mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-18 18:43:59 +08:00
451d7585a8
Some SSDs perform best when reusing block numbers often, while others perform much better when clustering strictly allocates big chunks of unused space. The default mount -o ssd will find rough groupings of blocks where there are a bunch of free blocks that might have some allocated blocks mixed in. mount -o ssd_spread will make sure there are no allocated blocks mixed in. It should perform better on lower end SSDs. Signed-off-by: Chris Mason <chris.mason@oracle.com>
725 lines
19 KiB
C
725 lines
19 KiB
C
/*
|
|
* Copyright (C) 2008 Red Hat. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include "ctree.h"
|
|
#include "free-space-cache.h"
|
|
#include "transaction.h"
|
|
|
|
struct btrfs_free_space {
|
|
struct rb_node bytes_index;
|
|
struct rb_node offset_index;
|
|
u64 offset;
|
|
u64 bytes;
|
|
};
|
|
|
|
static int tree_insert_offset(struct rb_root *root, u64 offset,
|
|
struct rb_node *node)
|
|
{
|
|
struct rb_node **p = &root->rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct btrfs_free_space *info;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
info = rb_entry(parent, struct btrfs_free_space, offset_index);
|
|
|
|
if (offset < info->offset)
|
|
p = &(*p)->rb_left;
|
|
else if (offset > info->offset)
|
|
p = &(*p)->rb_right;
|
|
else
|
|
return -EEXIST;
|
|
}
|
|
|
|
rb_link_node(node, parent, p);
|
|
rb_insert_color(node, root);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tree_insert_bytes(struct rb_root *root, u64 bytes,
|
|
struct rb_node *node)
|
|
{
|
|
struct rb_node **p = &root->rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct btrfs_free_space *info;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
info = rb_entry(parent, struct btrfs_free_space, bytes_index);
|
|
|
|
if (bytes < info->bytes)
|
|
p = &(*p)->rb_left;
|
|
else
|
|
p = &(*p)->rb_right;
|
|
}
|
|
|
|
rb_link_node(node, parent, p);
|
|
rb_insert_color(node, root);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* searches the tree for the given offset.
|
|
*
|
|
* fuzzy == 1: this is used for allocations where we are given a hint of where
|
|
* to look for free space. Because the hint may not be completely on an offset
|
|
* mark, or the hint may no longer point to free space we need to fudge our
|
|
* results a bit. So we look for free space starting at or after offset with at
|
|
* least bytes size. We prefer to find as close to the given offset as we can.
|
|
* Also if the offset is within a free space range, then we will return the free
|
|
* space that contains the given offset, which means we can return a free space
|
|
* chunk with an offset before the provided offset.
|
|
*
|
|
* fuzzy == 0: this is just a normal tree search. Give us the free space that
|
|
* starts at the given offset which is at least bytes size, and if its not there
|
|
* return NULL.
|
|
*/
|
|
static struct btrfs_free_space *tree_search_offset(struct rb_root *root,
|
|
u64 offset, u64 bytes,
|
|
int fuzzy)
|
|
{
|
|
struct rb_node *n = root->rb_node;
|
|
struct btrfs_free_space *entry, *ret = NULL;
|
|
|
|
while (n) {
|
|
entry = rb_entry(n, struct btrfs_free_space, offset_index);
|
|
|
|
if (offset < entry->offset) {
|
|
if (fuzzy &&
|
|
(!ret || entry->offset < ret->offset) &&
|
|
(bytes <= entry->bytes))
|
|
ret = entry;
|
|
n = n->rb_left;
|
|
} else if (offset > entry->offset) {
|
|
if (fuzzy &&
|
|
(entry->offset + entry->bytes - 1) >= offset &&
|
|
bytes <= entry->bytes) {
|
|
ret = entry;
|
|
break;
|
|
}
|
|
n = n->rb_right;
|
|
} else {
|
|
if (bytes > entry->bytes) {
|
|
n = n->rb_right;
|
|
continue;
|
|
}
|
|
ret = entry;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* return a chunk at least bytes size, as close to offset that we can get.
|
|
*/
|
|
static struct btrfs_free_space *tree_search_bytes(struct rb_root *root,
|
|
u64 offset, u64 bytes)
|
|
{
|
|
struct rb_node *n = root->rb_node;
|
|
struct btrfs_free_space *entry, *ret = NULL;
|
|
|
|
while (n) {
|
|
entry = rb_entry(n, struct btrfs_free_space, bytes_index);
|
|
|
|
if (bytes < entry->bytes) {
|
|
/*
|
|
* We prefer to get a hole size as close to the size we
|
|
* are asking for so we don't take small slivers out of
|
|
* huge holes, but we also want to get as close to the
|
|
* offset as possible so we don't have a whole lot of
|
|
* fragmentation.
|
|
*/
|
|
if (offset <= entry->offset) {
|
|
if (!ret)
|
|
ret = entry;
|
|
else if (entry->bytes < ret->bytes)
|
|
ret = entry;
|
|
else if (entry->offset < ret->offset)
|
|
ret = entry;
|
|
}
|
|
n = n->rb_left;
|
|
} else if (bytes > entry->bytes) {
|
|
n = n->rb_right;
|
|
} else {
|
|
/*
|
|
* Ok we may have multiple chunks of the wanted size,
|
|
* so we don't want to take the first one we find, we
|
|
* want to take the one closest to our given offset, so
|
|
* keep searching just in case theres a better match.
|
|
*/
|
|
n = n->rb_right;
|
|
if (offset > entry->offset)
|
|
continue;
|
|
else if (!ret || entry->offset < ret->offset)
|
|
ret = entry;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void unlink_free_space(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_space *info)
|
|
{
|
|
rb_erase(&info->offset_index, &block_group->free_space_offset);
|
|
rb_erase(&info->bytes_index, &block_group->free_space_bytes);
|
|
}
|
|
|
|
static int link_free_space(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_space *info)
|
|
{
|
|
int ret = 0;
|
|
|
|
|
|
BUG_ON(!info->bytes);
|
|
ret = tree_insert_offset(&block_group->free_space_offset, info->offset,
|
|
&info->offset_index);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = tree_insert_bytes(&block_group->free_space_bytes, info->bytes,
|
|
&info->bytes_index);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
|
|
u64 offset, u64 bytes)
|
|
{
|
|
struct btrfs_free_space *right_info;
|
|
struct btrfs_free_space *left_info;
|
|
struct btrfs_free_space *info = NULL;
|
|
int ret = 0;
|
|
|
|
info = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS);
|
|
if (!info)
|
|
return -ENOMEM;
|
|
|
|
info->offset = offset;
|
|
info->bytes = bytes;
|
|
|
|
spin_lock(&block_group->tree_lock);
|
|
|
|
/*
|
|
* first we want to see if there is free space adjacent to the range we
|
|
* are adding, if there is remove that struct and add a new one to
|
|
* cover the entire range
|
|
*/
|
|
right_info = tree_search_offset(&block_group->free_space_offset,
|
|
offset+bytes, 0, 0);
|
|
left_info = tree_search_offset(&block_group->free_space_offset,
|
|
offset-1, 0, 1);
|
|
|
|
if (right_info) {
|
|
unlink_free_space(block_group, right_info);
|
|
info->bytes += right_info->bytes;
|
|
kfree(right_info);
|
|
}
|
|
|
|
if (left_info && left_info->offset + left_info->bytes == offset) {
|
|
unlink_free_space(block_group, left_info);
|
|
info->offset = left_info->offset;
|
|
info->bytes += left_info->bytes;
|
|
kfree(left_info);
|
|
}
|
|
|
|
ret = link_free_space(block_group, info);
|
|
if (ret)
|
|
kfree(info);
|
|
|
|
spin_unlock(&block_group->tree_lock);
|
|
|
|
if (ret) {
|
|
printk(KERN_ERR "btrfs: unable to add free space :%d\n", ret);
|
|
BUG_ON(ret == -EEXIST);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
|
|
u64 offset, u64 bytes)
|
|
{
|
|
struct btrfs_free_space *info;
|
|
int ret = 0;
|
|
|
|
spin_lock(&block_group->tree_lock);
|
|
|
|
info = tree_search_offset(&block_group->free_space_offset, offset, 0,
|
|
1);
|
|
if (info && info->offset == offset) {
|
|
if (info->bytes < bytes) {
|
|
printk(KERN_ERR "Found free space at %llu, size %llu,"
|
|
"trying to use %llu\n",
|
|
(unsigned long long)info->offset,
|
|
(unsigned long long)info->bytes,
|
|
(unsigned long long)bytes);
|
|
WARN_ON(1);
|
|
ret = -EINVAL;
|
|
spin_unlock(&block_group->tree_lock);
|
|
goto out;
|
|
}
|
|
unlink_free_space(block_group, info);
|
|
|
|
if (info->bytes == bytes) {
|
|
kfree(info);
|
|
spin_unlock(&block_group->tree_lock);
|
|
goto out;
|
|
}
|
|
|
|
info->offset += bytes;
|
|
info->bytes -= bytes;
|
|
|
|
ret = link_free_space(block_group, info);
|
|
spin_unlock(&block_group->tree_lock);
|
|
BUG_ON(ret);
|
|
} else if (info && info->offset < offset &&
|
|
info->offset + info->bytes >= offset + bytes) {
|
|
u64 old_start = info->offset;
|
|
/*
|
|
* we're freeing space in the middle of the info,
|
|
* this can happen during tree log replay
|
|
*
|
|
* first unlink the old info and then
|
|
* insert it again after the hole we're creating
|
|
*/
|
|
unlink_free_space(block_group, info);
|
|
if (offset + bytes < info->offset + info->bytes) {
|
|
u64 old_end = info->offset + info->bytes;
|
|
|
|
info->offset = offset + bytes;
|
|
info->bytes = old_end - info->offset;
|
|
ret = link_free_space(block_group, info);
|
|
BUG_ON(ret);
|
|
} else {
|
|
/* the hole we're creating ends at the end
|
|
* of the info struct, just free the info
|
|
*/
|
|
kfree(info);
|
|
}
|
|
spin_unlock(&block_group->tree_lock);
|
|
/* step two, insert a new info struct to cover anything
|
|
* before the hole
|
|
*/
|
|
ret = btrfs_add_free_space(block_group, old_start,
|
|
offset - old_start);
|
|
BUG_ON(ret);
|
|
} else {
|
|
spin_unlock(&block_group->tree_lock);
|
|
if (!info) {
|
|
printk(KERN_ERR "couldn't find space %llu to free\n",
|
|
(unsigned long long)offset);
|
|
printk(KERN_ERR "cached is %d, offset %llu bytes %llu\n",
|
|
block_group->cached,
|
|
(unsigned long long)block_group->key.objectid,
|
|
(unsigned long long)block_group->key.offset);
|
|
btrfs_dump_free_space(block_group, bytes);
|
|
} else if (info) {
|
|
printk(KERN_ERR "hmm, found offset=%llu bytes=%llu, "
|
|
"but wanted offset=%llu bytes=%llu\n",
|
|
(unsigned long long)info->offset,
|
|
(unsigned long long)info->bytes,
|
|
(unsigned long long)offset,
|
|
(unsigned long long)bytes);
|
|
}
|
|
WARN_ON(1);
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
|
|
u64 bytes)
|
|
{
|
|
struct btrfs_free_space *info;
|
|
struct rb_node *n;
|
|
int count = 0;
|
|
|
|
for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) {
|
|
info = rb_entry(n, struct btrfs_free_space, offset_index);
|
|
if (info->bytes >= bytes)
|
|
count++;
|
|
printk(KERN_ERR "entry offset %llu, bytes %llu\n",
|
|
(unsigned long long)info->offset,
|
|
(unsigned long long)info->bytes);
|
|
}
|
|
printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
|
|
"\n", count);
|
|
}
|
|
|
|
u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group)
|
|
{
|
|
struct btrfs_free_space *info;
|
|
struct rb_node *n;
|
|
u64 ret = 0;
|
|
|
|
for (n = rb_first(&block_group->free_space_offset); n;
|
|
n = rb_next(n)) {
|
|
info = rb_entry(n, struct btrfs_free_space, offset_index);
|
|
ret += info->bytes;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* for a given cluster, put all of its extents back into the free
|
|
* space cache. If the block group passed doesn't match the block group
|
|
* pointed to by the cluster, someone else raced in and freed the
|
|
* cluster already. In that case, we just return without changing anything
|
|
*/
|
|
static int
|
|
__btrfs_return_cluster_to_free_space(
|
|
struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_cluster *cluster)
|
|
{
|
|
struct btrfs_free_space *entry;
|
|
struct rb_node *node;
|
|
|
|
spin_lock(&cluster->lock);
|
|
if (cluster->block_group != block_group)
|
|
goto out;
|
|
|
|
cluster->window_start = 0;
|
|
node = rb_first(&cluster->root);
|
|
while(node) {
|
|
entry = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
node = rb_next(&entry->offset_index);
|
|
rb_erase(&entry->offset_index, &cluster->root);
|
|
link_free_space(block_group, entry);
|
|
}
|
|
list_del_init(&cluster->block_group_list);
|
|
|
|
btrfs_put_block_group(cluster->block_group);
|
|
cluster->block_group = NULL;
|
|
cluster->root.rb_node = NULL;
|
|
out:
|
|
spin_unlock(&cluster->lock);
|
|
return 0;
|
|
}
|
|
|
|
void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
|
|
{
|
|
struct btrfs_free_space *info;
|
|
struct rb_node *node;
|
|
struct btrfs_free_cluster *cluster;
|
|
struct btrfs_free_cluster *safe;
|
|
|
|
spin_lock(&block_group->tree_lock);
|
|
|
|
list_for_each_entry_safe(cluster, safe, &block_group->cluster_list,
|
|
block_group_list) {
|
|
|
|
WARN_ON(cluster->block_group != block_group);
|
|
__btrfs_return_cluster_to_free_space(block_group, cluster);
|
|
}
|
|
|
|
while ((node = rb_last(&block_group->free_space_bytes)) != NULL) {
|
|
info = rb_entry(node, struct btrfs_free_space, bytes_index);
|
|
unlink_free_space(block_group, info);
|
|
kfree(info);
|
|
if (need_resched()) {
|
|
spin_unlock(&block_group->tree_lock);
|
|
cond_resched();
|
|
spin_lock(&block_group->tree_lock);
|
|
}
|
|
}
|
|
spin_unlock(&block_group->tree_lock);
|
|
}
|
|
|
|
u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
|
|
u64 offset, u64 bytes, u64 empty_size)
|
|
{
|
|
struct btrfs_free_space *entry = NULL;
|
|
u64 ret = 0;
|
|
|
|
spin_lock(&block_group->tree_lock);
|
|
entry = tree_search_offset(&block_group->free_space_offset, offset,
|
|
bytes + empty_size, 1);
|
|
if (!entry)
|
|
entry = tree_search_bytes(&block_group->free_space_bytes,
|
|
offset, bytes + empty_size);
|
|
if (entry) {
|
|
unlink_free_space(block_group, entry);
|
|
ret = entry->offset;
|
|
entry->offset += bytes;
|
|
entry->bytes -= bytes;
|
|
|
|
if (!entry->bytes)
|
|
kfree(entry);
|
|
else
|
|
link_free_space(block_group, entry);
|
|
}
|
|
spin_unlock(&block_group->tree_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* given a cluster, put all of its extents back into the free space
|
|
* cache. If a block group is passed, this function will only free
|
|
* a cluster that belongs to the passed block group.
|
|
*
|
|
* Otherwise, it'll get a reference on the block group pointed to by the
|
|
* cluster and remove the cluster from it.
|
|
*/
|
|
int btrfs_return_cluster_to_free_space(
|
|
struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_cluster *cluster)
|
|
{
|
|
int ret;
|
|
|
|
/* first, get a safe pointer to the block group */
|
|
spin_lock(&cluster->lock);
|
|
if (!block_group) {
|
|
block_group = cluster->block_group;
|
|
if (!block_group) {
|
|
spin_unlock(&cluster->lock);
|
|
return 0;
|
|
}
|
|
} else if (cluster->block_group != block_group) {
|
|
/* someone else has already freed it don't redo their work */
|
|
spin_unlock(&cluster->lock);
|
|
return 0;
|
|
}
|
|
atomic_inc(&block_group->count);
|
|
spin_unlock(&cluster->lock);
|
|
|
|
/* now return any extents the cluster had on it */
|
|
spin_lock(&block_group->tree_lock);
|
|
ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
|
|
spin_unlock(&block_group->tree_lock);
|
|
|
|
/* finally drop our ref */
|
|
btrfs_put_block_group(block_group);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* given a cluster, try to allocate 'bytes' from it, returns 0
|
|
* if it couldn't find anything suitably large, or a logical disk offset
|
|
* if things worked out
|
|
*/
|
|
u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_cluster *cluster, u64 bytes,
|
|
u64 min_start)
|
|
{
|
|
struct btrfs_free_space *entry = NULL;
|
|
struct rb_node *node;
|
|
u64 ret = 0;
|
|
|
|
spin_lock(&cluster->lock);
|
|
if (bytes > cluster->max_size)
|
|
goto out;
|
|
|
|
if (cluster->block_group != block_group)
|
|
goto out;
|
|
|
|
node = rb_first(&cluster->root);
|
|
if (!node)
|
|
goto out;
|
|
|
|
entry = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
|
|
while(1) {
|
|
if (entry->bytes < bytes || entry->offset < min_start) {
|
|
struct rb_node *node;
|
|
|
|
node = rb_next(&entry->offset_index);
|
|
if (!node)
|
|
break;
|
|
entry = rb_entry(node, struct btrfs_free_space,
|
|
offset_index);
|
|
continue;
|
|
}
|
|
ret = entry->offset;
|
|
|
|
entry->offset += bytes;
|
|
entry->bytes -= bytes;
|
|
|
|
if (entry->bytes == 0) {
|
|
rb_erase(&entry->offset_index, &cluster->root);
|
|
kfree(entry);
|
|
}
|
|
break;
|
|
}
|
|
out:
|
|
spin_unlock(&cluster->lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* here we try to find a cluster of blocks in a block group. The goal
|
|
* is to find at least bytes free and up to empty_size + bytes free.
|
|
* We might not find them all in one contiguous area.
|
|
*
|
|
* returns zero and sets up cluster if things worked out, otherwise
|
|
* it returns -enospc
|
|
*/
|
|
int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_cluster *cluster,
|
|
u64 offset, u64 bytes, u64 empty_size)
|
|
{
|
|
struct btrfs_free_space *entry = NULL;
|
|
struct rb_node *node;
|
|
struct btrfs_free_space *next;
|
|
struct btrfs_free_space *last;
|
|
u64 min_bytes;
|
|
u64 window_start;
|
|
u64 window_free;
|
|
u64 max_extent = 0;
|
|
int total_retries = 0;
|
|
int ret;
|
|
|
|
/* for metadata, allow allocates with more holes */
|
|
if (btrfs_test_opt(root, SSD_SPREAD)) {
|
|
min_bytes = bytes + empty_size;
|
|
} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
|
|
/*
|
|
* we want to do larger allocations when we are
|
|
* flushing out the delayed refs, it helps prevent
|
|
* making more work as we go along.
|
|
*/
|
|
if (trans->transaction->delayed_refs.flushing)
|
|
min_bytes = max(bytes, (bytes + empty_size) >> 1);
|
|
else
|
|
min_bytes = max(bytes, (bytes + empty_size) >> 4);
|
|
} else
|
|
min_bytes = max(bytes, (bytes + empty_size) >> 2);
|
|
|
|
spin_lock(&block_group->tree_lock);
|
|
spin_lock(&cluster->lock);
|
|
|
|
/* someone already found a cluster, hooray */
|
|
if (cluster->block_group) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
again:
|
|
min_bytes = min(min_bytes, bytes + empty_size);
|
|
entry = tree_search_bytes(&block_group->free_space_bytes,
|
|
offset, min_bytes);
|
|
if (!entry) {
|
|
ret = -ENOSPC;
|
|
goto out;
|
|
}
|
|
window_start = entry->offset;
|
|
window_free = entry->bytes;
|
|
last = entry;
|
|
max_extent = entry->bytes;
|
|
|
|
while(1) {
|
|
/* out window is just right, lets fill it */
|
|
if (window_free >= bytes + empty_size)
|
|
break;
|
|
|
|
node = rb_next(&last->offset_index);
|
|
if (!node) {
|
|
ret = -ENOSPC;
|
|
goto out;
|
|
}
|
|
next = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
|
|
/*
|
|
* we haven't filled the empty size and the window is
|
|
* very large. reset and try again
|
|
*/
|
|
if (next->offset - (last->offset + last->bytes) > 128 * 1024 ||
|
|
next->offset - window_start > (bytes + empty_size) * 2) {
|
|
entry = next;
|
|
window_start = entry->offset;
|
|
window_free = entry->bytes;
|
|
last = entry;
|
|
max_extent = 0;
|
|
total_retries++;
|
|
if (total_retries % 64 == 0) {
|
|
if (min_bytes >= (bytes + empty_size)) {
|
|
ret = -ENOSPC;
|
|
goto out;
|
|
}
|
|
/*
|
|
* grow our allocation a bit, we're not having
|
|
* much luck
|
|
*/
|
|
min_bytes *= 2;
|
|
goto again;
|
|
}
|
|
} else {
|
|
last = next;
|
|
window_free += next->bytes;
|
|
if (entry->bytes > max_extent)
|
|
max_extent = entry->bytes;
|
|
}
|
|
}
|
|
|
|
cluster->window_start = entry->offset;
|
|
|
|
/*
|
|
* now we've found our entries, pull them out of the free space
|
|
* cache and put them into the cluster rbtree
|
|
*
|
|
* The cluster includes an rbtree, but only uses the offset index
|
|
* of each free space cache entry.
|
|
*/
|
|
while(1) {
|
|
node = rb_next(&entry->offset_index);
|
|
unlink_free_space(block_group, entry);
|
|
ret = tree_insert_offset(&cluster->root, entry->offset,
|
|
&entry->offset_index);
|
|
BUG_ON(ret);
|
|
|
|
if (!node || entry == last)
|
|
break;
|
|
|
|
entry = rb_entry(node, struct btrfs_free_space, offset_index);
|
|
}
|
|
ret = 0;
|
|
cluster->max_size = max_extent;
|
|
atomic_inc(&block_group->count);
|
|
list_add_tail(&cluster->block_group_list, &block_group->cluster_list);
|
|
cluster->block_group = block_group;
|
|
out:
|
|
spin_unlock(&cluster->lock);
|
|
spin_unlock(&block_group->tree_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* simple code to zero out a cluster
|
|
*/
|
|
void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
|
|
{
|
|
spin_lock_init(&cluster->lock);
|
|
spin_lock_init(&cluster->refill_lock);
|
|
cluster->root.rb_node = NULL;
|
|
cluster->max_size = 0;
|
|
INIT_LIST_HEAD(&cluster->block_group_list);
|
|
cluster->block_group = NULL;
|
|
}
|
|
|