}
devres_add(master, match);
*matchptr = match;
}
if (match->num == match->alloc) {
size_t new_size = match->alloc + 16;
int ret;
ret = component_match_realloc(master, match, new_size);
if (ret) {
*matchptr = ERR_PTR(ret);
return;
}
}
match->compare[match->num].compare = compare;
match->compare[match->num].compare_typed = compare_typed;
match->compare[match->num].release = release;
match->compare[match->num].data = compare_data;
match->compare[match->num].component = NULL;
match->num++;
}
/**
* component_match_add_release - add a component match entry with release callback
* @master: device with the aggregate driver
* @matchptr: pointer to the list of component matches
* @release: release function for @compare_data
* @compare: compare function to match against all components
* @compare_data: opaque pointer passed to the @compare function
*
* Adds a new component match to the list stored in @matchptr, which the @master
* aggregate driver needs to function. The list of component matches pointed to
* by @matchptr must be initialized to NULL before adding the first match. This
* only matches against components added with component_add().
*
* The allocated match list in @matchptr is automatically released using devm
* actions, where upon @release will be called to free any references held by
* @compare_data, e.g. when @compare_data is a &device_node that must be
* released with of_node_put().
*
* See also component_match_add() and component_match_add_typed().
*/
void component_match_add_release(struct device *master,
struct component_match **matchptr,
void (*release)(struct device *, void *),
int (*compare)(struct device *, void *), void *compare_data)
{
__component_match_add(master, matchptr, release, compare, NULL,
compare_data);
}
EXPORT_SYMBOL(component_match_add_release);
/**
* component_match_add_typed - add a component match entry for a typed component
* @master: device with the aggregate driver
* @matchptr: pointer to the list of component matches
* @compare_typed: compare function to match against all typed components
* @compare_data: opaque pointer passed to the @compare function
*
* Adds a new component match to the list stored in @matchptr, which the @master
* aggregate driver needs to function. The list of component matches pointed to
* by @matchptr must be initialized to NULL before adding the first match. This
* only matches against components added with component_add_typed().
*
* The allocated match list in @matchptr is automatically released using devm
* actions.
*
* See also component_match_add_release() and component_match_add_typed().
*/
void component_match_add_typed(struct device *master,
struct component_match **matchptr,
int (*compare_typed)(struct device *, int, void *), void *compare_data)
{
__component_match_add(master, matchptr, NULL, NULL, compare_typed,
compare_data);
}
EXPORT_SYMBOL(component_match_add_typed);
static void free_master(struct master *master)
{
struct component_match *match = master->match;
int i;
component_master_debugfs_del(master);
list_del(&master->node);
if (match) {
for (i = 0; i < match->num; i++) {
struct component *c = match->compare[i].component;
if (c)
c->master = NULL;
}
}
kfree(master);
}
/**
* component_master_add_with_match - register an aggregate driver
* @dev: device with the aggregate driver
* @ops: callbacks for the aggregate driver
* @match: component match list for the aggregate driver
*
* Registers a new aggregate driver consisting of the components added to @match
* by calling one of the component_match_add() functions. Once all components in
* @match are available, it will be assembled by calling
* &component_master_ops.bind from @ops. Must be unregistered by calling
* component_master_del().
*/
int component_master_add_with_match(struct device *dev,
const struct component_master_ops *ops,
struct component_match *match)
{
struct master *master;
int ret;
/* Reallocate the match array for its true size */
ret = component_match_realloc(dev, match, match->num);
if (ret)
return ret;
master = kzalloc(sizeof(*master), GFP_KERNEL);
if (!master)
return -ENOMEM;
master->dev = dev;
master->ops = ops;
master->match = match;
component_master_debugfs_add(master);
/* Add to the list of available masters. */
mutex_lock(&component_mutex);
list_add(&master->node, &masters);
ret = try_to_bring_up_master(master, NULL);
if (ret < 0)
free_master(master);
mutex_unlock(&component_mutex);
return ret < 0 ? ret : 0;
}
EXPORT_SYMBOL_GPL(component_master_add_with_match);
/**
* component_master_del - unregister an aggregate driver
* @dev: device with the aggregate driver
* @ops: callbacks for the aggregate driver
*
* Unregisters an aggregate driver registered with
* component_master_add_with_match(). If necessary the aggregate driver is first
* disassembled by calling &component_master_ops.unbind from @ops.
*/
void component_master_del(struct device *dev,
const struct component_master_ops *ops)
{
struct master *master;
mutex_lock(&component_mutex);
master = __master_find(dev, ops);
if (master) {
take_down_master(master);
free_master(master);
}
mutex_unlock(&component_mutex);
}
EXPORT_SYMBOL_GPL(component_master_del);
static void component_unbind(struct component *component,
struct master *master, void *data)
{
WARN_ON(!component->bound);
component->ops->unbind(component->dev, master->dev, data);
component->bound = false;
/* Release all resources claimed in the binding of this component */
devres_release_group(component->dev, component);
}
/**
* component_unbind_all - unbind all components of an aggregate driver
* @master_dev: device with the aggregate driver
* @data: opaque pointer, passed to all components
*
* Unbinds all components of the aggregate @dev by passing @data to their
* &component_ops.unbind functions. Should be called from
* &component_master_ops.unbind.
*/
void component_unbind_all(struct device *master_dev, void *data)
{
struct master *master;
struct component *c;
size_t i;
WARN_ON(!mutex_is_locked(&component_mutex));
master = __master_find(master_dev, NULL);
if (!master)
return;
/* Unbind components in reverse order */
for (i = master->match->num; i--; )
if (!master->match->compare[i].duplicate) {
c = master->match->compare[i].component;
component_unbind(c, master, data);
}
}
EXPORT_SYMBOL_GPL(component_unbind_all);
static int component_bind(struct component *component, struct master *master,
void *data)
{
int ret;
/*
* Each component initialises inside its own devres group.
* This allows us to roll-back a failed component without
* affecting anything else.
*/
if (!devres_open_group(master->dev, NULL, GFP_KERNEL))
return -ENOMEM;
/*
* Also open a group for the device itself: this allows us
* to release the resources claimed against the sub-device
* at the appropriate moment.
*/
if (!devres_open_group(component->dev, component, GFP_KERNEL)) {
devres_release_group(master->dev, NULL);
return -ENOMEM;
}
dev_dbg(master->dev, "binding %s (ops %ps)\n",
dev_name(component->dev), component->ops);
ret = component->ops->bind(component->dev, master->dev, data);
if (!ret) {
component->bound = true;
/*
* Close the component device's group so that resources
* allocated in the binding are encapsulated for removal
* at unbind. Remove the group on the DRM device as we
* can clean those resources up independently.
*/
devres_close_group(component->dev, NULL);
devres_remove_group(master->dev, NULL);
dev_info(master->dev, "bound %s (ops %ps)\n",
dev_name(component->dev), component->ops);
} else {
devres_release_group(component->dev, NULL);
devres_release_group(master->dev, NULL);
dev_err(master->dev, "failed to bind %s (ops %ps): %d\n",
dev_name(component->dev), component->ops, ret);
}
return ret;
}
/**
* component_bind_all - bind all components of an aggregate driver
* @master_dev: device with the aggregate driver
* @data: opaque pointer, passed to all components
*
* Binds all components of the aggregate @dev by passing @data to their
* &component_ops.bind functions. Should be called from
* &component_master_ops.bind.
*/
int component_bind_all(struct device *master_dev, void *data)
{
struct master *master;
struct component *c;
size_t i;
int ret = 0;
WARN_ON(!mutex_is_locked(&component_mutex));
master = __master_find(master_dev, NULL);
if (!master)
return -EINVAL;
/* Bind components in match order */
for (i = 0; i < master->match->num; i++)
if (!master->match->compare[i].duplicate) {
c = master->match->compare[i].component;
ret = component_bind(c, master, data);
if (ret)
break;
}
if (ret != 0) {
for (; i > 0; i--)
if (!master->match->compare[i - 1].duplicate) {
c = master->match->compare[i - 1].component;
component_unbind(c, master, data);
}
}
return ret;
}
EXPORT_SYMBOL_GPL(component_bind_all);
static int __component_add(struct device *dev, const struct component_ops *ops,
int subcomponent)
{
struct component *component;
int ret;
component = kzalloc(sizeof(*component), GFP_KERNEL);
if (!component)
return -ENOMEM;
component->ops = ops;
component->dev = dev;
component->subcomponent = subcomponent;
dev_dbg(dev, "adding component (ops %ps)\n", ops);
mutex_lock(&component_mutex);
list_add_tail(&component->node, &component_list);
ret = try_to_bring_up_masters(component);
if (ret < 0) {
if (component->master)
remove_component(component->master, component);
list_del(&component->node);
kfree(component);
}
mutex_unlock(&component_mutex);
return ret < 0 ? ret : 0;
}
/**
* component_add_typed - register a component
* @dev: component device
* @ops: component callbacks
* @subcomponent: nonzero identifier for subcomponents
*
* Register a new component for @dev. Functions in @ops will be call when the
* aggregate driver is ready to bind the overall driver by calling
* component_bind_all(). See also &struct component_ops.
*
* @subcomponent must be nonzero and is used to differentiate between multiple
* components registerd on the same device @dev. These components are match
* using component_match_add_typed().
*
* The component needs to be unregistered at driver unload/disconnect by
* calling component_del().
*
* See also component_add().
*/
int component_add_typed(struct device *dev, const struct component_ops *ops,
int subcomponent)
{
if (WARN_ON(subcomponent == 0))
return -EINVAL;
return __component_add(dev, ops, subcomponent);
}
EXPORT_SYMBOL_GPL(component_add_typed);
/**
* component_add - register a component
* @dev: component device
* @ops: component callbacks
*
* Register a new component for @dev. Functions in @ops will be called when the
* aggregate driver is ready to bind the overall driver by calling
* component_bind_all(). See also &struct component_ops.
*
* The component needs to be unregistered at driver unload/disconnect by
* calling component_del().
*
* See also component_add_typed() for a variant that allows multipled different
* components on the same device.
*/
int component_add(struct device *dev, const struct component_ops *ops)
{
return __component_add(dev, ops, 0);
}
EXPORT_SYMBOL_GPL(component_add);
/**
* component_del - unregister a component
* @dev: component device
* @ops: component callbacks
*
* Unregister a component added with component_add(). If the component is bound
* into an aggregate driver, this will force the entire aggregate driver, including
* all its components, to be unbound.
*/
void component_del(struct device *dev, const struct component_ops *ops)
{
struct component *c, *component = NULL;
mutex_lock(&component_mutex);
list_for_each_entry(c, &component_list, node)
if (c->dev == dev && c->ops == ops) {
list_del(&c->node);
component = c;
break;
}
if (component && component->master) {
take_down_master(component->master);
remove_component(component->master, component);
}
mutex_unlock(&component_mutex);
WARN_ON(!component);
kfree(component);
}
EXPORT_SYMBOL_GPL(component_del);
MODULE_LICENSE("GPL v2");