2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-26 15:45:14 +08:00
linux-next/arch/x86/include/asm/sync_bitops.h
H. Peter Anvin 2823d4da5d x86, bitops: remove use of "sbb" to return CF
Use SETC instead of SBB to return the value of CF from assembly. Using
SETcc enables uniformity with other flags-returning pieces of assembly
code.

Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Link: http://lkml.kernel.org/r/1465414726-197858-2-git-send-email-hpa@linux.intel.com
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2016-06-08 12:41:20 -07:00

131 lines
3.4 KiB
C

#ifndef _ASM_X86_SYNC_BITOPS_H
#define _ASM_X86_SYNC_BITOPS_H
/*
* Copyright 1992, Linus Torvalds.
*/
/*
* These have to be done with inline assembly: that way the bit-setting
* is guaranteed to be atomic. All bit operations return 0 if the bit
* was cleared before the operation and != 0 if it was not.
*
* bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
*/
#define ADDR (*(volatile long *)addr)
/**
* sync_set_bit - Atomically set a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* This function is atomic and may not be reordered. See __set_bit()
* if you do not require the atomic guarantees.
*
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
static inline void sync_set_bit(long nr, volatile unsigned long *addr)
{
asm volatile("lock; bts %1,%0"
: "+m" (ADDR)
: "Ir" (nr)
: "memory");
}
/**
* sync_clear_bit - Clears a bit in memory
* @nr: Bit to clear
* @addr: Address to start counting from
*
* sync_clear_bit() is atomic and may not be reordered. However, it does
* not contain a memory barrier, so if it is used for locking purposes,
* you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
* in order to ensure changes are visible on other processors.
*/
static inline void sync_clear_bit(long nr, volatile unsigned long *addr)
{
asm volatile("lock; btr %1,%0"
: "+m" (ADDR)
: "Ir" (nr)
: "memory");
}
/**
* sync_change_bit - Toggle a bit in memory
* @nr: Bit to change
* @addr: Address to start counting from
*
* sync_change_bit() is atomic and may not be reordered.
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
static inline void sync_change_bit(long nr, volatile unsigned long *addr)
{
asm volatile("lock; btc %1,%0"
: "+m" (ADDR)
: "Ir" (nr)
: "memory");
}
/**
* sync_test_and_set_bit - Set a bit and return its old value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
static inline int sync_test_and_set_bit(long nr, volatile unsigned long *addr)
{
unsigned char oldbit;
asm volatile("lock; bts %2,%1\n\tsetc %0"
: "=qm" (oldbit), "+m" (ADDR)
: "Ir" (nr) : "memory");
return oldbit;
}
/**
* sync_test_and_clear_bit - Clear a bit and return its old value
* @nr: Bit to clear
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
static inline int sync_test_and_clear_bit(long nr, volatile unsigned long *addr)
{
unsigned char oldbit;
asm volatile("lock; btr %2,%1\n\tsetc %0"
: "=qm" (oldbit), "+m" (ADDR)
: "Ir" (nr) : "memory");
return oldbit;
}
/**
* sync_test_and_change_bit - Change a bit and return its old value
* @nr: Bit to change
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
static inline int sync_test_and_change_bit(long nr, volatile unsigned long *addr)
{
unsigned char oldbit;
asm volatile("lock; btc %2,%1\n\tsetc %0"
: "=qm" (oldbit), "+m" (ADDR)
: "Ir" (nr) : "memory");
return oldbit;
}
#define sync_test_bit(nr, addr) test_bit(nr, addr)
#undef ADDR
#endif /* _ASM_X86_SYNC_BITOPS_H */