2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-11 07:04:04 +08:00
linux-next/kernel/sched/core_sched.c
Josh Don 4feee7d126 sched/core: Forced idle accounting
Adds accounting for "forced idle" time, which is time where a cookie'd
task forces its SMT sibling to idle, despite the presence of runnable
tasks.

Forced idle time is one means to measure the cost of enabling core
scheduling (ie. the capacity lost due to the need to force idle).

Forced idle time is attributed to the thread responsible for causing
the forced idle.

A few details:
 - Forced idle time is displayed via /proc/PID/sched. It also requires
   that schedstats is enabled.
 - Forced idle is only accounted when a sibling hyperthread is held
   idle despite the presence of runnable tasks. No time is charged if
   a sibling is idle but has no runnable tasks.
 - Tasks with 0 cookie are never charged forced idle.
 - For SMT > 2, we scale the amount of forced idle charged based on the
   number of forced idle siblings. Additionally, we split the time up and
   evenly charge it to all running tasks, as each is equally responsible
   for the forced idle.

Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20211018203428.2025792-1-joshdon@google.com
2021-11-17 14:49:00 +01:00

299 lines
6.7 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <linux/prctl.h>
#include "sched.h"
/*
* A simple wrapper around refcount. An allocated sched_core_cookie's
* address is used to compute the cookie of the task.
*/
struct sched_core_cookie {
refcount_t refcnt;
};
static unsigned long sched_core_alloc_cookie(void)
{
struct sched_core_cookie *ck = kmalloc(sizeof(*ck), GFP_KERNEL);
if (!ck)
return 0;
refcount_set(&ck->refcnt, 1);
sched_core_get();
return (unsigned long)ck;
}
static void sched_core_put_cookie(unsigned long cookie)
{
struct sched_core_cookie *ptr = (void *)cookie;
if (ptr && refcount_dec_and_test(&ptr->refcnt)) {
kfree(ptr);
sched_core_put();
}
}
static unsigned long sched_core_get_cookie(unsigned long cookie)
{
struct sched_core_cookie *ptr = (void *)cookie;
if (ptr)
refcount_inc(&ptr->refcnt);
return cookie;
}
/*
* sched_core_update_cookie - replace the cookie on a task
* @p: the task to update
* @cookie: the new cookie
*
* Effectively exchange the task cookie; caller is responsible for lifetimes on
* both ends.
*
* Returns: the old cookie
*/
static unsigned long sched_core_update_cookie(struct task_struct *p,
unsigned long cookie)
{
unsigned long old_cookie;
struct rq_flags rf;
struct rq *rq;
bool enqueued;
rq = task_rq_lock(p, &rf);
/*
* Since creating a cookie implies sched_core_get(), and we cannot set
* a cookie until after we've created it, similarly, we cannot destroy
* a cookie until after we've removed it, we must have core scheduling
* enabled here.
*/
SCHED_WARN_ON((p->core_cookie || cookie) && !sched_core_enabled(rq));
enqueued = sched_core_enqueued(p);
if (enqueued)
sched_core_dequeue(rq, p, DEQUEUE_SAVE);
old_cookie = p->core_cookie;
p->core_cookie = cookie;
if (enqueued)
sched_core_enqueue(rq, p);
/*
* If task is currently running, it may not be compatible anymore after
* the cookie change, so enter the scheduler on its CPU to schedule it
* away.
*
* Note that it is possible that as a result of this cookie change, the
* core has now entered/left forced idle state. Defer accounting to the
* next scheduling edge, rather than always forcing a reschedule here.
*/
if (task_running(rq, p))
resched_curr(rq);
task_rq_unlock(rq, p, &rf);
return old_cookie;
}
static unsigned long sched_core_clone_cookie(struct task_struct *p)
{
unsigned long cookie, flags;
raw_spin_lock_irqsave(&p->pi_lock, flags);
cookie = sched_core_get_cookie(p->core_cookie);
raw_spin_unlock_irqrestore(&p->pi_lock, flags);
return cookie;
}
void sched_core_fork(struct task_struct *p)
{
RB_CLEAR_NODE(&p->core_node);
p->core_cookie = sched_core_clone_cookie(current);
}
void sched_core_free(struct task_struct *p)
{
sched_core_put_cookie(p->core_cookie);
}
static void __sched_core_set(struct task_struct *p, unsigned long cookie)
{
cookie = sched_core_get_cookie(cookie);
cookie = sched_core_update_cookie(p, cookie);
sched_core_put_cookie(cookie);
}
/* Called from prctl interface: PR_SCHED_CORE */
int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
unsigned long uaddr)
{
unsigned long cookie = 0, id = 0;
struct task_struct *task, *p;
struct pid *grp;
int err = 0;
if (!static_branch_likely(&sched_smt_present))
return -ENODEV;
BUILD_BUG_ON(PR_SCHED_CORE_SCOPE_THREAD != PIDTYPE_PID);
BUILD_BUG_ON(PR_SCHED_CORE_SCOPE_THREAD_GROUP != PIDTYPE_TGID);
BUILD_BUG_ON(PR_SCHED_CORE_SCOPE_PROCESS_GROUP != PIDTYPE_PGID);
if (type > PIDTYPE_PGID || cmd >= PR_SCHED_CORE_MAX || pid < 0 ||
(cmd != PR_SCHED_CORE_GET && uaddr))
return -EINVAL;
rcu_read_lock();
if (pid == 0) {
task = current;
} else {
task = find_task_by_vpid(pid);
if (!task) {
rcu_read_unlock();
return -ESRCH;
}
}
get_task_struct(task);
rcu_read_unlock();
/*
* Check if this process has the right to modify the specified
* process. Use the regular "ptrace_may_access()" checks.
*/
if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
err = -EPERM;
goto out;
}
switch (cmd) {
case PR_SCHED_CORE_GET:
if (type != PIDTYPE_PID || uaddr & 7) {
err = -EINVAL;
goto out;
}
cookie = sched_core_clone_cookie(task);
if (cookie) {
/* XXX improve ? */
ptr_to_hashval((void *)cookie, &id);
}
err = put_user(id, (u64 __user *)uaddr);
goto out;
case PR_SCHED_CORE_CREATE:
cookie = sched_core_alloc_cookie();
if (!cookie) {
err = -ENOMEM;
goto out;
}
break;
case PR_SCHED_CORE_SHARE_TO:
cookie = sched_core_clone_cookie(current);
break;
case PR_SCHED_CORE_SHARE_FROM:
if (type != PIDTYPE_PID) {
err = -EINVAL;
goto out;
}
cookie = sched_core_clone_cookie(task);
__sched_core_set(current, cookie);
goto out;
default:
err = -EINVAL;
goto out;
};
if (type == PIDTYPE_PID) {
__sched_core_set(task, cookie);
goto out;
}
read_lock(&tasklist_lock);
grp = task_pid_type(task, type);
do_each_pid_thread(grp, type, p) {
if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS)) {
err = -EPERM;
goto out_tasklist;
}
} while_each_pid_thread(grp, type, p);
do_each_pid_thread(grp, type, p) {
__sched_core_set(p, cookie);
} while_each_pid_thread(grp, type, p);
out_tasklist:
read_unlock(&tasklist_lock);
out:
sched_core_put_cookie(cookie);
put_task_struct(task);
return err;
}
#ifdef CONFIG_SCHEDSTATS
/* REQUIRES: rq->core's clock recently updated. */
void __sched_core_account_forceidle(struct rq *rq)
{
const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq));
u64 delta, now = rq_clock(rq->core);
struct rq *rq_i;
struct task_struct *p;
int i;
lockdep_assert_rq_held(rq);
WARN_ON_ONCE(!rq->core->core_forceidle_count);
if (rq->core->core_forceidle_start == 0)
return;
delta = now - rq->core->core_forceidle_start;
if (unlikely((s64)delta <= 0))
return;
rq->core->core_forceidle_start = now;
if (WARN_ON_ONCE(!rq->core->core_forceidle_occupation)) {
/* can't be forced idle without a running task */
} else if (rq->core->core_forceidle_count > 1 ||
rq->core->core_forceidle_occupation > 1) {
/*
* For larger SMT configurations, we need to scale the charged
* forced idle amount since there can be more than one forced
* idle sibling and more than one running cookied task.
*/
delta *= rq->core->core_forceidle_count;
delta = div_u64(delta, rq->core->core_forceidle_occupation);
}
for_each_cpu(i, smt_mask) {
rq_i = cpu_rq(i);
p = rq_i->core_pick ?: rq_i->curr;
if (!p->core_cookie)
continue;
__schedstat_add(p->stats.core_forceidle_sum, delta);
}
}
void __sched_core_tick(struct rq *rq)
{
if (!rq->core->core_forceidle_count)
return;
if (rq != rq->core)
update_rq_clock(rq->core);
__sched_core_account_forceidle(rq);
}
#endif /* CONFIG_SCHEDSTATS */