2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-02 02:34:05 +08:00
linux-next/drivers/edac/thunderx_edac.c
Kees Cook 6663484b4e EDAC, thunderx: Remove VLA usage
In the quest to remove all stack VLA usage from the kernel[1], switch to
using a kmalloc-allocated buffer instead of stack space. This should be
fine since the existing routine is allocating memory too.

Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Jan Glauber <jglauber@cavium.com>
Cc: David Daney <david.daney@cavium.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20180629184850.GA37464@beast
Link: https://lkml.kernel.org/r/CA+55aFzCG-zNmZwX4A2FQpadafLfEzK6CC=qPXydAacU1RqZWA@mail.gmail.com [1]
Signed-off-by: Borislav Petkov <bp@suse.de>
2018-07-09 11:33:02 +02:00

2152 lines
53 KiB
C

/*
* Cavium ThunderX memory controller kernel module
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright Cavium, Inc. (C) 2015-2017. All rights reserved.
*
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/edac.h>
#include <linux/interrupt.h>
#include <linux/string.h>
#include <linux/stop_machine.h>
#include <linux/delay.h>
#include <linux/sizes.h>
#include <linux/atomic.h>
#include <linux/bitfield.h>
#include <linux/circ_buf.h>
#include <asm/page.h>
#include "edac_module.h"
#define phys_to_pfn(phys) (PFN_DOWN(phys))
#define THUNDERX_NODE GENMASK(45, 44)
enum {
ERR_CORRECTED = 1,
ERR_UNCORRECTED = 2,
ERR_UNKNOWN = 3,
};
#define MAX_SYNDROME_REGS 4
struct error_syndrome {
u64 reg[MAX_SYNDROME_REGS];
};
struct error_descr {
int type;
u64 mask;
char *descr;
};
static void decode_register(char *str, size_t size,
const struct error_descr *descr,
const uint64_t reg)
{
int ret = 0;
while (descr->type && descr->mask && descr->descr) {
if (reg & descr->mask) {
ret = snprintf(str, size, "\n\t%s, %s",
descr->type == ERR_CORRECTED ?
"Corrected" : "Uncorrected",
descr->descr);
str += ret;
size -= ret;
}
descr++;
}
}
static unsigned long get_bits(unsigned long data, int pos, int width)
{
return (data >> pos) & ((1 << width) - 1);
}
#define L2C_CTL 0x87E080800000
#define L2C_CTL_DISIDXALIAS BIT(0)
#define PCI_DEVICE_ID_THUNDER_LMC 0xa022
#define LMC_FADR 0x20
#define LMC_FADR_FDIMM(x) ((x >> 37) & 0x1)
#define LMC_FADR_FBUNK(x) ((x >> 36) & 0x1)
#define LMC_FADR_FBANK(x) ((x >> 32) & 0xf)
#define LMC_FADR_FROW(x) ((x >> 14) & 0xffff)
#define LMC_FADR_FCOL(x) ((x >> 0) & 0x1fff)
#define LMC_NXM_FADR 0x28
#define LMC_ECC_SYND 0x38
#define LMC_ECC_PARITY_TEST 0x108
#define LMC_INT_W1S 0x150
#define LMC_INT_ENA_W1C 0x158
#define LMC_INT_ENA_W1S 0x160
#define LMC_CONFIG 0x188
#define LMC_CONFIG_BG2 BIT(62)
#define LMC_CONFIG_RANK_ENA BIT(42)
#define LMC_CONFIG_PBANK_LSB(x) (((x) >> 5) & 0xF)
#define LMC_CONFIG_ROW_LSB(x) (((x) >> 2) & 0x7)
#define LMC_CONTROL 0x190
#define LMC_CONTROL_XOR_BANK BIT(16)
#define LMC_INT 0x1F0
#define LMC_INT_DDR_ERR BIT(11)
#define LMC_INT_DED_ERR (0xFUL << 5)
#define LMC_INT_SEC_ERR (0xFUL << 1)
#define LMC_INT_NXM_WR_MASK BIT(0)
#define LMC_DDR_PLL_CTL 0x258
#define LMC_DDR_PLL_CTL_DDR4 BIT(29)
#define LMC_FADR_SCRAMBLED 0x330
#define LMC_INT_UE (LMC_INT_DDR_ERR | LMC_INT_DED_ERR | \
LMC_INT_NXM_WR_MASK)
#define LMC_INT_CE (LMC_INT_SEC_ERR)
static const struct error_descr lmc_errors[] = {
{
.type = ERR_CORRECTED,
.mask = LMC_INT_SEC_ERR,
.descr = "Single-bit ECC error",
},
{
.type = ERR_UNCORRECTED,
.mask = LMC_INT_DDR_ERR,
.descr = "DDR chip error",
},
{
.type = ERR_UNCORRECTED,
.mask = LMC_INT_DED_ERR,
.descr = "Double-bit ECC error",
},
{
.type = ERR_UNCORRECTED,
.mask = LMC_INT_NXM_WR_MASK,
.descr = "Non-existent memory write",
},
{0, 0, NULL},
};
#define LMC_INT_EN_DDR_ERROR_ALERT_ENA BIT(5)
#define LMC_INT_EN_DLCRAM_DED_ERR BIT(4)
#define LMC_INT_EN_DLCRAM_SEC_ERR BIT(3)
#define LMC_INT_INTR_DED_ENA BIT(2)
#define LMC_INT_INTR_SEC_ENA BIT(1)
#define LMC_INT_INTR_NXM_WR_ENA BIT(0)
#define LMC_INT_ENA_ALL GENMASK(5, 0)
#define LMC_DDR_PLL_CTL 0x258
#define LMC_DDR_PLL_CTL_DDR4 BIT(29)
#define LMC_CONTROL 0x190
#define LMC_CONTROL_RDIMM BIT(0)
#define LMC_SCRAM_FADR 0x330
#define LMC_CHAR_MASK0 0x228
#define LMC_CHAR_MASK2 0x238
#define RING_ENTRIES 8
struct debugfs_entry {
const char *name;
umode_t mode;
const struct file_operations fops;
};
struct lmc_err_ctx {
u64 reg_int;
u64 reg_fadr;
u64 reg_nxm_fadr;
u64 reg_scram_fadr;
u64 reg_ecc_synd;
};
struct thunderx_lmc {
void __iomem *regs;
struct pci_dev *pdev;
struct msix_entry msix_ent;
atomic_t ecc_int;
u64 mask0;
u64 mask2;
u64 parity_test;
u64 node;
int xbits;
int bank_width;
int pbank_lsb;
int dimm_lsb;
int rank_lsb;
int bank_lsb;
int row_lsb;
int col_hi_lsb;
int xor_bank;
int l2c_alias;
struct page *mem;
struct lmc_err_ctx err_ctx[RING_ENTRIES];
unsigned long ring_head;
unsigned long ring_tail;
};
#define ring_pos(pos, size) ((pos) & (size - 1))
#define DEBUGFS_STRUCT(_name, _mode, _write, _read) \
static struct debugfs_entry debugfs_##_name = { \
.name = __stringify(_name), \
.mode = VERIFY_OCTAL_PERMISSIONS(_mode), \
.fops = { \
.open = simple_open, \
.write = _write, \
.read = _read, \
.llseek = generic_file_llseek, \
}, \
}
#define DEBUGFS_FIELD_ATTR(_type, _field) \
static ssize_t thunderx_##_type##_##_field##_read(struct file *file, \
char __user *data, \
size_t count, loff_t *ppos) \
{ \
struct thunderx_##_type *pdata = file->private_data; \
char buf[20]; \
\
snprintf(buf, count, "0x%016llx", pdata->_field); \
return simple_read_from_buffer(data, count, ppos, \
buf, sizeof(buf)); \
} \
\
static ssize_t thunderx_##_type##_##_field##_write(struct file *file, \
const char __user *data, \
size_t count, loff_t *ppos) \
{ \
struct thunderx_##_type *pdata = file->private_data; \
int res; \
\
res = kstrtoull_from_user(data, count, 0, &pdata->_field); \
\
return res ? res : count; \
} \
\
DEBUGFS_STRUCT(_field, 0600, \
thunderx_##_type##_##_field##_write, \
thunderx_##_type##_##_field##_read) \
#define DEBUGFS_REG_ATTR(_type, _name, _reg) \
static ssize_t thunderx_##_type##_##_name##_read(struct file *file, \
char __user *data, \
size_t count, loff_t *ppos) \
{ \
struct thunderx_##_type *pdata = file->private_data; \
char buf[20]; \
\
sprintf(buf, "0x%016llx", readq(pdata->regs + _reg)); \
return simple_read_from_buffer(data, count, ppos, \
buf, sizeof(buf)); \
} \
\
static ssize_t thunderx_##_type##_##_name##_write(struct file *file, \
const char __user *data, \
size_t count, loff_t *ppos) \
{ \
struct thunderx_##_type *pdata = file->private_data; \
u64 val; \
int res; \
\
res = kstrtoull_from_user(data, count, 0, &val); \
\
if (!res) { \
writeq(val, pdata->regs + _reg); \
res = count; \
} \
\
return res; \
} \
\
DEBUGFS_STRUCT(_name, 0600, \
thunderx_##_type##_##_name##_write, \
thunderx_##_type##_##_name##_read)
#define LMC_DEBUGFS_ENT(_field) DEBUGFS_FIELD_ATTR(lmc, _field)
/*
* To get an ECC error injected, the following steps are needed:
* - Setup the ECC injection by writing the appropriate parameters:
* echo <bit mask value> > /sys/kernel/debug/<device number>/ecc_mask0
* echo <bit mask value> > /sys/kernel/debug/<device number>/ecc_mask2
* echo 0x802 > /sys/kernel/debug/<device number>/ecc_parity_test
* - Do the actual injection:
* echo 1 > /sys/kernel/debug/<device number>/inject_ecc
*/
static ssize_t thunderx_lmc_inject_int_write(struct file *file,
const char __user *data,
size_t count, loff_t *ppos)
{
struct thunderx_lmc *lmc = file->private_data;
u64 val;
int res;
res = kstrtoull_from_user(data, count, 0, &val);
if (!res) {
/* Trigger the interrupt */
writeq(val, lmc->regs + LMC_INT_W1S);
res = count;
}
return res;
}
static ssize_t thunderx_lmc_int_read(struct file *file,
char __user *data,
size_t count, loff_t *ppos)
{
struct thunderx_lmc *lmc = file->private_data;
char buf[20];
u64 lmc_int = readq(lmc->regs + LMC_INT);
snprintf(buf, sizeof(buf), "0x%016llx", lmc_int);
return simple_read_from_buffer(data, count, ppos, buf, sizeof(buf));
}
#define TEST_PATTERN 0xa5
static int inject_ecc_fn(void *arg)
{
struct thunderx_lmc *lmc = arg;
uintptr_t addr, phys;
unsigned int cline_size = cache_line_size();
const unsigned int lines = PAGE_SIZE / cline_size;
unsigned int i, cl_idx;
addr = (uintptr_t)page_address(lmc->mem);
phys = (uintptr_t)page_to_phys(lmc->mem);
cl_idx = (phys & 0x7f) >> 4;
lmc->parity_test &= ~(7ULL << 8);
lmc->parity_test |= (cl_idx << 8);
writeq(lmc->mask0, lmc->regs + LMC_CHAR_MASK0);
writeq(lmc->mask2, lmc->regs + LMC_CHAR_MASK2);
writeq(lmc->parity_test, lmc->regs + LMC_ECC_PARITY_TEST);
readq(lmc->regs + LMC_CHAR_MASK0);
readq(lmc->regs + LMC_CHAR_MASK2);
readq(lmc->regs + LMC_ECC_PARITY_TEST);
for (i = 0; i < lines; i++) {
memset((void *)addr, TEST_PATTERN, cline_size);
barrier();
/*
* Flush L1 cachelines to the PoC (L2).
* This will cause cacheline eviction to the L2.
*/
asm volatile("dc civac, %0\n"
"dsb sy\n"
: : "r"(addr + i * cline_size));
}
for (i = 0; i < lines; i++) {
/*
* Flush L2 cachelines to the DRAM.
* This will cause cacheline eviction to the DRAM
* and ECC corruption according to the masks set.
*/
__asm__ volatile("sys #0,c11,C1,#2, %0\n"
: : "r"(phys + i * cline_size));
}
for (i = 0; i < lines; i++) {
/*
* Invalidate L2 cachelines.
* The subsequent load will cause cacheline fetch
* from the DRAM and an error interrupt
*/
__asm__ volatile("sys #0,c11,C1,#1, %0"
: : "r"(phys + i * cline_size));
}
for (i = 0; i < lines; i++) {
/*
* Invalidate L1 cachelines.
* The subsequent load will cause cacheline fetch
* from the L2 and/or DRAM
*/
asm volatile("dc ivac, %0\n"
"dsb sy\n"
: : "r"(addr + i * cline_size));
}
return 0;
}
static ssize_t thunderx_lmc_inject_ecc_write(struct file *file,
const char __user *data,
size_t count, loff_t *ppos)
{
struct thunderx_lmc *lmc = file->private_data;
unsigned int cline_size = cache_line_size();
u8 *tmp;
void __iomem *addr;
unsigned int offs, timeout = 100000;
atomic_set(&lmc->ecc_int, 0);
lmc->mem = alloc_pages_node(lmc->node, GFP_KERNEL, 0);
if (!lmc->mem)
return -ENOMEM;
tmp = kmalloc(cline_size, GFP_KERNEL);
if (!tmp) {
__free_pages(lmc->mem, 0);
return -ENOMEM;
}
addr = page_address(lmc->mem);
while (!atomic_read(&lmc->ecc_int) && timeout--) {
stop_machine(inject_ecc_fn, lmc, NULL);
for (offs = 0; offs < PAGE_SIZE; offs += cline_size) {
/*
* Do a load from the previously rigged location
* This should generate an error interrupt.
*/
memcpy(tmp, addr + offs, cline_size);
asm volatile("dsb ld\n");
}
}
kfree(tmp);
__free_pages(lmc->mem, 0);
return count;
}
LMC_DEBUGFS_ENT(mask0);
LMC_DEBUGFS_ENT(mask2);
LMC_DEBUGFS_ENT(parity_test);
DEBUGFS_STRUCT(inject_int, 0200, thunderx_lmc_inject_int_write, NULL);
DEBUGFS_STRUCT(inject_ecc, 0200, thunderx_lmc_inject_ecc_write, NULL);
DEBUGFS_STRUCT(int_w1c, 0400, NULL, thunderx_lmc_int_read);
struct debugfs_entry *lmc_dfs_ents[] = {
&debugfs_mask0,
&debugfs_mask2,
&debugfs_parity_test,
&debugfs_inject_ecc,
&debugfs_inject_int,
&debugfs_int_w1c,
};
static int thunderx_create_debugfs_nodes(struct dentry *parent,
struct debugfs_entry *attrs[],
void *data,
size_t num)
{
int i;
struct dentry *ent;
if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
return 0;
if (!parent)
return -ENOENT;
for (i = 0; i < num; i++) {
ent = edac_debugfs_create_file(attrs[i]->name, attrs[i]->mode,
parent, data, &attrs[i]->fops);
if (!ent)
break;
}
return i;
}
static phys_addr_t thunderx_faddr_to_phys(u64 faddr, struct thunderx_lmc *lmc)
{
phys_addr_t addr = 0;
int bank, xbits;
addr |= lmc->node << 40;
addr |= LMC_FADR_FDIMM(faddr) << lmc->dimm_lsb;
addr |= LMC_FADR_FBUNK(faddr) << lmc->rank_lsb;
addr |= LMC_FADR_FROW(faddr) << lmc->row_lsb;
addr |= (LMC_FADR_FCOL(faddr) >> 4) << lmc->col_hi_lsb;
bank = LMC_FADR_FBANK(faddr) << lmc->bank_lsb;
if (lmc->xor_bank)
bank ^= get_bits(addr, 12 + lmc->xbits, lmc->bank_width);
addr |= bank << lmc->bank_lsb;
xbits = PCI_FUNC(lmc->pdev->devfn);
if (lmc->l2c_alias)
xbits ^= get_bits(addr, 20, lmc->xbits) ^
get_bits(addr, 12, lmc->xbits);
addr |= xbits << 7;
return addr;
}
static unsigned int thunderx_get_num_lmcs(unsigned int node)
{
unsigned int number = 0;
struct pci_dev *pdev = NULL;
do {
pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
PCI_DEVICE_ID_THUNDER_LMC,
pdev);
if (pdev) {
#ifdef CONFIG_NUMA
if (pdev->dev.numa_node == node)
number++;
#else
number++;
#endif
}
} while (pdev);
return number;
}
#define LMC_MESSAGE_SIZE 120
#define LMC_OTHER_SIZE (50 * ARRAY_SIZE(lmc_errors))
static irqreturn_t thunderx_lmc_err_isr(int irq, void *dev_id)
{
struct mem_ctl_info *mci = dev_id;
struct thunderx_lmc *lmc = mci->pvt_info;
unsigned long head = ring_pos(lmc->ring_head, ARRAY_SIZE(lmc->err_ctx));
struct lmc_err_ctx *ctx = &lmc->err_ctx[head];
writeq(0, lmc->regs + LMC_CHAR_MASK0);
writeq(0, lmc->regs + LMC_CHAR_MASK2);
writeq(0x2, lmc->regs + LMC_ECC_PARITY_TEST);
ctx->reg_int = readq(lmc->regs + LMC_INT);
ctx->reg_fadr = readq(lmc->regs + LMC_FADR);
ctx->reg_nxm_fadr = readq(lmc->regs + LMC_NXM_FADR);
ctx->reg_scram_fadr = readq(lmc->regs + LMC_SCRAM_FADR);
ctx->reg_ecc_synd = readq(lmc->regs + LMC_ECC_SYND);
lmc->ring_head++;
atomic_set(&lmc->ecc_int, 1);
/* Clear the interrupt */
writeq(ctx->reg_int, lmc->regs + LMC_INT);
return IRQ_WAKE_THREAD;
}
static irqreturn_t thunderx_lmc_threaded_isr(int irq, void *dev_id)
{
struct mem_ctl_info *mci = dev_id;
struct thunderx_lmc *lmc = mci->pvt_info;
phys_addr_t phys_addr;
unsigned long tail;
struct lmc_err_ctx *ctx;
irqreturn_t ret = IRQ_NONE;
char *msg;
char *other;
msg = kmalloc(LMC_MESSAGE_SIZE, GFP_KERNEL);
other = kmalloc(LMC_OTHER_SIZE, GFP_KERNEL);
if (!msg || !other)
goto err_free;
while (CIRC_CNT(lmc->ring_head, lmc->ring_tail,
ARRAY_SIZE(lmc->err_ctx))) {
tail = ring_pos(lmc->ring_tail, ARRAY_SIZE(lmc->err_ctx));
ctx = &lmc->err_ctx[tail];
dev_dbg(&lmc->pdev->dev, "LMC_INT: %016llx\n",
ctx->reg_int);
dev_dbg(&lmc->pdev->dev, "LMC_FADR: %016llx\n",
ctx->reg_fadr);
dev_dbg(&lmc->pdev->dev, "LMC_NXM_FADR: %016llx\n",
ctx->reg_nxm_fadr);
dev_dbg(&lmc->pdev->dev, "LMC_SCRAM_FADR: %016llx\n",
ctx->reg_scram_fadr);
dev_dbg(&lmc->pdev->dev, "LMC_ECC_SYND: %016llx\n",
ctx->reg_ecc_synd);
snprintf(msg, LMC_MESSAGE_SIZE,
"DIMM %lld rank %lld bank %lld row %lld col %lld",
LMC_FADR_FDIMM(ctx->reg_scram_fadr),
LMC_FADR_FBUNK(ctx->reg_scram_fadr),
LMC_FADR_FBANK(ctx->reg_scram_fadr),
LMC_FADR_FROW(ctx->reg_scram_fadr),
LMC_FADR_FCOL(ctx->reg_scram_fadr));
decode_register(other, LMC_OTHER_SIZE, lmc_errors,
ctx->reg_int);
phys_addr = thunderx_faddr_to_phys(ctx->reg_fadr, lmc);
if (ctx->reg_int & LMC_INT_UE)
edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
phys_to_pfn(phys_addr),
offset_in_page(phys_addr),
0, -1, -1, -1, msg, other);
else if (ctx->reg_int & LMC_INT_CE)
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
phys_to_pfn(phys_addr),
offset_in_page(phys_addr),
0, -1, -1, -1, msg, other);
lmc->ring_tail++;
}
ret = IRQ_HANDLED;
err_free:
kfree(msg);
kfree(other);
return ret;
}
static const struct pci_device_id thunderx_lmc_pci_tbl[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_THUNDER_LMC) },
{ 0, },
};
static inline int pci_dev_to_mc_idx(struct pci_dev *pdev)
{
int node = dev_to_node(&pdev->dev);
int ret = PCI_FUNC(pdev->devfn);
ret += max(node, 0) << 3;
return ret;
}
static int thunderx_lmc_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct thunderx_lmc *lmc;
struct edac_mc_layer layer;
struct mem_ctl_info *mci;
u64 lmc_control, lmc_ddr_pll_ctl, lmc_config;
int ret;
u64 lmc_int;
void *l2c_ioaddr;
layer.type = EDAC_MC_LAYER_SLOT;
layer.size = 2;
layer.is_virt_csrow = false;
ret = pcim_enable_device(pdev);
if (ret) {
dev_err(&pdev->dev, "Cannot enable PCI device: %d\n", ret);
return ret;
}
ret = pcim_iomap_regions(pdev, BIT(0), "thunderx_lmc");
if (ret) {
dev_err(&pdev->dev, "Cannot map PCI resources: %d\n", ret);
return ret;
}
mci = edac_mc_alloc(pci_dev_to_mc_idx(pdev), 1, &layer,
sizeof(struct thunderx_lmc));
if (!mci)
return -ENOMEM;
mci->pdev = &pdev->dev;
lmc = mci->pvt_info;
pci_set_drvdata(pdev, mci);
lmc->regs = pcim_iomap_table(pdev)[0];
lmc_control = readq(lmc->regs + LMC_CONTROL);
lmc_ddr_pll_ctl = readq(lmc->regs + LMC_DDR_PLL_CTL);
lmc_config = readq(lmc->regs + LMC_CONFIG);
if (lmc_control & LMC_CONTROL_RDIMM) {
mci->mtype_cap = FIELD_GET(LMC_DDR_PLL_CTL_DDR4,
lmc_ddr_pll_ctl) ?
MEM_RDDR4 : MEM_RDDR3;
} else {
mci->mtype_cap = FIELD_GET(LMC_DDR_PLL_CTL_DDR4,
lmc_ddr_pll_ctl) ?
MEM_DDR4 : MEM_DDR3;
}
mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
mci->edac_cap = EDAC_FLAG_SECDED;
mci->mod_name = "thunderx-lmc";
mci->ctl_name = "thunderx-lmc";
mci->dev_name = dev_name(&pdev->dev);
mci->scrub_mode = SCRUB_NONE;
lmc->pdev = pdev;
lmc->msix_ent.entry = 0;
lmc->ring_head = 0;
lmc->ring_tail = 0;
ret = pci_enable_msix_exact(pdev, &lmc->msix_ent, 1);
if (ret) {
dev_err(&pdev->dev, "Cannot enable interrupt: %d\n", ret);
goto err_free;
}
ret = devm_request_threaded_irq(&pdev->dev, lmc->msix_ent.vector,
thunderx_lmc_err_isr,
thunderx_lmc_threaded_isr, 0,
"[EDAC] ThunderX LMC", mci);
if (ret) {
dev_err(&pdev->dev, "Cannot set ISR: %d\n", ret);
goto err_free;
}
lmc->node = FIELD_GET(THUNDERX_NODE, pci_resource_start(pdev, 0));
lmc->xbits = thunderx_get_num_lmcs(lmc->node) >> 1;
lmc->bank_width = (FIELD_GET(LMC_DDR_PLL_CTL_DDR4, lmc_ddr_pll_ctl) &&
FIELD_GET(LMC_CONFIG_BG2, lmc_config)) ? 4 : 3;
lmc->pbank_lsb = (lmc_config >> 5) & 0xf;
lmc->dimm_lsb = 28 + lmc->pbank_lsb + lmc->xbits;
lmc->rank_lsb = lmc->dimm_lsb;
lmc->rank_lsb -= FIELD_GET(LMC_CONFIG_RANK_ENA, lmc_config) ? 1 : 0;
lmc->bank_lsb = 7 + lmc->xbits;
lmc->row_lsb = 14 + LMC_CONFIG_ROW_LSB(lmc_config) + lmc->xbits;
lmc->col_hi_lsb = lmc->bank_lsb + lmc->bank_width;
lmc->xor_bank = lmc_control & LMC_CONTROL_XOR_BANK;
l2c_ioaddr = ioremap(L2C_CTL | FIELD_PREP(THUNDERX_NODE, lmc->node), PAGE_SIZE);
if (!l2c_ioaddr) {
dev_err(&pdev->dev, "Cannot map L2C_CTL\n");
ret = -ENOMEM;
goto err_free;
}
lmc->l2c_alias = !(readq(l2c_ioaddr) & L2C_CTL_DISIDXALIAS);
iounmap(l2c_ioaddr);
ret = edac_mc_add_mc(mci);
if (ret) {
dev_err(&pdev->dev, "Cannot add the MC: %d\n", ret);
goto err_free;
}
lmc_int = readq(lmc->regs + LMC_INT);
writeq(lmc_int, lmc->regs + LMC_INT);
writeq(LMC_INT_ENA_ALL, lmc->regs + LMC_INT_ENA_W1S);
if (IS_ENABLED(CONFIG_EDAC_DEBUG)) {
ret = thunderx_create_debugfs_nodes(mci->debugfs,
lmc_dfs_ents,
lmc,
ARRAY_SIZE(lmc_dfs_ents));
if (ret != ARRAY_SIZE(lmc_dfs_ents)) {
dev_warn(&pdev->dev, "Error creating debugfs entries: %d%s\n",
ret, ret >= 0 ? " created" : "");
}
}
return 0;
err_free:
pci_set_drvdata(pdev, NULL);
edac_mc_free(mci);
return ret;
}
static void thunderx_lmc_remove(struct pci_dev *pdev)
{
struct mem_ctl_info *mci = pci_get_drvdata(pdev);
struct thunderx_lmc *lmc = mci->pvt_info;
writeq(LMC_INT_ENA_ALL, lmc->regs + LMC_INT_ENA_W1C);
edac_mc_del_mc(&pdev->dev);
edac_mc_free(mci);
}
MODULE_DEVICE_TABLE(pci, thunderx_lmc_pci_tbl);
static struct pci_driver thunderx_lmc_driver = {
.name = "thunderx_lmc_edac",
.probe = thunderx_lmc_probe,
.remove = thunderx_lmc_remove,
.id_table = thunderx_lmc_pci_tbl,
};
/*---------------------- OCX driver ---------------------------------*/
#define PCI_DEVICE_ID_THUNDER_OCX 0xa013
#define OCX_LINK_INTS 3
#define OCX_INTS (OCX_LINK_INTS + 1)
#define OCX_RX_LANES 24
#define OCX_RX_LANE_STATS 15
#define OCX_COM_INT 0x100
#define OCX_COM_INT_W1S 0x108
#define OCX_COM_INT_ENA_W1S 0x110
#define OCX_COM_INT_ENA_W1C 0x118
#define OCX_COM_IO_BADID BIT(54)
#define OCX_COM_MEM_BADID BIT(53)
#define OCX_COM_COPR_BADID BIT(52)
#define OCX_COM_WIN_REQ_BADID BIT(51)
#define OCX_COM_WIN_REQ_TOUT BIT(50)
#define OCX_COM_RX_LANE GENMASK(23, 0)
#define OCX_COM_INT_CE (OCX_COM_IO_BADID | \
OCX_COM_MEM_BADID | \
OCX_COM_COPR_BADID | \
OCX_COM_WIN_REQ_BADID | \
OCX_COM_WIN_REQ_TOUT)
static const struct error_descr ocx_com_errors[] = {
{
.type = ERR_CORRECTED,
.mask = OCX_COM_IO_BADID,
.descr = "Invalid IO transaction node ID",
},
{
.type = ERR_CORRECTED,
.mask = OCX_COM_MEM_BADID,
.descr = "Invalid memory transaction node ID",
},
{
.type = ERR_CORRECTED,
.mask = OCX_COM_COPR_BADID,
.descr = "Invalid coprocessor transaction node ID",
},
{
.type = ERR_CORRECTED,
.mask = OCX_COM_WIN_REQ_BADID,
.descr = "Invalid SLI transaction node ID",
},
{
.type = ERR_CORRECTED,
.mask = OCX_COM_WIN_REQ_TOUT,
.descr = "Window/core request timeout",
},
{0, 0, NULL},
};
#define OCX_COM_LINKX_INT(x) (0x120 + (x) * 8)
#define OCX_COM_LINKX_INT_W1S(x) (0x140 + (x) * 8)
#define OCX_COM_LINKX_INT_ENA_W1S(x) (0x160 + (x) * 8)
#define OCX_COM_LINKX_INT_ENA_W1C(x) (0x180 + (x) * 8)
#define OCX_COM_LINK_BAD_WORD BIT(13)
#define OCX_COM_LINK_ALIGN_FAIL BIT(12)
#define OCX_COM_LINK_ALIGN_DONE BIT(11)
#define OCX_COM_LINK_UP BIT(10)
#define OCX_COM_LINK_STOP BIT(9)
#define OCX_COM_LINK_BLK_ERR BIT(8)
#define OCX_COM_LINK_REINIT BIT(7)
#define OCX_COM_LINK_LNK_DATA BIT(6)
#define OCX_COM_LINK_RXFIFO_DBE BIT(5)
#define OCX_COM_LINK_RXFIFO_SBE BIT(4)
#define OCX_COM_LINK_TXFIFO_DBE BIT(3)
#define OCX_COM_LINK_TXFIFO_SBE BIT(2)
#define OCX_COM_LINK_REPLAY_DBE BIT(1)
#define OCX_COM_LINK_REPLAY_SBE BIT(0)
static const struct error_descr ocx_com_link_errors[] = {
{
.type = ERR_CORRECTED,
.mask = OCX_COM_LINK_REPLAY_SBE,
.descr = "Replay buffer single-bit error",
},
{
.type = ERR_CORRECTED,
.mask = OCX_COM_LINK_TXFIFO_SBE,
.descr = "TX FIFO single-bit error",
},
{
.type = ERR_CORRECTED,
.mask = OCX_COM_LINK_RXFIFO_SBE,
.descr = "RX FIFO single-bit error",
},
{
.type = ERR_CORRECTED,
.mask = OCX_COM_LINK_BLK_ERR,
.descr = "Block code error",
},
{
.type = ERR_CORRECTED,
.mask = OCX_COM_LINK_ALIGN_FAIL,
.descr = "Link alignment failure",
},
{
.type = ERR_CORRECTED,
.mask = OCX_COM_LINK_BAD_WORD,
.descr = "Bad code word",
},
{
.type = ERR_UNCORRECTED,
.mask = OCX_COM_LINK_REPLAY_DBE,
.descr = "Replay buffer double-bit error",
},
{
.type = ERR_UNCORRECTED,
.mask = OCX_COM_LINK_TXFIFO_DBE,
.descr = "TX FIFO double-bit error",
},
{
.type = ERR_UNCORRECTED,
.mask = OCX_COM_LINK_RXFIFO_DBE,
.descr = "RX FIFO double-bit error",
},
{
.type = ERR_UNCORRECTED,
.mask = OCX_COM_LINK_STOP,
.descr = "Link stopped",
},
{0, 0, NULL},
};
#define OCX_COM_LINK_INT_UE (OCX_COM_LINK_REPLAY_DBE | \
OCX_COM_LINK_TXFIFO_DBE | \
OCX_COM_LINK_RXFIFO_DBE | \
OCX_COM_LINK_STOP)
#define OCX_COM_LINK_INT_CE (OCX_COM_LINK_REPLAY_SBE | \
OCX_COM_LINK_TXFIFO_SBE | \
OCX_COM_LINK_RXFIFO_SBE | \
OCX_COM_LINK_BLK_ERR | \
OCX_COM_LINK_ALIGN_FAIL | \
OCX_COM_LINK_BAD_WORD)
#define OCX_LNE_INT(x) (0x8018 + (x) * 0x100)
#define OCX_LNE_INT_EN(x) (0x8020 + (x) * 0x100)
#define OCX_LNE_BAD_CNT(x) (0x8028 + (x) * 0x100)
#define OCX_LNE_CFG(x) (0x8000 + (x) * 0x100)
#define OCX_LNE_STAT(x, y) (0x8040 + (x) * 0x100 + (y) * 8)
#define OCX_LNE_CFG_RX_BDRY_LOCK_DIS BIT(8)
#define OCX_LNE_CFG_RX_STAT_WRAP_DIS BIT(2)
#define OCX_LNE_CFG_RX_STAT_RDCLR BIT(1)
#define OCX_LNE_CFG_RX_STAT_ENA BIT(0)
#define OCX_LANE_BAD_64B67B BIT(8)
#define OCX_LANE_DSKEW_FIFO_OVFL BIT(5)
#define OCX_LANE_SCRM_SYNC_LOSS BIT(4)
#define OCX_LANE_UKWN_CNTL_WORD BIT(3)
#define OCX_LANE_CRC32_ERR BIT(2)
#define OCX_LANE_BDRY_SYNC_LOSS BIT(1)
#define OCX_LANE_SERDES_LOCK_LOSS BIT(0)
#define OCX_COM_LANE_INT_UE (0)
#define OCX_COM_LANE_INT_CE (OCX_LANE_SERDES_LOCK_LOSS | \
OCX_LANE_BDRY_SYNC_LOSS | \
OCX_LANE_CRC32_ERR | \
OCX_LANE_UKWN_CNTL_WORD | \
OCX_LANE_SCRM_SYNC_LOSS | \
OCX_LANE_DSKEW_FIFO_OVFL | \
OCX_LANE_BAD_64B67B)
static const struct error_descr ocx_lane_errors[] = {
{
.type = ERR_CORRECTED,
.mask = OCX_LANE_SERDES_LOCK_LOSS,
.descr = "RX SerDes lock lost",
},
{
.type = ERR_CORRECTED,
.mask = OCX_LANE_BDRY_SYNC_LOSS,
.descr = "RX word boundary lost",
},
{
.type = ERR_CORRECTED,
.mask = OCX_LANE_CRC32_ERR,
.descr = "CRC32 error",
},
{
.type = ERR_CORRECTED,
.mask = OCX_LANE_UKWN_CNTL_WORD,
.descr = "Unknown control word",
},
{
.type = ERR_CORRECTED,
.mask = OCX_LANE_SCRM_SYNC_LOSS,
.descr = "Scrambler synchronization lost",
},
{
.type = ERR_CORRECTED,
.mask = OCX_LANE_DSKEW_FIFO_OVFL,
.descr = "RX deskew FIFO overflow",
},
{
.type = ERR_CORRECTED,
.mask = OCX_LANE_BAD_64B67B,
.descr = "Bad 64B/67B codeword",
},
{0, 0, NULL},
};
#define OCX_LNE_INT_ENA_ALL (GENMASK(9, 8) | GENMASK(6, 0))
#define OCX_COM_INT_ENA_ALL (GENMASK(54, 50) | GENMASK(23, 0))
#define OCX_COM_LINKX_INT_ENA_ALL (GENMASK(13, 12) | \
GENMASK(9, 7) | GENMASK(5, 0))
#define OCX_TLKX_ECC_CTL(x) (0x10018 + (x) * 0x2000)
#define OCX_RLKX_ECC_CTL(x) (0x18018 + (x) * 0x2000)
struct ocx_com_err_ctx {
u64 reg_com_int;
u64 reg_lane_int[OCX_RX_LANES];
u64 reg_lane_stat11[OCX_RX_LANES];
};
struct ocx_link_err_ctx {
u64 reg_com_link_int;
int link;
};
struct thunderx_ocx {
void __iomem *regs;
int com_link;
struct pci_dev *pdev;
struct edac_device_ctl_info *edac_dev;
struct dentry *debugfs;
struct msix_entry msix_ent[OCX_INTS];
struct ocx_com_err_ctx com_err_ctx[RING_ENTRIES];
struct ocx_link_err_ctx link_err_ctx[RING_ENTRIES];
unsigned long com_ring_head;
unsigned long com_ring_tail;
unsigned long link_ring_head;
unsigned long link_ring_tail;
};
#define OCX_MESSAGE_SIZE SZ_1K
#define OCX_OTHER_SIZE (50 * ARRAY_SIZE(ocx_com_link_errors))
/* This handler is threaded */
static irqreturn_t thunderx_ocx_com_isr(int irq, void *irq_id)
{
struct msix_entry *msix = irq_id;
struct thunderx_ocx *ocx = container_of(msix, struct thunderx_ocx,
msix_ent[msix->entry]);
int lane;
unsigned long head = ring_pos(ocx->com_ring_head,
ARRAY_SIZE(ocx->com_err_ctx));
struct ocx_com_err_ctx *ctx = &ocx->com_err_ctx[head];
ctx->reg_com_int = readq(ocx->regs + OCX_COM_INT);
for (lane = 0; lane < OCX_RX_LANES; lane++) {
ctx->reg_lane_int[lane] =
readq(ocx->regs + OCX_LNE_INT(lane));
ctx->reg_lane_stat11[lane] =
readq(ocx->regs + OCX_LNE_STAT(lane, 11));
writeq(ctx->reg_lane_int[lane], ocx->regs + OCX_LNE_INT(lane));
}
writeq(ctx->reg_com_int, ocx->regs + OCX_COM_INT);
ocx->com_ring_head++;
return IRQ_WAKE_THREAD;
}
static irqreturn_t thunderx_ocx_com_threaded_isr(int irq, void *irq_id)
{
struct msix_entry *msix = irq_id;
struct thunderx_ocx *ocx = container_of(msix, struct thunderx_ocx,
msix_ent[msix->entry]);
irqreturn_t ret = IRQ_NONE;
unsigned long tail;
struct ocx_com_err_ctx *ctx;
int lane;
char *msg;
char *other;
msg = kmalloc(OCX_MESSAGE_SIZE, GFP_KERNEL);
other = kmalloc(OCX_OTHER_SIZE, GFP_KERNEL);
if (!msg || !other)
goto err_free;
while (CIRC_CNT(ocx->com_ring_head, ocx->com_ring_tail,
ARRAY_SIZE(ocx->com_err_ctx))) {
tail = ring_pos(ocx->com_ring_tail,
ARRAY_SIZE(ocx->com_err_ctx));
ctx = &ocx->com_err_ctx[tail];
snprintf(msg, OCX_MESSAGE_SIZE, "%s: OCX_COM_INT: %016llx",
ocx->edac_dev->ctl_name, ctx->reg_com_int);
decode_register(other, OCX_OTHER_SIZE,
ocx_com_errors, ctx->reg_com_int);
strncat(msg, other, OCX_MESSAGE_SIZE);
for (lane = 0; lane < OCX_RX_LANES; lane++)
if (ctx->reg_com_int & BIT(lane)) {
snprintf(other, OCX_OTHER_SIZE,
"\n\tOCX_LNE_INT[%02d]: %016llx OCX_LNE_STAT11[%02d]: %016llx",
lane, ctx->reg_lane_int[lane],
lane, ctx->reg_lane_stat11[lane]);
strncat(msg, other, OCX_MESSAGE_SIZE);
decode_register(other, OCX_OTHER_SIZE,
ocx_lane_errors,
ctx->reg_lane_int[lane]);
strncat(msg, other, OCX_MESSAGE_SIZE);
}
if (ctx->reg_com_int & OCX_COM_INT_CE)
edac_device_handle_ce(ocx->edac_dev, 0, 0, msg);
ocx->com_ring_tail++;
}
ret = IRQ_HANDLED;
err_free:
kfree(other);
kfree(msg);
return ret;
}
static irqreturn_t thunderx_ocx_lnk_isr(int irq, void *irq_id)
{
struct msix_entry *msix = irq_id;
struct thunderx_ocx *ocx = container_of(msix, struct thunderx_ocx,
msix_ent[msix->entry]);
unsigned long head = ring_pos(ocx->link_ring_head,
ARRAY_SIZE(ocx->link_err_ctx));
struct ocx_link_err_ctx *ctx = &ocx->link_err_ctx[head];
ctx->link = msix->entry;
ctx->reg_com_link_int = readq(ocx->regs + OCX_COM_LINKX_INT(ctx->link));
writeq(ctx->reg_com_link_int, ocx->regs + OCX_COM_LINKX_INT(ctx->link));
ocx->link_ring_head++;
return IRQ_WAKE_THREAD;
}
static irqreturn_t thunderx_ocx_lnk_threaded_isr(int irq, void *irq_id)
{
struct msix_entry *msix = irq_id;
struct thunderx_ocx *ocx = container_of(msix, struct thunderx_ocx,
msix_ent[msix->entry]);
irqreturn_t ret = IRQ_NONE;
unsigned long tail;
struct ocx_link_err_ctx *ctx;
char *msg;
char *other;
msg = kmalloc(OCX_MESSAGE_SIZE, GFP_KERNEL);
other = kmalloc(OCX_OTHER_SIZE, GFP_KERNEL);
if (!msg || !other)
goto err_free;
while (CIRC_CNT(ocx->link_ring_head, ocx->link_ring_tail,
ARRAY_SIZE(ocx->link_err_ctx))) {
tail = ring_pos(ocx->link_ring_head,
ARRAY_SIZE(ocx->link_err_ctx));
ctx = &ocx->link_err_ctx[tail];
snprintf(msg, OCX_MESSAGE_SIZE,
"%s: OCX_COM_LINK_INT[%d]: %016llx",
ocx->edac_dev->ctl_name,
ctx->link, ctx->reg_com_link_int);
decode_register(other, OCX_OTHER_SIZE,
ocx_com_link_errors, ctx->reg_com_link_int);
strncat(msg, other, OCX_MESSAGE_SIZE);
if (ctx->reg_com_link_int & OCX_COM_LINK_INT_UE)
edac_device_handle_ue(ocx->edac_dev, 0, 0, msg);
else if (ctx->reg_com_link_int & OCX_COM_LINK_INT_CE)
edac_device_handle_ce(ocx->edac_dev, 0, 0, msg);
ocx->link_ring_tail++;
}
ret = IRQ_HANDLED;
err_free:
kfree(other);
kfree(msg);
return ret;
}
#define OCX_DEBUGFS_ATTR(_name, _reg) DEBUGFS_REG_ATTR(ocx, _name, _reg)
OCX_DEBUGFS_ATTR(tlk0_ecc_ctl, OCX_TLKX_ECC_CTL(0));
OCX_DEBUGFS_ATTR(tlk1_ecc_ctl, OCX_TLKX_ECC_CTL(1));
OCX_DEBUGFS_ATTR(tlk2_ecc_ctl, OCX_TLKX_ECC_CTL(2));
OCX_DEBUGFS_ATTR(rlk0_ecc_ctl, OCX_RLKX_ECC_CTL(0));
OCX_DEBUGFS_ATTR(rlk1_ecc_ctl, OCX_RLKX_ECC_CTL(1));
OCX_DEBUGFS_ATTR(rlk2_ecc_ctl, OCX_RLKX_ECC_CTL(2));
OCX_DEBUGFS_ATTR(com_link0_int, OCX_COM_LINKX_INT_W1S(0));
OCX_DEBUGFS_ATTR(com_link1_int, OCX_COM_LINKX_INT_W1S(1));
OCX_DEBUGFS_ATTR(com_link2_int, OCX_COM_LINKX_INT_W1S(2));
OCX_DEBUGFS_ATTR(lne00_badcnt, OCX_LNE_BAD_CNT(0));
OCX_DEBUGFS_ATTR(lne01_badcnt, OCX_LNE_BAD_CNT(1));
OCX_DEBUGFS_ATTR(lne02_badcnt, OCX_LNE_BAD_CNT(2));
OCX_DEBUGFS_ATTR(lne03_badcnt, OCX_LNE_BAD_CNT(3));
OCX_DEBUGFS_ATTR(lne04_badcnt, OCX_LNE_BAD_CNT(4));
OCX_DEBUGFS_ATTR(lne05_badcnt, OCX_LNE_BAD_CNT(5));
OCX_DEBUGFS_ATTR(lne06_badcnt, OCX_LNE_BAD_CNT(6));
OCX_DEBUGFS_ATTR(lne07_badcnt, OCX_LNE_BAD_CNT(7));
OCX_DEBUGFS_ATTR(lne08_badcnt, OCX_LNE_BAD_CNT(8));
OCX_DEBUGFS_ATTR(lne09_badcnt, OCX_LNE_BAD_CNT(9));
OCX_DEBUGFS_ATTR(lne10_badcnt, OCX_LNE_BAD_CNT(10));
OCX_DEBUGFS_ATTR(lne11_badcnt, OCX_LNE_BAD_CNT(11));
OCX_DEBUGFS_ATTR(lne12_badcnt, OCX_LNE_BAD_CNT(12));
OCX_DEBUGFS_ATTR(lne13_badcnt, OCX_LNE_BAD_CNT(13));
OCX_DEBUGFS_ATTR(lne14_badcnt, OCX_LNE_BAD_CNT(14));
OCX_DEBUGFS_ATTR(lne15_badcnt, OCX_LNE_BAD_CNT(15));
OCX_DEBUGFS_ATTR(lne16_badcnt, OCX_LNE_BAD_CNT(16));
OCX_DEBUGFS_ATTR(lne17_badcnt, OCX_LNE_BAD_CNT(17));
OCX_DEBUGFS_ATTR(lne18_badcnt, OCX_LNE_BAD_CNT(18));
OCX_DEBUGFS_ATTR(lne19_badcnt, OCX_LNE_BAD_CNT(19));
OCX_DEBUGFS_ATTR(lne20_badcnt, OCX_LNE_BAD_CNT(20));
OCX_DEBUGFS_ATTR(lne21_badcnt, OCX_LNE_BAD_CNT(21));
OCX_DEBUGFS_ATTR(lne22_badcnt, OCX_LNE_BAD_CNT(22));
OCX_DEBUGFS_ATTR(lne23_badcnt, OCX_LNE_BAD_CNT(23));
OCX_DEBUGFS_ATTR(com_int, OCX_COM_INT_W1S);
struct debugfs_entry *ocx_dfs_ents[] = {
&debugfs_tlk0_ecc_ctl,
&debugfs_tlk1_ecc_ctl,
&debugfs_tlk2_ecc_ctl,
&debugfs_rlk0_ecc_ctl,
&debugfs_rlk1_ecc_ctl,
&debugfs_rlk2_ecc_ctl,
&debugfs_com_link0_int,
&debugfs_com_link1_int,
&debugfs_com_link2_int,
&debugfs_lne00_badcnt,
&debugfs_lne01_badcnt,
&debugfs_lne02_badcnt,
&debugfs_lne03_badcnt,
&debugfs_lne04_badcnt,
&debugfs_lne05_badcnt,
&debugfs_lne06_badcnt,
&debugfs_lne07_badcnt,
&debugfs_lne08_badcnt,
&debugfs_lne09_badcnt,
&debugfs_lne10_badcnt,
&debugfs_lne11_badcnt,
&debugfs_lne12_badcnt,
&debugfs_lne13_badcnt,
&debugfs_lne14_badcnt,
&debugfs_lne15_badcnt,
&debugfs_lne16_badcnt,
&debugfs_lne17_badcnt,
&debugfs_lne18_badcnt,
&debugfs_lne19_badcnt,
&debugfs_lne20_badcnt,
&debugfs_lne21_badcnt,
&debugfs_lne22_badcnt,
&debugfs_lne23_badcnt,
&debugfs_com_int,
};
static const struct pci_device_id thunderx_ocx_pci_tbl[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_THUNDER_OCX) },
{ 0, },
};
static void thunderx_ocx_clearstats(struct thunderx_ocx *ocx)
{
int lane, stat, cfg;
for (lane = 0; lane < OCX_RX_LANES; lane++) {
cfg = readq(ocx->regs + OCX_LNE_CFG(lane));
cfg |= OCX_LNE_CFG_RX_STAT_RDCLR;
cfg &= ~OCX_LNE_CFG_RX_STAT_ENA;
writeq(cfg, ocx->regs + OCX_LNE_CFG(lane));
for (stat = 0; stat < OCX_RX_LANE_STATS; stat++)
readq(ocx->regs + OCX_LNE_STAT(lane, stat));
}
}
static int thunderx_ocx_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct thunderx_ocx *ocx;
struct edac_device_ctl_info *edac_dev;
char name[32];
int idx;
int i;
int ret;
u64 reg;
ret = pcim_enable_device(pdev);
if (ret) {
dev_err(&pdev->dev, "Cannot enable PCI device: %d\n", ret);
return ret;
}
ret = pcim_iomap_regions(pdev, BIT(0), "thunderx_ocx");
if (ret) {
dev_err(&pdev->dev, "Cannot map PCI resources: %d\n", ret);
return ret;
}
idx = edac_device_alloc_index();
snprintf(name, sizeof(name), "OCX%d", idx);
edac_dev = edac_device_alloc_ctl_info(sizeof(struct thunderx_ocx),
name, 1, "CCPI", 1,
0, NULL, 0, idx);
if (!edac_dev) {
dev_err(&pdev->dev, "Cannot allocate EDAC device: %d\n", ret);
return -ENOMEM;
}
ocx = edac_dev->pvt_info;
ocx->edac_dev = edac_dev;
ocx->com_ring_head = 0;
ocx->com_ring_tail = 0;
ocx->link_ring_head = 0;
ocx->link_ring_tail = 0;
ocx->regs = pcim_iomap_table(pdev)[0];
if (!ocx->regs) {
dev_err(&pdev->dev, "Cannot map PCI resources: %d\n", ret);
ret = -ENODEV;
goto err_free;
}
ocx->pdev = pdev;
for (i = 0; i < OCX_INTS; i++) {
ocx->msix_ent[i].entry = i;
ocx->msix_ent[i].vector = 0;
}
ret = pci_enable_msix_exact(pdev, ocx->msix_ent, OCX_INTS);
if (ret) {
dev_err(&pdev->dev, "Cannot enable interrupt: %d\n", ret);
goto err_free;
}
for (i = 0; i < OCX_INTS; i++) {
ret = devm_request_threaded_irq(&pdev->dev,
ocx->msix_ent[i].vector,
(i == 3) ?
thunderx_ocx_com_isr :
thunderx_ocx_lnk_isr,
(i == 3) ?
thunderx_ocx_com_threaded_isr :
thunderx_ocx_lnk_threaded_isr,
0, "[EDAC] ThunderX OCX",
&ocx->msix_ent[i]);
if (ret)
goto err_free;
}
edac_dev->dev = &pdev->dev;
edac_dev->dev_name = dev_name(&pdev->dev);
edac_dev->mod_name = "thunderx-ocx";
edac_dev->ctl_name = "thunderx-ocx";
ret = edac_device_add_device(edac_dev);
if (ret) {
dev_err(&pdev->dev, "Cannot add EDAC device: %d\n", ret);
goto err_free;
}
if (IS_ENABLED(CONFIG_EDAC_DEBUG)) {
ocx->debugfs = edac_debugfs_create_dir(pdev->dev.kobj.name);
ret = thunderx_create_debugfs_nodes(ocx->debugfs,
ocx_dfs_ents,
ocx,
ARRAY_SIZE(ocx_dfs_ents));
if (ret != ARRAY_SIZE(ocx_dfs_ents)) {
dev_warn(&pdev->dev, "Error creating debugfs entries: %d%s\n",
ret, ret >= 0 ? " created" : "");
}
}
pci_set_drvdata(pdev, edac_dev);
thunderx_ocx_clearstats(ocx);
for (i = 0; i < OCX_RX_LANES; i++) {
writeq(OCX_LNE_INT_ENA_ALL,
ocx->regs + OCX_LNE_INT_EN(i));
reg = readq(ocx->regs + OCX_LNE_INT(i));
writeq(reg, ocx->regs + OCX_LNE_INT(i));
}
for (i = 0; i < OCX_LINK_INTS; i++) {
reg = readq(ocx->regs + OCX_COM_LINKX_INT(i));
writeq(reg, ocx->regs + OCX_COM_LINKX_INT(i));
writeq(OCX_COM_LINKX_INT_ENA_ALL,
ocx->regs + OCX_COM_LINKX_INT_ENA_W1S(i));
}
reg = readq(ocx->regs + OCX_COM_INT);
writeq(reg, ocx->regs + OCX_COM_INT);
writeq(OCX_COM_INT_ENA_ALL, ocx->regs + OCX_COM_INT_ENA_W1S);
return 0;
err_free:
edac_device_free_ctl_info(edac_dev);
return ret;
}
static void thunderx_ocx_remove(struct pci_dev *pdev)
{
struct edac_device_ctl_info *edac_dev = pci_get_drvdata(pdev);
struct thunderx_ocx *ocx = edac_dev->pvt_info;
int i;
writeq(OCX_COM_INT_ENA_ALL, ocx->regs + OCX_COM_INT_ENA_W1C);
for (i = 0; i < OCX_INTS; i++) {
writeq(OCX_COM_LINKX_INT_ENA_ALL,
ocx->regs + OCX_COM_LINKX_INT_ENA_W1C(i));
}
edac_debugfs_remove_recursive(ocx->debugfs);
edac_device_del_device(&pdev->dev);
edac_device_free_ctl_info(edac_dev);
}
MODULE_DEVICE_TABLE(pci, thunderx_ocx_pci_tbl);
static struct pci_driver thunderx_ocx_driver = {
.name = "thunderx_ocx_edac",
.probe = thunderx_ocx_probe,
.remove = thunderx_ocx_remove,
.id_table = thunderx_ocx_pci_tbl,
};
/*---------------------- L2C driver ---------------------------------*/
#define PCI_DEVICE_ID_THUNDER_L2C_TAD 0xa02e
#define PCI_DEVICE_ID_THUNDER_L2C_CBC 0xa02f
#define PCI_DEVICE_ID_THUNDER_L2C_MCI 0xa030
#define L2C_TAD_INT_W1C 0x40000
#define L2C_TAD_INT_W1S 0x40008
#define L2C_TAD_INT_ENA_W1C 0x40020
#define L2C_TAD_INT_ENA_W1S 0x40028
#define L2C_TAD_INT_L2DDBE BIT(1)
#define L2C_TAD_INT_SBFSBE BIT(2)
#define L2C_TAD_INT_SBFDBE BIT(3)
#define L2C_TAD_INT_FBFSBE BIT(4)
#define L2C_TAD_INT_FBFDBE BIT(5)
#define L2C_TAD_INT_TAGDBE BIT(9)
#define L2C_TAD_INT_RDDISLMC BIT(15)
#define L2C_TAD_INT_WRDISLMC BIT(16)
#define L2C_TAD_INT_LFBTO BIT(17)
#define L2C_TAD_INT_GSYNCTO BIT(18)
#define L2C_TAD_INT_RTGSBE BIT(32)
#define L2C_TAD_INT_RTGDBE BIT(33)
#define L2C_TAD_INT_RDDISOCI BIT(34)
#define L2C_TAD_INT_WRDISOCI BIT(35)
#define L2C_TAD_INT_ECC (L2C_TAD_INT_L2DDBE | \
L2C_TAD_INT_SBFSBE | L2C_TAD_INT_SBFDBE | \
L2C_TAD_INT_FBFSBE | L2C_TAD_INT_FBFDBE)
#define L2C_TAD_INT_CE (L2C_TAD_INT_SBFSBE | \
L2C_TAD_INT_FBFSBE)
#define L2C_TAD_INT_UE (L2C_TAD_INT_L2DDBE | \
L2C_TAD_INT_SBFDBE | \
L2C_TAD_INT_FBFDBE | \
L2C_TAD_INT_TAGDBE | \
L2C_TAD_INT_RTGDBE | \
L2C_TAD_INT_WRDISOCI | \
L2C_TAD_INT_RDDISOCI | \
L2C_TAD_INT_WRDISLMC | \
L2C_TAD_INT_RDDISLMC | \
L2C_TAD_INT_LFBTO | \
L2C_TAD_INT_GSYNCTO)
static const struct error_descr l2_tad_errors[] = {
{
.type = ERR_CORRECTED,
.mask = L2C_TAD_INT_SBFSBE,
.descr = "SBF single-bit error",
},
{
.type = ERR_CORRECTED,
.mask = L2C_TAD_INT_FBFSBE,
.descr = "FBF single-bit error",
},
{
.type = ERR_UNCORRECTED,
.mask = L2C_TAD_INT_L2DDBE,
.descr = "L2D double-bit error",
},
{
.type = ERR_UNCORRECTED,
.mask = L2C_TAD_INT_SBFDBE,
.descr = "SBF double-bit error",
},
{
.type = ERR_UNCORRECTED,
.mask = L2C_TAD_INT_FBFDBE,
.descr = "FBF double-bit error",
},
{
.type = ERR_UNCORRECTED,
.mask = L2C_TAD_INT_TAGDBE,
.descr = "TAG double-bit error",
},
{
.type = ERR_UNCORRECTED,
.mask = L2C_TAD_INT_RTGDBE,
.descr = "RTG double-bit error",
},
{
.type = ERR_UNCORRECTED,
.mask = L2C_TAD_INT_WRDISOCI,
.descr = "Write to a disabled CCPI",
},
{
.type = ERR_UNCORRECTED,
.mask = L2C_TAD_INT_RDDISOCI,
.descr = "Read from a disabled CCPI",
},
{
.type = ERR_UNCORRECTED,
.mask = L2C_TAD_INT_WRDISLMC,
.descr = "Write to a disabled LMC",
},
{
.type = ERR_UNCORRECTED,
.mask = L2C_TAD_INT_RDDISLMC,
.descr = "Read from a disabled LMC",
},
{
.type = ERR_UNCORRECTED,
.mask = L2C_TAD_INT_LFBTO,
.descr = "LFB entry timeout",
},
{
.type = ERR_UNCORRECTED,
.mask = L2C_TAD_INT_GSYNCTO,
.descr = "Global sync CCPI timeout",
},
{0, 0, NULL},
};
#define L2C_TAD_INT_TAG (L2C_TAD_INT_TAGDBE)
#define L2C_TAD_INT_RTG (L2C_TAD_INT_RTGDBE)
#define L2C_TAD_INT_DISLMC (L2C_TAD_INT_WRDISLMC | L2C_TAD_INT_RDDISLMC)
#define L2C_TAD_INT_DISOCI (L2C_TAD_INT_WRDISOCI | L2C_TAD_INT_RDDISOCI)
#define L2C_TAD_INT_ENA_ALL (L2C_TAD_INT_ECC | L2C_TAD_INT_TAG | \
L2C_TAD_INT_RTG | \
L2C_TAD_INT_DISLMC | L2C_TAD_INT_DISOCI | \
L2C_TAD_INT_LFBTO)
#define L2C_TAD_TIMETWO 0x50000
#define L2C_TAD_TIMEOUT 0x50100
#define L2C_TAD_ERR 0x60000
#define L2C_TAD_TQD_ERR 0x60100
#define L2C_TAD_TTG_ERR 0x60200
#define L2C_CBC_INT_W1C 0x60000
#define L2C_CBC_INT_RSDSBE BIT(0)
#define L2C_CBC_INT_RSDDBE BIT(1)
#define L2C_CBC_INT_RSD (L2C_CBC_INT_RSDSBE | L2C_CBC_INT_RSDDBE)
#define L2C_CBC_INT_MIBSBE BIT(4)
#define L2C_CBC_INT_MIBDBE BIT(5)
#define L2C_CBC_INT_MIB (L2C_CBC_INT_MIBSBE | L2C_CBC_INT_MIBDBE)
#define L2C_CBC_INT_IORDDISOCI BIT(6)
#define L2C_CBC_INT_IOWRDISOCI BIT(7)
#define L2C_CBC_INT_IODISOCI (L2C_CBC_INT_IORDDISOCI | \
L2C_CBC_INT_IOWRDISOCI)
#define L2C_CBC_INT_CE (L2C_CBC_INT_RSDSBE | L2C_CBC_INT_MIBSBE)
#define L2C_CBC_INT_UE (L2C_CBC_INT_RSDDBE | L2C_CBC_INT_MIBDBE)
static const struct error_descr l2_cbc_errors[] = {
{
.type = ERR_CORRECTED,
.mask = L2C_CBC_INT_RSDSBE,
.descr = "RSD single-bit error",
},
{
.type = ERR_CORRECTED,
.mask = L2C_CBC_INT_MIBSBE,
.descr = "MIB single-bit error",
},
{
.type = ERR_UNCORRECTED,
.mask = L2C_CBC_INT_RSDDBE,
.descr = "RSD double-bit error",
},
{
.type = ERR_UNCORRECTED,
.mask = L2C_CBC_INT_MIBDBE,
.descr = "MIB double-bit error",
},
{
.type = ERR_UNCORRECTED,
.mask = L2C_CBC_INT_IORDDISOCI,
.descr = "Read from a disabled CCPI",
},
{
.type = ERR_UNCORRECTED,
.mask = L2C_CBC_INT_IOWRDISOCI,
.descr = "Write to a disabled CCPI",
},
{0, 0, NULL},
};
#define L2C_CBC_INT_W1S 0x60008
#define L2C_CBC_INT_ENA_W1C 0x60020
#define L2C_CBC_INT_ENA_ALL (L2C_CBC_INT_RSD | L2C_CBC_INT_MIB | \
L2C_CBC_INT_IODISOCI)
#define L2C_CBC_INT_ENA_W1S 0x60028
#define L2C_CBC_IODISOCIERR 0x80008
#define L2C_CBC_IOCERR 0x80010
#define L2C_CBC_RSDERR 0x80018
#define L2C_CBC_MIBERR 0x80020
#define L2C_MCI_INT_W1C 0x0
#define L2C_MCI_INT_VBFSBE BIT(0)
#define L2C_MCI_INT_VBFDBE BIT(1)
static const struct error_descr l2_mci_errors[] = {
{
.type = ERR_CORRECTED,
.mask = L2C_MCI_INT_VBFSBE,
.descr = "VBF single-bit error",
},
{
.type = ERR_UNCORRECTED,
.mask = L2C_MCI_INT_VBFDBE,
.descr = "VBF double-bit error",
},
{0, 0, NULL},
};
#define L2C_MCI_INT_W1S 0x8
#define L2C_MCI_INT_ENA_W1C 0x20
#define L2C_MCI_INT_ENA_ALL (L2C_MCI_INT_VBFSBE | L2C_MCI_INT_VBFDBE)
#define L2C_MCI_INT_ENA_W1S 0x28
#define L2C_MCI_ERR 0x10000
#define L2C_MESSAGE_SIZE SZ_1K
#define L2C_OTHER_SIZE (50 * ARRAY_SIZE(l2_tad_errors))
struct l2c_err_ctx {
char *reg_ext_name;
u64 reg_int;
u64 reg_ext;
};
struct thunderx_l2c {
void __iomem *regs;
struct pci_dev *pdev;
struct edac_device_ctl_info *edac_dev;
struct dentry *debugfs;
int index;
struct msix_entry msix_ent;
struct l2c_err_ctx err_ctx[RING_ENTRIES];
unsigned long ring_head;
unsigned long ring_tail;
};
static irqreturn_t thunderx_l2c_tad_isr(int irq, void *irq_id)
{
struct msix_entry *msix = irq_id;
struct thunderx_l2c *tad = container_of(msix, struct thunderx_l2c,
msix_ent);
unsigned long head = ring_pos(tad->ring_head, ARRAY_SIZE(tad->err_ctx));
struct l2c_err_ctx *ctx = &tad->err_ctx[head];
ctx->reg_int = readq(tad->regs + L2C_TAD_INT_W1C);
if (ctx->reg_int & L2C_TAD_INT_ECC) {
ctx->reg_ext_name = "TQD_ERR";
ctx->reg_ext = readq(tad->regs + L2C_TAD_TQD_ERR);
} else if (ctx->reg_int & L2C_TAD_INT_TAG) {
ctx->reg_ext_name = "TTG_ERR";
ctx->reg_ext = readq(tad->regs + L2C_TAD_TTG_ERR);
} else if (ctx->reg_int & L2C_TAD_INT_LFBTO) {
ctx->reg_ext_name = "TIMEOUT";
ctx->reg_ext = readq(tad->regs + L2C_TAD_TIMEOUT);
} else if (ctx->reg_int & L2C_TAD_INT_DISOCI) {
ctx->reg_ext_name = "ERR";
ctx->reg_ext = readq(tad->regs + L2C_TAD_ERR);
}
writeq(ctx->reg_int, tad->regs + L2C_TAD_INT_W1C);
tad->ring_head++;
return IRQ_WAKE_THREAD;
}
static irqreturn_t thunderx_l2c_cbc_isr(int irq, void *irq_id)
{
struct msix_entry *msix = irq_id;
struct thunderx_l2c *cbc = container_of(msix, struct thunderx_l2c,
msix_ent);
unsigned long head = ring_pos(cbc->ring_head, ARRAY_SIZE(cbc->err_ctx));
struct l2c_err_ctx *ctx = &cbc->err_ctx[head];
ctx->reg_int = readq(cbc->regs + L2C_CBC_INT_W1C);
if (ctx->reg_int & L2C_CBC_INT_RSD) {
ctx->reg_ext_name = "RSDERR";
ctx->reg_ext = readq(cbc->regs + L2C_CBC_RSDERR);
} else if (ctx->reg_int & L2C_CBC_INT_MIB) {
ctx->reg_ext_name = "MIBERR";
ctx->reg_ext = readq(cbc->regs + L2C_CBC_MIBERR);
} else if (ctx->reg_int & L2C_CBC_INT_IODISOCI) {
ctx->reg_ext_name = "IODISOCIERR";
ctx->reg_ext = readq(cbc->regs + L2C_CBC_IODISOCIERR);
}
writeq(ctx->reg_int, cbc->regs + L2C_CBC_INT_W1C);
cbc->ring_head++;
return IRQ_WAKE_THREAD;
}
static irqreturn_t thunderx_l2c_mci_isr(int irq, void *irq_id)
{
struct msix_entry *msix = irq_id;
struct thunderx_l2c *mci = container_of(msix, struct thunderx_l2c,
msix_ent);
unsigned long head = ring_pos(mci->ring_head, ARRAY_SIZE(mci->err_ctx));
struct l2c_err_ctx *ctx = &mci->err_ctx[head];
ctx->reg_int = readq(mci->regs + L2C_MCI_INT_W1C);
ctx->reg_ext = readq(mci->regs + L2C_MCI_ERR);
writeq(ctx->reg_int, mci->regs + L2C_MCI_INT_W1C);
ctx->reg_ext_name = "ERR";
mci->ring_head++;
return IRQ_WAKE_THREAD;
}
static irqreturn_t thunderx_l2c_threaded_isr(int irq, void *irq_id)
{
struct msix_entry *msix = irq_id;
struct thunderx_l2c *l2c = container_of(msix, struct thunderx_l2c,
msix_ent);
unsigned long tail = ring_pos(l2c->ring_tail, ARRAY_SIZE(l2c->err_ctx));
struct l2c_err_ctx *ctx = &l2c->err_ctx[tail];
irqreturn_t ret = IRQ_NONE;
u64 mask_ue, mask_ce;
const struct error_descr *l2_errors;
char *reg_int_name;
char *msg;
char *other;
msg = kmalloc(OCX_MESSAGE_SIZE, GFP_KERNEL);
other = kmalloc(OCX_OTHER_SIZE, GFP_KERNEL);
if (!msg || !other)
goto err_free;
switch (l2c->pdev->device) {
case PCI_DEVICE_ID_THUNDER_L2C_TAD:
reg_int_name = "L2C_TAD_INT";
mask_ue = L2C_TAD_INT_UE;
mask_ce = L2C_TAD_INT_CE;
l2_errors = l2_tad_errors;
break;
case PCI_DEVICE_ID_THUNDER_L2C_CBC:
reg_int_name = "L2C_CBC_INT";
mask_ue = L2C_CBC_INT_UE;
mask_ce = L2C_CBC_INT_CE;
l2_errors = l2_cbc_errors;
break;
case PCI_DEVICE_ID_THUNDER_L2C_MCI:
reg_int_name = "L2C_MCI_INT";
mask_ue = L2C_MCI_INT_VBFDBE;
mask_ce = L2C_MCI_INT_VBFSBE;
l2_errors = l2_mci_errors;
break;
default:
dev_err(&l2c->pdev->dev, "Unsupported device: %04x\n",
l2c->pdev->device);
return IRQ_NONE;
}
while (CIRC_CNT(l2c->ring_head, l2c->ring_tail,
ARRAY_SIZE(l2c->err_ctx))) {
snprintf(msg, L2C_MESSAGE_SIZE,
"%s: %s: %016llx, %s: %016llx",
l2c->edac_dev->ctl_name, reg_int_name, ctx->reg_int,
ctx->reg_ext_name, ctx->reg_ext);
decode_register(other, L2C_OTHER_SIZE, l2_errors, ctx->reg_int);
strncat(msg, other, L2C_MESSAGE_SIZE);
if (ctx->reg_int & mask_ue)
edac_device_handle_ue(l2c->edac_dev, 0, 0, msg);
else if (ctx->reg_int & mask_ce)
edac_device_handle_ce(l2c->edac_dev, 0, 0, msg);
l2c->ring_tail++;
}
return IRQ_HANDLED;
err_free:
kfree(other);
kfree(msg);
return ret;
}
#define L2C_DEBUGFS_ATTR(_name, _reg) DEBUGFS_REG_ATTR(l2c, _name, _reg)
L2C_DEBUGFS_ATTR(tad_int, L2C_TAD_INT_W1S);
struct debugfs_entry *l2c_tad_dfs_ents[] = {
&debugfs_tad_int,
};
L2C_DEBUGFS_ATTR(cbc_int, L2C_CBC_INT_W1S);
struct debugfs_entry *l2c_cbc_dfs_ents[] = {
&debugfs_cbc_int,
};
L2C_DEBUGFS_ATTR(mci_int, L2C_MCI_INT_W1S);
struct debugfs_entry *l2c_mci_dfs_ents[] = {
&debugfs_mci_int,
};
static const struct pci_device_id thunderx_l2c_pci_tbl[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_THUNDER_L2C_TAD), },
{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_THUNDER_L2C_CBC), },
{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_THUNDER_L2C_MCI), },
{ 0, },
};
static int thunderx_l2c_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct thunderx_l2c *l2c;
struct edac_device_ctl_info *edac_dev;
struct debugfs_entry **l2c_devattr;
size_t dfs_entries;
irqreturn_t (*thunderx_l2c_isr)(int, void *) = NULL;
char name[32];
const char *fmt;
u64 reg_en_offs, reg_en_mask;
int idx;
int ret;
ret = pcim_enable_device(pdev);
if (ret) {
dev_err(&pdev->dev, "Cannot enable PCI device: %d\n", ret);
return ret;
}
ret = pcim_iomap_regions(pdev, BIT(0), "thunderx_l2c");
if (ret) {
dev_err(&pdev->dev, "Cannot map PCI resources: %d\n", ret);
return ret;
}
switch (pdev->device) {
case PCI_DEVICE_ID_THUNDER_L2C_TAD:
thunderx_l2c_isr = thunderx_l2c_tad_isr;
l2c_devattr = l2c_tad_dfs_ents;
dfs_entries = ARRAY_SIZE(l2c_tad_dfs_ents);
fmt = "L2C-TAD%d";
reg_en_offs = L2C_TAD_INT_ENA_W1S;
reg_en_mask = L2C_TAD_INT_ENA_ALL;
break;
case PCI_DEVICE_ID_THUNDER_L2C_CBC:
thunderx_l2c_isr = thunderx_l2c_cbc_isr;
l2c_devattr = l2c_cbc_dfs_ents;
dfs_entries = ARRAY_SIZE(l2c_cbc_dfs_ents);
fmt = "L2C-CBC%d";
reg_en_offs = L2C_CBC_INT_ENA_W1S;
reg_en_mask = L2C_CBC_INT_ENA_ALL;
break;
case PCI_DEVICE_ID_THUNDER_L2C_MCI:
thunderx_l2c_isr = thunderx_l2c_mci_isr;
l2c_devattr = l2c_mci_dfs_ents;
dfs_entries = ARRAY_SIZE(l2c_mci_dfs_ents);
fmt = "L2C-MCI%d";
reg_en_offs = L2C_MCI_INT_ENA_W1S;
reg_en_mask = L2C_MCI_INT_ENA_ALL;
break;
default:
//Should never ever get here
dev_err(&pdev->dev, "Unsupported PCI device: %04x\n",
pdev->device);
return -EINVAL;
}
idx = edac_device_alloc_index();
snprintf(name, sizeof(name), fmt, idx);
edac_dev = edac_device_alloc_ctl_info(sizeof(struct thunderx_l2c),
name, 1, "L2C", 1, 0,
NULL, 0, idx);
if (!edac_dev) {
dev_err(&pdev->dev, "Cannot allocate EDAC device\n");
return -ENOMEM;
}
l2c = edac_dev->pvt_info;
l2c->edac_dev = edac_dev;
l2c->regs = pcim_iomap_table(pdev)[0];
if (!l2c->regs) {
dev_err(&pdev->dev, "Cannot map PCI resources\n");
ret = -ENODEV;
goto err_free;
}
l2c->pdev = pdev;
l2c->ring_head = 0;
l2c->ring_tail = 0;
l2c->msix_ent.entry = 0;
l2c->msix_ent.vector = 0;
ret = pci_enable_msix_exact(pdev, &l2c->msix_ent, 1);
if (ret) {
dev_err(&pdev->dev, "Cannot enable interrupt: %d\n", ret);
goto err_free;
}
ret = devm_request_threaded_irq(&pdev->dev, l2c->msix_ent.vector,
thunderx_l2c_isr,
thunderx_l2c_threaded_isr,
0, "[EDAC] ThunderX L2C",
&l2c->msix_ent);
if (ret)
goto err_free;
edac_dev->dev = &pdev->dev;
edac_dev->dev_name = dev_name(&pdev->dev);
edac_dev->mod_name = "thunderx-l2c";
edac_dev->ctl_name = "thunderx-l2c";
ret = edac_device_add_device(edac_dev);
if (ret) {
dev_err(&pdev->dev, "Cannot add EDAC device: %d\n", ret);
goto err_free;
}
if (IS_ENABLED(CONFIG_EDAC_DEBUG)) {
l2c->debugfs = edac_debugfs_create_dir(pdev->dev.kobj.name);
ret = thunderx_create_debugfs_nodes(l2c->debugfs, l2c_devattr,
l2c, dfs_entries);
if (ret != dfs_entries) {
dev_warn(&pdev->dev, "Error creating debugfs entries: %d%s\n",
ret, ret >= 0 ? " created" : "");
}
}
pci_set_drvdata(pdev, edac_dev);
writeq(reg_en_mask, l2c->regs + reg_en_offs);
return 0;
err_free:
edac_device_free_ctl_info(edac_dev);
return ret;
}
static void thunderx_l2c_remove(struct pci_dev *pdev)
{
struct edac_device_ctl_info *edac_dev = pci_get_drvdata(pdev);
struct thunderx_l2c *l2c = edac_dev->pvt_info;
switch (pdev->device) {
case PCI_DEVICE_ID_THUNDER_L2C_TAD:
writeq(L2C_TAD_INT_ENA_ALL, l2c->regs + L2C_TAD_INT_ENA_W1C);
break;
case PCI_DEVICE_ID_THUNDER_L2C_CBC:
writeq(L2C_CBC_INT_ENA_ALL, l2c->regs + L2C_CBC_INT_ENA_W1C);
break;
case PCI_DEVICE_ID_THUNDER_L2C_MCI:
writeq(L2C_MCI_INT_ENA_ALL, l2c->regs + L2C_MCI_INT_ENA_W1C);
break;
}
edac_debugfs_remove_recursive(l2c->debugfs);
edac_device_del_device(&pdev->dev);
edac_device_free_ctl_info(edac_dev);
}
MODULE_DEVICE_TABLE(pci, thunderx_l2c_pci_tbl);
static struct pci_driver thunderx_l2c_driver = {
.name = "thunderx_l2c_edac",
.probe = thunderx_l2c_probe,
.remove = thunderx_l2c_remove,
.id_table = thunderx_l2c_pci_tbl,
};
static int __init thunderx_edac_init(void)
{
int rc = 0;
rc = pci_register_driver(&thunderx_lmc_driver);
if (rc)
return rc;
rc = pci_register_driver(&thunderx_ocx_driver);
if (rc)
goto err_lmc;
rc = pci_register_driver(&thunderx_l2c_driver);
if (rc)
goto err_ocx;
return rc;
err_ocx:
pci_unregister_driver(&thunderx_ocx_driver);
err_lmc:
pci_unregister_driver(&thunderx_lmc_driver);
return rc;
}
static void __exit thunderx_edac_exit(void)
{
pci_unregister_driver(&thunderx_l2c_driver);
pci_unregister_driver(&thunderx_ocx_driver);
pci_unregister_driver(&thunderx_lmc_driver);
}
module_init(thunderx_edac_init);
module_exit(thunderx_edac_exit);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Cavium, Inc.");
MODULE_DESCRIPTION("EDAC Driver for Cavium ThunderX");