mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-12 15:44:01 +08:00
f110c0c192
We can't compile a kernel with CONFIG_ALTIVEC=n when CONFIG_PPC_TRANSACTIONAL_MEM=y. We currently get: arch/powerpc/kernel/tm.S:320: Error: unsupported relocation against THREAD_VSCR arch/powerpc/kernel/tm.S:323: Error: unsupported relocation against THREAD_VR0 arch/powerpc/kernel/tm.S:323: Error: unsupported relocation against THREAD_VR0 etc. The below fixes this with a sprinkling of #ifdefs. This was found by mpe with kisskb: http://kisskb.ellerman.id.au/kisskb/buildresult/8539442/ Signed-off-by: Michael Neuling <mikey@neuling.org> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
808 lines
25 KiB
C
808 lines
25 KiB
C
/*
|
|
* PowerPC version
|
|
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
|
*
|
|
* Derived from "arch/i386/kernel/signal.c"
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
* 1997-11-28 Modified for POSIX.1b signals by Richard Henderson
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/ratelimit.h>
|
|
|
|
#include <asm/sigcontext.h>
|
|
#include <asm/ucontext.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/syscalls.h>
|
|
#include <asm/vdso.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/tm.h>
|
|
|
|
#include "signal.h"
|
|
|
|
#define DEBUG_SIG 0
|
|
|
|
#define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
|
|
#define FP_REGS_SIZE sizeof(elf_fpregset_t)
|
|
|
|
#define TRAMP_TRACEBACK 3
|
|
#define TRAMP_SIZE 6
|
|
|
|
/*
|
|
* When we have signals to deliver, we set up on the user stack,
|
|
* going down from the original stack pointer:
|
|
* 1) a rt_sigframe struct which contains the ucontext
|
|
* 2) a gap of __SIGNAL_FRAMESIZE bytes which acts as a dummy caller
|
|
* frame for the signal handler.
|
|
*/
|
|
|
|
struct rt_sigframe {
|
|
/* sys_rt_sigreturn requires the ucontext be the first field */
|
|
struct ucontext uc;
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
struct ucontext uc_transact;
|
|
#endif
|
|
unsigned long _unused[2];
|
|
unsigned int tramp[TRAMP_SIZE];
|
|
struct siginfo __user *pinfo;
|
|
void __user *puc;
|
|
struct siginfo info;
|
|
/* 64 bit ABI allows for 288 bytes below sp before decrementing it. */
|
|
char abigap[288];
|
|
} __attribute__ ((aligned (16)));
|
|
|
|
static const char fmt32[] = KERN_INFO \
|
|
"%s[%d]: bad frame in %s: %08lx nip %08lx lr %08lx\n";
|
|
static const char fmt64[] = KERN_INFO \
|
|
"%s[%d]: bad frame in %s: %016lx nip %016lx lr %016lx\n";
|
|
|
|
/*
|
|
* Set up the sigcontext for the signal frame.
|
|
*/
|
|
|
|
static long setup_sigcontext(struct sigcontext __user *sc, struct pt_regs *regs,
|
|
int signr, sigset_t *set, unsigned long handler,
|
|
int ctx_has_vsx_region)
|
|
{
|
|
/* When CONFIG_ALTIVEC is set, we _always_ setup v_regs even if the
|
|
* process never used altivec yet (MSR_VEC is zero in pt_regs of
|
|
* the context). This is very important because we must ensure we
|
|
* don't lose the VRSAVE content that may have been set prior to
|
|
* the process doing its first vector operation
|
|
* Userland shall check AT_HWCAP to know whether it can rely on the
|
|
* v_regs pointer or not
|
|
*/
|
|
#ifdef CONFIG_ALTIVEC
|
|
elf_vrreg_t __user *v_regs = (elf_vrreg_t __user *)(((unsigned long)sc->vmx_reserve + 15) & ~0xful);
|
|
#endif
|
|
unsigned long msr = regs->msr;
|
|
long err = 0;
|
|
|
|
flush_fp_to_thread(current);
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
err |= __put_user(v_regs, &sc->v_regs);
|
|
|
|
/* save altivec registers */
|
|
if (current->thread.used_vr) {
|
|
flush_altivec_to_thread(current);
|
|
/* Copy 33 vec registers (vr0..31 and vscr) to the stack */
|
|
err |= __copy_to_user(v_regs, current->thread.vr, 33 * sizeof(vector128));
|
|
/* set MSR_VEC in the MSR value in the frame to indicate that sc->v_reg)
|
|
* contains valid data.
|
|
*/
|
|
msr |= MSR_VEC;
|
|
}
|
|
/* We always copy to/from vrsave, it's 0 if we don't have or don't
|
|
* use altivec.
|
|
*/
|
|
err |= __put_user(current->thread.vrsave, (u32 __user *)&v_regs[33]);
|
|
#else /* CONFIG_ALTIVEC */
|
|
err |= __put_user(0, &sc->v_regs);
|
|
#endif /* CONFIG_ALTIVEC */
|
|
flush_fp_to_thread(current);
|
|
/* copy fpr regs and fpscr */
|
|
err |= copy_fpr_to_user(&sc->fp_regs, current);
|
|
#ifdef CONFIG_VSX
|
|
/*
|
|
* Copy VSX low doubleword to local buffer for formatting,
|
|
* then out to userspace. Update v_regs to point after the
|
|
* VMX data.
|
|
*/
|
|
if (current->thread.used_vsr && ctx_has_vsx_region) {
|
|
__giveup_vsx(current);
|
|
v_regs += ELF_NVRREG;
|
|
err |= copy_vsx_to_user(v_regs, current);
|
|
/* set MSR_VSX in the MSR value in the frame to
|
|
* indicate that sc->vs_reg) contains valid data.
|
|
*/
|
|
msr |= MSR_VSX;
|
|
}
|
|
#endif /* CONFIG_VSX */
|
|
err |= __put_user(&sc->gp_regs, &sc->regs);
|
|
WARN_ON(!FULL_REGS(regs));
|
|
err |= __copy_to_user(&sc->gp_regs, regs, GP_REGS_SIZE);
|
|
err |= __put_user(msr, &sc->gp_regs[PT_MSR]);
|
|
err |= __put_user(signr, &sc->signal);
|
|
err |= __put_user(handler, &sc->handler);
|
|
if (set != NULL)
|
|
err |= __put_user(set->sig[0], &sc->oldmask);
|
|
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
/*
|
|
* As above, but Transactional Memory is in use, so deliver sigcontexts
|
|
* containing checkpointed and transactional register states.
|
|
*
|
|
* To do this, we treclaim to gather both sets of registers and set up the
|
|
* 'normal' sigcontext registers with rolled-back register values such that a
|
|
* simple signal handler sees a correct checkpointed register state.
|
|
* If interested, a TM-aware sighandler can examine the transactional registers
|
|
* in the 2nd sigcontext to determine the real origin of the signal.
|
|
*/
|
|
static long setup_tm_sigcontexts(struct sigcontext __user *sc,
|
|
struct sigcontext __user *tm_sc,
|
|
struct pt_regs *regs,
|
|
int signr, sigset_t *set, unsigned long handler)
|
|
{
|
|
/* When CONFIG_ALTIVEC is set, we _always_ setup v_regs even if the
|
|
* process never used altivec yet (MSR_VEC is zero in pt_regs of
|
|
* the context). This is very important because we must ensure we
|
|
* don't lose the VRSAVE content that may have been set prior to
|
|
* the process doing its first vector operation
|
|
* Userland shall check AT_HWCAP to know wether it can rely on the
|
|
* v_regs pointer or not.
|
|
*/
|
|
#ifdef CONFIG_ALTIVEC
|
|
elf_vrreg_t __user *v_regs = (elf_vrreg_t __user *)
|
|
(((unsigned long)sc->vmx_reserve + 15) & ~0xful);
|
|
elf_vrreg_t __user *tm_v_regs = (elf_vrreg_t __user *)
|
|
(((unsigned long)tm_sc->vmx_reserve + 15) & ~0xful);
|
|
#endif
|
|
unsigned long msr = regs->msr;
|
|
long err = 0;
|
|
|
|
BUG_ON(!MSR_TM_ACTIVE(regs->msr));
|
|
|
|
/* tm_reclaim rolls back all reg states, saving checkpointed (older)
|
|
* GPRs to thread.ckpt_regs and (if used) FPRs to (newer)
|
|
* thread.transact_fp and/or VRs to (newer) thread.transact_vr.
|
|
* THEN we save out FP/VRs, if necessary, to the checkpointed (older)
|
|
* thread.fr[]/vr[]s. The transactional (newer) GPRs are on the
|
|
* stack, in *regs.
|
|
*/
|
|
tm_enable();
|
|
tm_reclaim(¤t->thread, msr, TM_CAUSE_SIGNAL);
|
|
|
|
flush_fp_to_thread(current);
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
err |= __put_user(v_regs, &sc->v_regs);
|
|
err |= __put_user(tm_v_regs, &tm_sc->v_regs);
|
|
|
|
/* save altivec registers */
|
|
if (current->thread.used_vr) {
|
|
flush_altivec_to_thread(current);
|
|
/* Copy 33 vec registers (vr0..31 and vscr) to the stack */
|
|
err |= __copy_to_user(v_regs, current->thread.vr,
|
|
33 * sizeof(vector128));
|
|
/* If VEC was enabled there are transactional VRs valid too,
|
|
* else they're a copy of the checkpointed VRs.
|
|
*/
|
|
if (msr & MSR_VEC)
|
|
err |= __copy_to_user(tm_v_regs,
|
|
current->thread.transact_vr,
|
|
33 * sizeof(vector128));
|
|
else
|
|
err |= __copy_to_user(tm_v_regs,
|
|
current->thread.vr,
|
|
33 * sizeof(vector128));
|
|
|
|
/* set MSR_VEC in the MSR value in the frame to indicate
|
|
* that sc->v_reg contains valid data.
|
|
*/
|
|
msr |= MSR_VEC;
|
|
}
|
|
/* We always copy to/from vrsave, it's 0 if we don't have or don't
|
|
* use altivec.
|
|
*/
|
|
err |= __put_user(current->thread.vrsave, (u32 __user *)&v_regs[33]);
|
|
if (msr & MSR_VEC)
|
|
err |= __put_user(current->thread.transact_vrsave,
|
|
(u32 __user *)&tm_v_regs[33]);
|
|
else
|
|
err |= __put_user(current->thread.vrsave,
|
|
(u32 __user *)&tm_v_regs[33]);
|
|
|
|
#else /* CONFIG_ALTIVEC */
|
|
err |= __put_user(0, &sc->v_regs);
|
|
err |= __put_user(0, &tm_sc->v_regs);
|
|
#endif /* CONFIG_ALTIVEC */
|
|
|
|
/* copy fpr regs and fpscr */
|
|
err |= copy_fpr_to_user(&sc->fp_regs, current);
|
|
if (msr & MSR_FP)
|
|
err |= copy_transact_fpr_to_user(&tm_sc->fp_regs, current);
|
|
else
|
|
err |= copy_fpr_to_user(&tm_sc->fp_regs, current);
|
|
|
|
#ifdef CONFIG_VSX
|
|
/*
|
|
* Copy VSX low doubleword to local buffer for formatting,
|
|
* then out to userspace. Update v_regs to point after the
|
|
* VMX data.
|
|
*/
|
|
if (current->thread.used_vsr) {
|
|
__giveup_vsx(current);
|
|
v_regs += ELF_NVRREG;
|
|
tm_v_regs += ELF_NVRREG;
|
|
|
|
err |= copy_vsx_to_user(v_regs, current);
|
|
|
|
if (msr & MSR_VSX)
|
|
err |= copy_transact_vsx_to_user(tm_v_regs, current);
|
|
else
|
|
err |= copy_vsx_to_user(tm_v_regs, current);
|
|
|
|
/* set MSR_VSX in the MSR value in the frame to
|
|
* indicate that sc->vs_reg) contains valid data.
|
|
*/
|
|
msr |= MSR_VSX;
|
|
}
|
|
#endif /* CONFIG_VSX */
|
|
|
|
err |= __put_user(&sc->gp_regs, &sc->regs);
|
|
err |= __put_user(&tm_sc->gp_regs, &tm_sc->regs);
|
|
WARN_ON(!FULL_REGS(regs));
|
|
err |= __copy_to_user(&tm_sc->gp_regs, regs, GP_REGS_SIZE);
|
|
err |= __copy_to_user(&sc->gp_regs,
|
|
¤t->thread.ckpt_regs, GP_REGS_SIZE);
|
|
err |= __put_user(msr, &tm_sc->gp_regs[PT_MSR]);
|
|
err |= __put_user(msr, &sc->gp_regs[PT_MSR]);
|
|
err |= __put_user(signr, &sc->signal);
|
|
err |= __put_user(handler, &sc->handler);
|
|
if (set != NULL)
|
|
err |= __put_user(set->sig[0], &sc->oldmask);
|
|
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Restore the sigcontext from the signal frame.
|
|
*/
|
|
|
|
static long restore_sigcontext(struct pt_regs *regs, sigset_t *set, int sig,
|
|
struct sigcontext __user *sc)
|
|
{
|
|
#ifdef CONFIG_ALTIVEC
|
|
elf_vrreg_t __user *v_regs;
|
|
#endif
|
|
unsigned long err = 0;
|
|
unsigned long save_r13 = 0;
|
|
unsigned long msr;
|
|
#ifdef CONFIG_VSX
|
|
int i;
|
|
#endif
|
|
|
|
/* If this is not a signal return, we preserve the TLS in r13 */
|
|
if (!sig)
|
|
save_r13 = regs->gpr[13];
|
|
|
|
/* copy the GPRs */
|
|
err |= __copy_from_user(regs->gpr, sc->gp_regs, sizeof(regs->gpr));
|
|
err |= __get_user(regs->nip, &sc->gp_regs[PT_NIP]);
|
|
/* get MSR separately, transfer the LE bit if doing signal return */
|
|
err |= __get_user(msr, &sc->gp_regs[PT_MSR]);
|
|
if (sig)
|
|
regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
|
|
err |= __get_user(regs->orig_gpr3, &sc->gp_regs[PT_ORIG_R3]);
|
|
err |= __get_user(regs->ctr, &sc->gp_regs[PT_CTR]);
|
|
err |= __get_user(regs->link, &sc->gp_regs[PT_LNK]);
|
|
err |= __get_user(regs->xer, &sc->gp_regs[PT_XER]);
|
|
err |= __get_user(regs->ccr, &sc->gp_regs[PT_CCR]);
|
|
/* skip SOFTE */
|
|
regs->trap = 0;
|
|
err |= __get_user(regs->dar, &sc->gp_regs[PT_DAR]);
|
|
err |= __get_user(regs->dsisr, &sc->gp_regs[PT_DSISR]);
|
|
err |= __get_user(regs->result, &sc->gp_regs[PT_RESULT]);
|
|
|
|
if (!sig)
|
|
regs->gpr[13] = save_r13;
|
|
if (set != NULL)
|
|
err |= __get_user(set->sig[0], &sc->oldmask);
|
|
|
|
/*
|
|
* Do this before updating the thread state in
|
|
* current->thread.fpr/vr. That way, if we get preempted
|
|
* and another task grabs the FPU/Altivec, it won't be
|
|
* tempted to save the current CPU state into the thread_struct
|
|
* and corrupt what we are writing there.
|
|
*/
|
|
discard_lazy_cpu_state();
|
|
|
|
/*
|
|
* Force reload of FP/VEC.
|
|
* This has to be done before copying stuff into current->thread.fpr/vr
|
|
* for the reasons explained in the previous comment.
|
|
*/
|
|
regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1 | MSR_VEC | MSR_VSX);
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
err |= __get_user(v_regs, &sc->v_regs);
|
|
if (err)
|
|
return err;
|
|
if (v_regs && !access_ok(VERIFY_READ, v_regs, 34 * sizeof(vector128)))
|
|
return -EFAULT;
|
|
/* Copy 33 vec registers (vr0..31 and vscr) from the stack */
|
|
if (v_regs != 0 && (msr & MSR_VEC) != 0)
|
|
err |= __copy_from_user(current->thread.vr, v_regs,
|
|
33 * sizeof(vector128));
|
|
else if (current->thread.used_vr)
|
|
memset(current->thread.vr, 0, 33 * sizeof(vector128));
|
|
/* Always get VRSAVE back */
|
|
if (v_regs != 0)
|
|
err |= __get_user(current->thread.vrsave, (u32 __user *)&v_regs[33]);
|
|
else
|
|
current->thread.vrsave = 0;
|
|
#endif /* CONFIG_ALTIVEC */
|
|
/* restore floating point */
|
|
err |= copy_fpr_from_user(current, &sc->fp_regs);
|
|
#ifdef CONFIG_VSX
|
|
/*
|
|
* Get additional VSX data. Update v_regs to point after the
|
|
* VMX data. Copy VSX low doubleword from userspace to local
|
|
* buffer for formatting, then into the taskstruct.
|
|
*/
|
|
v_regs += ELF_NVRREG;
|
|
if ((msr & MSR_VSX) != 0)
|
|
err |= copy_vsx_from_user(current, v_regs);
|
|
else
|
|
for (i = 0; i < 32 ; i++)
|
|
current->thread.fpr[i][TS_VSRLOWOFFSET] = 0;
|
|
#endif
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
/*
|
|
* Restore the two sigcontexts from the frame of a transactional processes.
|
|
*/
|
|
|
|
static long restore_tm_sigcontexts(struct pt_regs *regs,
|
|
struct sigcontext __user *sc,
|
|
struct sigcontext __user *tm_sc)
|
|
{
|
|
#ifdef CONFIG_ALTIVEC
|
|
elf_vrreg_t __user *v_regs, *tm_v_regs;
|
|
#endif
|
|
unsigned long err = 0;
|
|
unsigned long msr;
|
|
#ifdef CONFIG_VSX
|
|
int i;
|
|
#endif
|
|
/* copy the GPRs */
|
|
err |= __copy_from_user(regs->gpr, tm_sc->gp_regs, sizeof(regs->gpr));
|
|
err |= __copy_from_user(¤t->thread.ckpt_regs, sc->gp_regs,
|
|
sizeof(regs->gpr));
|
|
|
|
/*
|
|
* TFHAR is restored from the checkpointed 'wound-back' ucontext's NIP.
|
|
* TEXASR was set by the signal delivery reclaim, as was TFIAR.
|
|
* Users doing anything abhorrent like thread-switching w/ signals for
|
|
* TM-Suspended code will have to back TEXASR/TFIAR up themselves.
|
|
* For the case of getting a signal and simply returning from it,
|
|
* we don't need to re-copy them here.
|
|
*/
|
|
err |= __get_user(regs->nip, &tm_sc->gp_regs[PT_NIP]);
|
|
err |= __get_user(current->thread.tm_tfhar, &sc->gp_regs[PT_NIP]);
|
|
|
|
/* get MSR separately, transfer the LE bit if doing signal return */
|
|
err |= __get_user(msr, &sc->gp_regs[PT_MSR]);
|
|
regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
|
|
|
|
/* The following non-GPR non-FPR non-VR state is also checkpointed: */
|
|
err |= __get_user(regs->ctr, &tm_sc->gp_regs[PT_CTR]);
|
|
err |= __get_user(regs->link, &tm_sc->gp_regs[PT_LNK]);
|
|
err |= __get_user(regs->xer, &tm_sc->gp_regs[PT_XER]);
|
|
err |= __get_user(regs->ccr, &tm_sc->gp_regs[PT_CCR]);
|
|
err |= __get_user(current->thread.ckpt_regs.ctr,
|
|
&sc->gp_regs[PT_CTR]);
|
|
err |= __get_user(current->thread.ckpt_regs.link,
|
|
&sc->gp_regs[PT_LNK]);
|
|
err |= __get_user(current->thread.ckpt_regs.xer,
|
|
&sc->gp_regs[PT_XER]);
|
|
err |= __get_user(current->thread.ckpt_regs.ccr,
|
|
&sc->gp_regs[PT_CCR]);
|
|
|
|
/* These regs are not checkpointed; they can go in 'regs'. */
|
|
err |= __get_user(regs->trap, &sc->gp_regs[PT_TRAP]);
|
|
err |= __get_user(regs->dar, &sc->gp_regs[PT_DAR]);
|
|
err |= __get_user(regs->dsisr, &sc->gp_regs[PT_DSISR]);
|
|
err |= __get_user(regs->result, &sc->gp_regs[PT_RESULT]);
|
|
|
|
/*
|
|
* Do this before updating the thread state in
|
|
* current->thread.fpr/vr. That way, if we get preempted
|
|
* and another task grabs the FPU/Altivec, it won't be
|
|
* tempted to save the current CPU state into the thread_struct
|
|
* and corrupt what we are writing there.
|
|
*/
|
|
discard_lazy_cpu_state();
|
|
|
|
/*
|
|
* Force reload of FP/VEC.
|
|
* This has to be done before copying stuff into current->thread.fpr/vr
|
|
* for the reasons explained in the previous comment.
|
|
*/
|
|
regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1 | MSR_VEC | MSR_VSX);
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
err |= __get_user(v_regs, &sc->v_regs);
|
|
err |= __get_user(tm_v_regs, &tm_sc->v_regs);
|
|
if (err)
|
|
return err;
|
|
if (v_regs && !access_ok(VERIFY_READ, v_regs, 34 * sizeof(vector128)))
|
|
return -EFAULT;
|
|
if (tm_v_regs && !access_ok(VERIFY_READ,
|
|
tm_v_regs, 34 * sizeof(vector128)))
|
|
return -EFAULT;
|
|
/* Copy 33 vec registers (vr0..31 and vscr) from the stack */
|
|
if (v_regs != 0 && tm_v_regs != 0 && (msr & MSR_VEC) != 0) {
|
|
err |= __copy_from_user(current->thread.vr, v_regs,
|
|
33 * sizeof(vector128));
|
|
err |= __copy_from_user(current->thread.transact_vr, tm_v_regs,
|
|
33 * sizeof(vector128));
|
|
}
|
|
else if (current->thread.used_vr) {
|
|
memset(current->thread.vr, 0, 33 * sizeof(vector128));
|
|
memset(current->thread.transact_vr, 0, 33 * sizeof(vector128));
|
|
}
|
|
/* Always get VRSAVE back */
|
|
if (v_regs != 0 && tm_v_regs != 0) {
|
|
err |= __get_user(current->thread.vrsave,
|
|
(u32 __user *)&v_regs[33]);
|
|
err |= __get_user(current->thread.transact_vrsave,
|
|
(u32 __user *)&tm_v_regs[33]);
|
|
}
|
|
else {
|
|
current->thread.vrsave = 0;
|
|
current->thread.transact_vrsave = 0;
|
|
}
|
|
#endif /* CONFIG_ALTIVEC */
|
|
/* restore floating point */
|
|
err |= copy_fpr_from_user(current, &sc->fp_regs);
|
|
err |= copy_transact_fpr_from_user(current, &tm_sc->fp_regs);
|
|
#ifdef CONFIG_VSX
|
|
/*
|
|
* Get additional VSX data. Update v_regs to point after the
|
|
* VMX data. Copy VSX low doubleword from userspace to local
|
|
* buffer for formatting, then into the taskstruct.
|
|
*/
|
|
if (v_regs && ((msr & MSR_VSX) != 0)) {
|
|
v_regs += ELF_NVRREG;
|
|
tm_v_regs += ELF_NVRREG;
|
|
err |= copy_vsx_from_user(current, v_regs);
|
|
err |= copy_transact_vsx_from_user(current, tm_v_regs);
|
|
} else {
|
|
for (i = 0; i < 32 ; i++) {
|
|
current->thread.fpr[i][TS_VSRLOWOFFSET] = 0;
|
|
current->thread.transact_fpr[i][TS_VSRLOWOFFSET] = 0;
|
|
}
|
|
}
|
|
#endif
|
|
tm_enable();
|
|
/* This loads the checkpointed FP/VEC state, if used */
|
|
tm_recheckpoint(¤t->thread, msr);
|
|
/* The task has moved into TM state S, so ensure MSR reflects this: */
|
|
regs->msr = (regs->msr & ~MSR_TS_MASK) | __MASK(33);
|
|
|
|
/* This loads the speculative FP/VEC state, if used */
|
|
if (msr & MSR_FP) {
|
|
do_load_up_transact_fpu(¤t->thread);
|
|
regs->msr |= (MSR_FP | current->thread.fpexc_mode);
|
|
}
|
|
#ifdef CONFIG_ALTIVEC
|
|
if (msr & MSR_VEC) {
|
|
do_load_up_transact_altivec(¤t->thread);
|
|
regs->msr |= MSR_VEC;
|
|
}
|
|
#endif
|
|
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Setup the trampoline code on the stack
|
|
*/
|
|
static long setup_trampoline(unsigned int syscall, unsigned int __user *tramp)
|
|
{
|
|
int i;
|
|
long err = 0;
|
|
|
|
/* addi r1, r1, __SIGNAL_FRAMESIZE # Pop the dummy stackframe */
|
|
err |= __put_user(0x38210000UL | (__SIGNAL_FRAMESIZE & 0xffff), &tramp[0]);
|
|
/* li r0, __NR_[rt_]sigreturn| */
|
|
err |= __put_user(0x38000000UL | (syscall & 0xffff), &tramp[1]);
|
|
/* sc */
|
|
err |= __put_user(0x44000002UL, &tramp[2]);
|
|
|
|
/* Minimal traceback info */
|
|
for (i=TRAMP_TRACEBACK; i < TRAMP_SIZE ;i++)
|
|
err |= __put_user(0, &tramp[i]);
|
|
|
|
if (!err)
|
|
flush_icache_range((unsigned long) &tramp[0],
|
|
(unsigned long) &tramp[TRAMP_SIZE]);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Userspace code may pass a ucontext which doesn't include VSX added
|
|
* at the end. We need to check for this case.
|
|
*/
|
|
#define UCONTEXTSIZEWITHOUTVSX \
|
|
(sizeof(struct ucontext) - 32*sizeof(long))
|
|
|
|
/*
|
|
* Handle {get,set,swap}_context operations
|
|
*/
|
|
int sys_swapcontext(struct ucontext __user *old_ctx,
|
|
struct ucontext __user *new_ctx,
|
|
long ctx_size, long r6, long r7, long r8, struct pt_regs *regs)
|
|
{
|
|
unsigned char tmp;
|
|
sigset_t set;
|
|
unsigned long new_msr = 0;
|
|
int ctx_has_vsx_region = 0;
|
|
|
|
if (new_ctx &&
|
|
get_user(new_msr, &new_ctx->uc_mcontext.gp_regs[PT_MSR]))
|
|
return -EFAULT;
|
|
/*
|
|
* Check that the context is not smaller than the original
|
|
* size (with VMX but without VSX)
|
|
*/
|
|
if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
|
|
return -EINVAL;
|
|
/*
|
|
* If the new context state sets the MSR VSX bits but
|
|
* it doesn't provide VSX state.
|
|
*/
|
|
if ((ctx_size < sizeof(struct ucontext)) &&
|
|
(new_msr & MSR_VSX))
|
|
return -EINVAL;
|
|
/* Does the context have enough room to store VSX data? */
|
|
if (ctx_size >= sizeof(struct ucontext))
|
|
ctx_has_vsx_region = 1;
|
|
|
|
if (old_ctx != NULL) {
|
|
if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
|
|
|| setup_sigcontext(&old_ctx->uc_mcontext, regs, 0, NULL, 0,
|
|
ctx_has_vsx_region)
|
|
|| __copy_to_user(&old_ctx->uc_sigmask,
|
|
¤t->blocked, sizeof(sigset_t)))
|
|
return -EFAULT;
|
|
}
|
|
if (new_ctx == NULL)
|
|
return 0;
|
|
if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
|
|
|| __get_user(tmp, (u8 __user *) new_ctx)
|
|
|| __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* If we get a fault copying the context into the kernel's
|
|
* image of the user's registers, we can't just return -EFAULT
|
|
* because the user's registers will be corrupted. For instance
|
|
* the NIP value may have been updated but not some of the
|
|
* other registers. Given that we have done the access_ok
|
|
* and successfully read the first and last bytes of the region
|
|
* above, this should only happen in an out-of-memory situation
|
|
* or if another thread unmaps the region containing the context.
|
|
* We kill the task with a SIGSEGV in this situation.
|
|
*/
|
|
|
|
if (__copy_from_user(&set, &new_ctx->uc_sigmask, sizeof(set)))
|
|
do_exit(SIGSEGV);
|
|
set_current_blocked(&set);
|
|
if (restore_sigcontext(regs, NULL, 0, &new_ctx->uc_mcontext))
|
|
do_exit(SIGSEGV);
|
|
|
|
/* This returns like rt_sigreturn */
|
|
set_thread_flag(TIF_RESTOREALL);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Do a signal return; undo the signal stack.
|
|
*/
|
|
|
|
int sys_rt_sigreturn(unsigned long r3, unsigned long r4, unsigned long r5,
|
|
unsigned long r6, unsigned long r7, unsigned long r8,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct ucontext __user *uc = (struct ucontext __user *)regs->gpr[1];
|
|
sigset_t set;
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
unsigned long msr;
|
|
#endif
|
|
|
|
/* Always make any pending restarted system calls return -EINTR */
|
|
current_thread_info()->restart_block.fn = do_no_restart_syscall;
|
|
|
|
if (!access_ok(VERIFY_READ, uc, sizeof(*uc)))
|
|
goto badframe;
|
|
|
|
if (__copy_from_user(&set, &uc->uc_sigmask, sizeof(set)))
|
|
goto badframe;
|
|
set_current_blocked(&set);
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
if (__get_user(msr, &uc->uc_mcontext.gp_regs[PT_MSR]))
|
|
goto badframe;
|
|
if (MSR_TM_SUSPENDED(msr)) {
|
|
/* We recheckpoint on return. */
|
|
struct ucontext __user *uc_transact;
|
|
if (__get_user(uc_transact, &uc->uc_link))
|
|
goto badframe;
|
|
if (restore_tm_sigcontexts(regs, &uc->uc_mcontext,
|
|
&uc_transact->uc_mcontext))
|
|
goto badframe;
|
|
}
|
|
else
|
|
/* Fall through, for non-TM restore */
|
|
#endif
|
|
if (restore_sigcontext(regs, NULL, 1, &uc->uc_mcontext))
|
|
goto badframe;
|
|
|
|
if (restore_altstack(&uc->uc_stack))
|
|
goto badframe;
|
|
|
|
set_thread_flag(TIF_RESTOREALL);
|
|
return 0;
|
|
|
|
badframe:
|
|
#if DEBUG_SIG
|
|
printk("badframe in sys_rt_sigreturn, regs=%p uc=%p &uc->uc_mcontext=%p\n",
|
|
regs, uc, &uc->uc_mcontext);
|
|
#endif
|
|
if (show_unhandled_signals)
|
|
printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
|
|
current->comm, current->pid, "rt_sigreturn",
|
|
(long)uc, regs->nip, regs->link);
|
|
|
|
force_sig(SIGSEGV, current);
|
|
return 0;
|
|
}
|
|
|
|
int handle_rt_signal64(int signr, struct k_sigaction *ka, siginfo_t *info,
|
|
sigset_t *set, struct pt_regs *regs)
|
|
{
|
|
/* Handler is *really* a pointer to the function descriptor for
|
|
* the signal routine. The first entry in the function
|
|
* descriptor is the entry address of signal and the second
|
|
* entry is the TOC value we need to use.
|
|
*/
|
|
func_descr_t __user *funct_desc_ptr;
|
|
struct rt_sigframe __user *frame;
|
|
unsigned long newsp = 0;
|
|
long err = 0;
|
|
|
|
frame = get_sigframe(ka, regs, sizeof(*frame), 0);
|
|
if (unlikely(frame == NULL))
|
|
goto badframe;
|
|
|
|
err |= __put_user(&frame->info, &frame->pinfo);
|
|
err |= __put_user(&frame->uc, &frame->puc);
|
|
err |= copy_siginfo_to_user(&frame->info, info);
|
|
if (err)
|
|
goto badframe;
|
|
|
|
/* Create the ucontext. */
|
|
err |= __put_user(0, &frame->uc.uc_flags);
|
|
err |= __save_altstack(&frame->uc.uc_stack, regs->gpr[1]);
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
if (MSR_TM_ACTIVE(regs->msr)) {
|
|
/* The ucontext_t passed to userland points to the second
|
|
* ucontext_t (for transactional state) with its uc_link ptr.
|
|
*/
|
|
err |= __put_user(&frame->uc_transact, &frame->uc.uc_link);
|
|
err |= setup_tm_sigcontexts(&frame->uc.uc_mcontext,
|
|
&frame->uc_transact.uc_mcontext,
|
|
regs, signr,
|
|
NULL,
|
|
(unsigned long)ka->sa.sa_handler);
|
|
} else
|
|
#endif
|
|
{
|
|
err |= __put_user(0, &frame->uc.uc_link);
|
|
err |= setup_sigcontext(&frame->uc.uc_mcontext, regs, signr,
|
|
NULL, (unsigned long)ka->sa.sa_handler,
|
|
1);
|
|
}
|
|
err |= __copy_to_user(&frame->uc.uc_sigmask, set, sizeof(*set));
|
|
if (err)
|
|
goto badframe;
|
|
|
|
/* Make sure signal handler doesn't get spurious FP exceptions */
|
|
current->thread.fpscr.val = 0;
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
/* Remove TM bits from thread's MSR. The MSR in the sigcontext
|
|
* just indicates to userland that we were doing a transaction, but we
|
|
* don't want to return in transactional state:
|
|
*/
|
|
regs->msr &= ~MSR_TS_MASK;
|
|
#endif
|
|
|
|
/* Set up to return from userspace. */
|
|
if (vdso64_rt_sigtramp && current->mm->context.vdso_base) {
|
|
regs->link = current->mm->context.vdso_base + vdso64_rt_sigtramp;
|
|
} else {
|
|
err |= setup_trampoline(__NR_rt_sigreturn, &frame->tramp[0]);
|
|
if (err)
|
|
goto badframe;
|
|
regs->link = (unsigned long) &frame->tramp[0];
|
|
}
|
|
funct_desc_ptr = (func_descr_t __user *) ka->sa.sa_handler;
|
|
|
|
/* Allocate a dummy caller frame for the signal handler. */
|
|
newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
|
|
err |= put_user(regs->gpr[1], (unsigned long __user *)newsp);
|
|
|
|
/* Set up "regs" so we "return" to the signal handler. */
|
|
err |= get_user(regs->nip, &funct_desc_ptr->entry);
|
|
/* enter the signal handler in big-endian mode */
|
|
regs->msr &= ~MSR_LE;
|
|
regs->gpr[1] = newsp;
|
|
err |= get_user(regs->gpr[2], &funct_desc_ptr->toc);
|
|
regs->gpr[3] = signr;
|
|
regs->result = 0;
|
|
if (ka->sa.sa_flags & SA_SIGINFO) {
|
|
err |= get_user(regs->gpr[4], (unsigned long __user *)&frame->pinfo);
|
|
err |= get_user(regs->gpr[5], (unsigned long __user *)&frame->puc);
|
|
regs->gpr[6] = (unsigned long) frame;
|
|
} else {
|
|
regs->gpr[4] = (unsigned long)&frame->uc.uc_mcontext;
|
|
}
|
|
if (err)
|
|
goto badframe;
|
|
|
|
return 1;
|
|
|
|
badframe:
|
|
#if DEBUG_SIG
|
|
printk("badframe in setup_rt_frame, regs=%p frame=%p newsp=%lx\n",
|
|
regs, frame, newsp);
|
|
#endif
|
|
if (show_unhandled_signals)
|
|
printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
|
|
current->comm, current->pid, "setup_rt_frame",
|
|
(long)frame, regs->nip, regs->link);
|
|
|
|
force_sigsegv(signr, current);
|
|
return 0;
|
|
}
|