2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-21 11:44:01 +08:00
linux-next/include/linux/nodemask.h
Tom Rini 323f54ed0f numa: Mark __node_set() as __always_inline
It is posible for some compilers to decide that __node_set() does
not need to be made turned into an inline function.  When the
compiler does this on an __init function calling it on
__initdata we get a section mismatch warning now.  Use
__always_inline to ensure that we will be inlined.

Reported-by: Paul Bolle <pebolle@tiscali.nl>
Cc: Jianpeng Ma <majianpeng@gmail.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Tom Rini <trini@ti.com>
Link: http://lkml.kernel.org/r/1374776770-32361-1-git-send-email-trini@ti.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-07-25 21:54:01 +02:00

530 lines
16 KiB
C

#ifndef __LINUX_NODEMASK_H
#define __LINUX_NODEMASK_H
/*
* Nodemasks provide a bitmap suitable for representing the
* set of Node's in a system, one bit position per Node number.
*
* See detailed comments in the file linux/bitmap.h describing the
* data type on which these nodemasks are based.
*
* For details of nodemask_scnprintf() and nodemask_parse_user(),
* see bitmap_scnprintf() and bitmap_parse_user() in lib/bitmap.c.
* For details of nodelist_scnprintf() and nodelist_parse(), see
* bitmap_scnlistprintf() and bitmap_parselist(), also in bitmap.c.
* For details of node_remap(), see bitmap_bitremap in lib/bitmap.c.
* For details of nodes_remap(), see bitmap_remap in lib/bitmap.c.
* For details of nodes_onto(), see bitmap_onto in lib/bitmap.c.
* For details of nodes_fold(), see bitmap_fold in lib/bitmap.c.
*
* The available nodemask operations are:
*
* void node_set(node, mask) turn on bit 'node' in mask
* void node_clear(node, mask) turn off bit 'node' in mask
* void nodes_setall(mask) set all bits
* void nodes_clear(mask) clear all bits
* int node_isset(node, mask) true iff bit 'node' set in mask
* int node_test_and_set(node, mask) test and set bit 'node' in mask
*
* void nodes_and(dst, src1, src2) dst = src1 & src2 [intersection]
* void nodes_or(dst, src1, src2) dst = src1 | src2 [union]
* void nodes_xor(dst, src1, src2) dst = src1 ^ src2
* void nodes_andnot(dst, src1, src2) dst = src1 & ~src2
* void nodes_complement(dst, src) dst = ~src
*
* int nodes_equal(mask1, mask2) Does mask1 == mask2?
* int nodes_intersects(mask1, mask2) Do mask1 and mask2 intersect?
* int nodes_subset(mask1, mask2) Is mask1 a subset of mask2?
* int nodes_empty(mask) Is mask empty (no bits sets)?
* int nodes_full(mask) Is mask full (all bits sets)?
* int nodes_weight(mask) Hamming weight - number of set bits
*
* void nodes_shift_right(dst, src, n) Shift right
* void nodes_shift_left(dst, src, n) Shift left
*
* int first_node(mask) Number lowest set bit, or MAX_NUMNODES
* int next_node(node, mask) Next node past 'node', or MAX_NUMNODES
* int first_unset_node(mask) First node not set in mask, or
* MAX_NUMNODES.
*
* nodemask_t nodemask_of_node(node) Return nodemask with bit 'node' set
* NODE_MASK_ALL Initializer - all bits set
* NODE_MASK_NONE Initializer - no bits set
* unsigned long *nodes_addr(mask) Array of unsigned long's in mask
*
* int nodemask_scnprintf(buf, len, mask) Format nodemask for printing
* int nodemask_parse_user(ubuf, ulen, mask) Parse ascii string as nodemask
* int nodelist_scnprintf(buf, len, mask) Format nodemask as list for printing
* int nodelist_parse(buf, map) Parse ascii string as nodelist
* int node_remap(oldbit, old, new) newbit = map(old, new)(oldbit)
* void nodes_remap(dst, src, old, new) *dst = map(old, new)(src)
* void nodes_onto(dst, orig, relmap) *dst = orig relative to relmap
* void nodes_fold(dst, orig, sz) dst bits = orig bits mod sz
*
* for_each_node_mask(node, mask) for-loop node over mask
*
* int num_online_nodes() Number of online Nodes
* int num_possible_nodes() Number of all possible Nodes
*
* int node_random(mask) Random node with set bit in mask
*
* int node_online(node) Is some node online?
* int node_possible(node) Is some node possible?
*
* node_set_online(node) set bit 'node' in node_online_map
* node_set_offline(node) clear bit 'node' in node_online_map
*
* for_each_node(node) for-loop node over node_possible_map
* for_each_online_node(node) for-loop node over node_online_map
*
* Subtlety:
* 1) The 'type-checked' form of node_isset() causes gcc (3.3.2, anyway)
* to generate slightly worse code. So use a simple one-line #define
* for node_isset(), instead of wrapping an inline inside a macro, the
* way we do the other calls.
*
* NODEMASK_SCRATCH
* When doing above logical AND, OR, XOR, Remap operations the callers tend to
* need temporary nodemask_t's on the stack. But if NODES_SHIFT is large,
* nodemask_t's consume too much stack space. NODEMASK_SCRATCH is a helper
* for such situations. See below and CPUMASK_ALLOC also.
*/
#include <linux/kernel.h>
#include <linux/threads.h>
#include <linux/bitmap.h>
#include <linux/numa.h>
typedef struct { DECLARE_BITMAP(bits, MAX_NUMNODES); } nodemask_t;
extern nodemask_t _unused_nodemask_arg_;
/*
* The inline keyword gives the compiler room to decide to inline, or
* not inline a function as it sees best. However, as these functions
* are called in both __init and non-__init functions, if they are not
* inlined we will end up with a section mis-match error (of the type of
* freeable items not being freed). So we must use __always_inline here
* to fix the problem. If other functions in the future also end up in
* this situation they will also need to be annotated as __always_inline
*/
#define node_set(node, dst) __node_set((node), &(dst))
static __always_inline void __node_set(int node, volatile nodemask_t *dstp)
{
set_bit(node, dstp->bits);
}
#define node_clear(node, dst) __node_clear((node), &(dst))
static inline void __node_clear(int node, volatile nodemask_t *dstp)
{
clear_bit(node, dstp->bits);
}
#define nodes_setall(dst) __nodes_setall(&(dst), MAX_NUMNODES)
static inline void __nodes_setall(nodemask_t *dstp, int nbits)
{
bitmap_fill(dstp->bits, nbits);
}
#define nodes_clear(dst) __nodes_clear(&(dst), MAX_NUMNODES)
static inline void __nodes_clear(nodemask_t *dstp, int nbits)
{
bitmap_zero(dstp->bits, nbits);
}
/* No static inline type checking - see Subtlety (1) above. */
#define node_isset(node, nodemask) test_bit((node), (nodemask).bits)
#define node_test_and_set(node, nodemask) \
__node_test_and_set((node), &(nodemask))
static inline int __node_test_and_set(int node, nodemask_t *addr)
{
return test_and_set_bit(node, addr->bits);
}
#define nodes_and(dst, src1, src2) \
__nodes_and(&(dst), &(src1), &(src2), MAX_NUMNODES)
static inline void __nodes_and(nodemask_t *dstp, const nodemask_t *src1p,
const nodemask_t *src2p, int nbits)
{
bitmap_and(dstp->bits, src1p->bits, src2p->bits, nbits);
}
#define nodes_or(dst, src1, src2) \
__nodes_or(&(dst), &(src1), &(src2), MAX_NUMNODES)
static inline void __nodes_or(nodemask_t *dstp, const nodemask_t *src1p,
const nodemask_t *src2p, int nbits)
{
bitmap_or(dstp->bits, src1p->bits, src2p->bits, nbits);
}
#define nodes_xor(dst, src1, src2) \
__nodes_xor(&(dst), &(src1), &(src2), MAX_NUMNODES)
static inline void __nodes_xor(nodemask_t *dstp, const nodemask_t *src1p,
const nodemask_t *src2p, int nbits)
{
bitmap_xor(dstp->bits, src1p->bits, src2p->bits, nbits);
}
#define nodes_andnot(dst, src1, src2) \
__nodes_andnot(&(dst), &(src1), &(src2), MAX_NUMNODES)
static inline void __nodes_andnot(nodemask_t *dstp, const nodemask_t *src1p,
const nodemask_t *src2p, int nbits)
{
bitmap_andnot(dstp->bits, src1p->bits, src2p->bits, nbits);
}
#define nodes_complement(dst, src) \
__nodes_complement(&(dst), &(src), MAX_NUMNODES)
static inline void __nodes_complement(nodemask_t *dstp,
const nodemask_t *srcp, int nbits)
{
bitmap_complement(dstp->bits, srcp->bits, nbits);
}
#define nodes_equal(src1, src2) \
__nodes_equal(&(src1), &(src2), MAX_NUMNODES)
static inline int __nodes_equal(const nodemask_t *src1p,
const nodemask_t *src2p, int nbits)
{
return bitmap_equal(src1p->bits, src2p->bits, nbits);
}
#define nodes_intersects(src1, src2) \
__nodes_intersects(&(src1), &(src2), MAX_NUMNODES)
static inline int __nodes_intersects(const nodemask_t *src1p,
const nodemask_t *src2p, int nbits)
{
return bitmap_intersects(src1p->bits, src2p->bits, nbits);
}
#define nodes_subset(src1, src2) \
__nodes_subset(&(src1), &(src2), MAX_NUMNODES)
static inline int __nodes_subset(const nodemask_t *src1p,
const nodemask_t *src2p, int nbits)
{
return bitmap_subset(src1p->bits, src2p->bits, nbits);
}
#define nodes_empty(src) __nodes_empty(&(src), MAX_NUMNODES)
static inline int __nodes_empty(const nodemask_t *srcp, int nbits)
{
return bitmap_empty(srcp->bits, nbits);
}
#define nodes_full(nodemask) __nodes_full(&(nodemask), MAX_NUMNODES)
static inline int __nodes_full(const nodemask_t *srcp, int nbits)
{
return bitmap_full(srcp->bits, nbits);
}
#define nodes_weight(nodemask) __nodes_weight(&(nodemask), MAX_NUMNODES)
static inline int __nodes_weight(const nodemask_t *srcp, int nbits)
{
return bitmap_weight(srcp->bits, nbits);
}
#define nodes_shift_right(dst, src, n) \
__nodes_shift_right(&(dst), &(src), (n), MAX_NUMNODES)
static inline void __nodes_shift_right(nodemask_t *dstp,
const nodemask_t *srcp, int n, int nbits)
{
bitmap_shift_right(dstp->bits, srcp->bits, n, nbits);
}
#define nodes_shift_left(dst, src, n) \
__nodes_shift_left(&(dst), &(src), (n), MAX_NUMNODES)
static inline void __nodes_shift_left(nodemask_t *dstp,
const nodemask_t *srcp, int n, int nbits)
{
bitmap_shift_left(dstp->bits, srcp->bits, n, nbits);
}
/* FIXME: better would be to fix all architectures to never return
> MAX_NUMNODES, then the silly min_ts could be dropped. */
#define first_node(src) __first_node(&(src))
static inline int __first_node(const nodemask_t *srcp)
{
return min_t(int, MAX_NUMNODES, find_first_bit(srcp->bits, MAX_NUMNODES));
}
#define next_node(n, src) __next_node((n), &(src))
static inline int __next_node(int n, const nodemask_t *srcp)
{
return min_t(int,MAX_NUMNODES,find_next_bit(srcp->bits, MAX_NUMNODES, n+1));
}
static inline void init_nodemask_of_node(nodemask_t *mask, int node)
{
nodes_clear(*mask);
node_set(node, *mask);
}
#define nodemask_of_node(node) \
({ \
typeof(_unused_nodemask_arg_) m; \
if (sizeof(m) == sizeof(unsigned long)) { \
m.bits[0] = 1UL << (node); \
} else { \
init_nodemask_of_node(&m, (node)); \
} \
m; \
})
#define first_unset_node(mask) __first_unset_node(&(mask))
static inline int __first_unset_node(const nodemask_t *maskp)
{
return min_t(int,MAX_NUMNODES,
find_first_zero_bit(maskp->bits, MAX_NUMNODES));
}
#define NODE_MASK_LAST_WORD BITMAP_LAST_WORD_MASK(MAX_NUMNODES)
#if MAX_NUMNODES <= BITS_PER_LONG
#define NODE_MASK_ALL \
((nodemask_t) { { \
[BITS_TO_LONGS(MAX_NUMNODES)-1] = NODE_MASK_LAST_WORD \
} })
#else
#define NODE_MASK_ALL \
((nodemask_t) { { \
[0 ... BITS_TO_LONGS(MAX_NUMNODES)-2] = ~0UL, \
[BITS_TO_LONGS(MAX_NUMNODES)-1] = NODE_MASK_LAST_WORD \
} })
#endif
#define NODE_MASK_NONE \
((nodemask_t) { { \
[0 ... BITS_TO_LONGS(MAX_NUMNODES)-1] = 0UL \
} })
#define nodes_addr(src) ((src).bits)
#define nodemask_scnprintf(buf, len, src) \
__nodemask_scnprintf((buf), (len), &(src), MAX_NUMNODES)
static inline int __nodemask_scnprintf(char *buf, int len,
const nodemask_t *srcp, int nbits)
{
return bitmap_scnprintf(buf, len, srcp->bits, nbits);
}
#define nodemask_parse_user(ubuf, ulen, dst) \
__nodemask_parse_user((ubuf), (ulen), &(dst), MAX_NUMNODES)
static inline int __nodemask_parse_user(const char __user *buf, int len,
nodemask_t *dstp, int nbits)
{
return bitmap_parse_user(buf, len, dstp->bits, nbits);
}
#define nodelist_scnprintf(buf, len, src) \
__nodelist_scnprintf((buf), (len), &(src), MAX_NUMNODES)
static inline int __nodelist_scnprintf(char *buf, int len,
const nodemask_t *srcp, int nbits)
{
return bitmap_scnlistprintf(buf, len, srcp->bits, nbits);
}
#define nodelist_parse(buf, dst) __nodelist_parse((buf), &(dst), MAX_NUMNODES)
static inline int __nodelist_parse(const char *buf, nodemask_t *dstp, int nbits)
{
return bitmap_parselist(buf, dstp->bits, nbits);
}
#define node_remap(oldbit, old, new) \
__node_remap((oldbit), &(old), &(new), MAX_NUMNODES)
static inline int __node_remap(int oldbit,
const nodemask_t *oldp, const nodemask_t *newp, int nbits)
{
return bitmap_bitremap(oldbit, oldp->bits, newp->bits, nbits);
}
#define nodes_remap(dst, src, old, new) \
__nodes_remap(&(dst), &(src), &(old), &(new), MAX_NUMNODES)
static inline void __nodes_remap(nodemask_t *dstp, const nodemask_t *srcp,
const nodemask_t *oldp, const nodemask_t *newp, int nbits)
{
bitmap_remap(dstp->bits, srcp->bits, oldp->bits, newp->bits, nbits);
}
#define nodes_onto(dst, orig, relmap) \
__nodes_onto(&(dst), &(orig), &(relmap), MAX_NUMNODES)
static inline void __nodes_onto(nodemask_t *dstp, const nodemask_t *origp,
const nodemask_t *relmapp, int nbits)
{
bitmap_onto(dstp->bits, origp->bits, relmapp->bits, nbits);
}
#define nodes_fold(dst, orig, sz) \
__nodes_fold(&(dst), &(orig), sz, MAX_NUMNODES)
static inline void __nodes_fold(nodemask_t *dstp, const nodemask_t *origp,
int sz, int nbits)
{
bitmap_fold(dstp->bits, origp->bits, sz, nbits);
}
#if MAX_NUMNODES > 1
#define for_each_node_mask(node, mask) \
for ((node) = first_node(mask); \
(node) < MAX_NUMNODES; \
(node) = next_node((node), (mask)))
#else /* MAX_NUMNODES == 1 */
#define for_each_node_mask(node, mask) \
if (!nodes_empty(mask)) \
for ((node) = 0; (node) < 1; (node)++)
#endif /* MAX_NUMNODES */
/*
* Bitmasks that are kept for all the nodes.
*/
enum node_states {
N_POSSIBLE, /* The node could become online at some point */
N_ONLINE, /* The node is online */
N_NORMAL_MEMORY, /* The node has regular memory */
#ifdef CONFIG_HIGHMEM
N_HIGH_MEMORY, /* The node has regular or high memory */
#else
N_HIGH_MEMORY = N_NORMAL_MEMORY,
#endif
#ifdef CONFIG_MOVABLE_NODE
N_MEMORY, /* The node has memory(regular, high, movable) */
#else
N_MEMORY = N_HIGH_MEMORY,
#endif
N_CPU, /* The node has one or more cpus */
NR_NODE_STATES
};
/*
* The following particular system nodemasks and operations
* on them manage all possible and online nodes.
*/
extern nodemask_t node_states[NR_NODE_STATES];
#if MAX_NUMNODES > 1
static inline int node_state(int node, enum node_states state)
{
return node_isset(node, node_states[state]);
}
static inline void node_set_state(int node, enum node_states state)
{
__node_set(node, &node_states[state]);
}
static inline void node_clear_state(int node, enum node_states state)
{
__node_clear(node, &node_states[state]);
}
static inline int num_node_state(enum node_states state)
{
return nodes_weight(node_states[state]);
}
#define for_each_node_state(__node, __state) \
for_each_node_mask((__node), node_states[__state])
#define first_online_node first_node(node_states[N_ONLINE])
#define next_online_node(nid) next_node((nid), node_states[N_ONLINE])
extern int nr_node_ids;
extern int nr_online_nodes;
static inline void node_set_online(int nid)
{
node_set_state(nid, N_ONLINE);
nr_online_nodes = num_node_state(N_ONLINE);
}
static inline void node_set_offline(int nid)
{
node_clear_state(nid, N_ONLINE);
nr_online_nodes = num_node_state(N_ONLINE);
}
#else
static inline int node_state(int node, enum node_states state)
{
return node == 0;
}
static inline void node_set_state(int node, enum node_states state)
{
}
static inline void node_clear_state(int node, enum node_states state)
{
}
static inline int num_node_state(enum node_states state)
{
return 1;
}
#define for_each_node_state(node, __state) \
for ( (node) = 0; (node) == 0; (node) = 1)
#define first_online_node 0
#define next_online_node(nid) (MAX_NUMNODES)
#define nr_node_ids 1
#define nr_online_nodes 1
#define node_set_online(node) node_set_state((node), N_ONLINE)
#define node_set_offline(node) node_clear_state((node), N_ONLINE)
#endif
#if defined(CONFIG_NUMA) && (MAX_NUMNODES > 1)
extern int node_random(const nodemask_t *maskp);
#else
static inline int node_random(const nodemask_t *mask)
{
return 0;
}
#endif
#define node_online_map node_states[N_ONLINE]
#define node_possible_map node_states[N_POSSIBLE]
#define num_online_nodes() num_node_state(N_ONLINE)
#define num_possible_nodes() num_node_state(N_POSSIBLE)
#define node_online(node) node_state((node), N_ONLINE)
#define node_possible(node) node_state((node), N_POSSIBLE)
#define for_each_node(node) for_each_node_state(node, N_POSSIBLE)
#define for_each_online_node(node) for_each_node_state(node, N_ONLINE)
/*
* For nodemask scrach area.
* NODEMASK_ALLOC(type, name) allocates an object with a specified type and
* name.
*/
#if NODES_SHIFT > 8 /* nodemask_t > 256 bytes */
#define NODEMASK_ALLOC(type, name, gfp_flags) \
type *name = kmalloc(sizeof(*name), gfp_flags)
#define NODEMASK_FREE(m) kfree(m)
#else
#define NODEMASK_ALLOC(type, name, gfp_flags) type _##name, *name = &_##name
#define NODEMASK_FREE(m) do {} while (0)
#endif
/* A example struture for using NODEMASK_ALLOC, used in mempolicy. */
struct nodemask_scratch {
nodemask_t mask1;
nodemask_t mask2;
};
#define NODEMASK_SCRATCH(x) \
NODEMASK_ALLOC(struct nodemask_scratch, x, \
GFP_KERNEL | __GFP_NORETRY)
#define NODEMASK_SCRATCH_FREE(x) NODEMASK_FREE(x)
#endif /* __LINUX_NODEMASK_H */