2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-29 15:43:59 +08:00
linux-next/drivers/thunderbolt/usb4.c
Colin Ian King 4c767ce48c thunderbolt: Ensure left shift of 512 does not overflow a 32 bit int
The 32 bit int value 512 is being left shifted and then used in a context
that expects the expression to be a larger unsigned long. There may be
a potential integer overflow, so make 512 a UL before shift to avoid
any such issues.

Addresses-Coverity: ("Uninintentional integer overflow")
Fixes: 3b1d8d577c ("thunderbolt: Implement USB3 bandwidth negotiation routines")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
2020-07-01 13:46:47 +03:00

1590 lines
38 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* USB4 specific functionality
*
* Copyright (C) 2019, Intel Corporation
* Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
* Rajmohan Mani <rajmohan.mani@intel.com>
*/
#include <linux/delay.h>
#include <linux/ktime.h>
#include "sb_regs.h"
#include "tb.h"
#define USB4_DATA_DWORDS 16
#define USB4_DATA_RETRIES 3
enum usb4_switch_op {
USB4_SWITCH_OP_QUERY_DP_RESOURCE = 0x10,
USB4_SWITCH_OP_ALLOC_DP_RESOURCE = 0x11,
USB4_SWITCH_OP_DEALLOC_DP_RESOURCE = 0x12,
USB4_SWITCH_OP_NVM_WRITE = 0x20,
USB4_SWITCH_OP_NVM_AUTH = 0x21,
USB4_SWITCH_OP_NVM_READ = 0x22,
USB4_SWITCH_OP_NVM_SET_OFFSET = 0x23,
USB4_SWITCH_OP_DROM_READ = 0x24,
USB4_SWITCH_OP_NVM_SECTOR_SIZE = 0x25,
};
enum usb4_sb_target {
USB4_SB_TARGET_ROUTER,
USB4_SB_TARGET_PARTNER,
USB4_SB_TARGET_RETIMER,
};
#define USB4_NVM_READ_OFFSET_MASK GENMASK(23, 2)
#define USB4_NVM_READ_OFFSET_SHIFT 2
#define USB4_NVM_READ_LENGTH_MASK GENMASK(27, 24)
#define USB4_NVM_READ_LENGTH_SHIFT 24
#define USB4_NVM_SET_OFFSET_MASK USB4_NVM_READ_OFFSET_MASK
#define USB4_NVM_SET_OFFSET_SHIFT USB4_NVM_READ_OFFSET_SHIFT
#define USB4_DROM_ADDRESS_MASK GENMASK(14, 2)
#define USB4_DROM_ADDRESS_SHIFT 2
#define USB4_DROM_SIZE_MASK GENMASK(19, 15)
#define USB4_DROM_SIZE_SHIFT 15
#define USB4_NVM_SECTOR_SIZE_MASK GENMASK(23, 0)
typedef int (*read_block_fn)(void *, unsigned int, void *, size_t);
typedef int (*write_block_fn)(void *, const void *, size_t);
static int usb4_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
u32 value, int timeout_msec)
{
ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
do {
u32 val;
int ret;
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
if (ret)
return ret;
if ((val & bit) == value)
return 0;
usleep_range(50, 100);
} while (ktime_before(ktime_get(), timeout));
return -ETIMEDOUT;
}
static int usb4_switch_op_read_data(struct tb_switch *sw, void *data,
size_t dwords)
{
if (dwords > USB4_DATA_DWORDS)
return -EINVAL;
return tb_sw_read(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
}
static int usb4_switch_op_write_data(struct tb_switch *sw, const void *data,
size_t dwords)
{
if (dwords > USB4_DATA_DWORDS)
return -EINVAL;
return tb_sw_write(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
}
static int usb4_switch_op_read_metadata(struct tb_switch *sw, u32 *metadata)
{
return tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
}
static int usb4_switch_op_write_metadata(struct tb_switch *sw, u32 metadata)
{
return tb_sw_write(sw, &metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
}
static int usb4_do_read_data(u16 address, void *buf, size_t size,
read_block_fn read_block, void *read_block_data)
{
unsigned int retries = USB4_DATA_RETRIES;
unsigned int offset;
offset = address & 3;
address = address & ~3;
do {
size_t nbytes = min_t(size_t, size, USB4_DATA_DWORDS * 4);
unsigned int dwaddress, dwords;
u8 data[USB4_DATA_DWORDS * 4];
int ret;
dwaddress = address / 4;
dwords = ALIGN(nbytes, 4) / 4;
ret = read_block(read_block_data, dwaddress, data, dwords);
if (ret) {
if (ret != -ENODEV && retries--)
continue;
return ret;
}
memcpy(buf, data + offset, nbytes);
size -= nbytes;
address += nbytes;
buf += nbytes;
} while (size > 0);
return 0;
}
static int usb4_do_write_data(unsigned int address, const void *buf, size_t size,
write_block_fn write_next_block, void *write_block_data)
{
unsigned int retries = USB4_DATA_RETRIES;
unsigned int offset;
offset = address & 3;
address = address & ~3;
do {
u32 nbytes = min_t(u32, size, USB4_DATA_DWORDS * 4);
u8 data[USB4_DATA_DWORDS * 4];
int ret;
memcpy(data + offset, buf, nbytes);
ret = write_next_block(write_block_data, data, nbytes / 4);
if (ret) {
if (ret == -ETIMEDOUT) {
if (retries--)
continue;
ret = -EIO;
}
return ret;
}
size -= nbytes;
address += nbytes;
buf += nbytes;
} while (size > 0);
return 0;
}
static int usb4_switch_op(struct tb_switch *sw, u16 opcode, u8 *status)
{
u32 val;
int ret;
val = opcode | ROUTER_CS_26_OV;
ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
if (ret)
return ret;
ret = usb4_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
if (ret)
return ret;
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
if (ret)
return ret;
if (val & ROUTER_CS_26_ONS)
return -EOPNOTSUPP;
*status = (val & ROUTER_CS_26_STATUS_MASK) >> ROUTER_CS_26_STATUS_SHIFT;
return 0;
}
static bool link_is_usb4(struct tb_port *port)
{
u32 val;
if (!port->cap_usb4)
return false;
if (tb_port_read(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_18, 1))
return false;
return !(val & PORT_CS_18_TCM);
}
/**
* usb4_switch_setup() - Additional setup for USB4 device
* @sw: USB4 router to setup
*
* USB4 routers need additional settings in order to enable all the
* tunneling. This function enables USB and PCIe tunneling if it can be
* enabled (e.g the parent switch also supports them). If USB tunneling
* is not available for some reason (like that there is Thunderbolt 3
* switch upstream) then the internal xHCI controller is enabled
* instead.
*/
int usb4_switch_setup(struct tb_switch *sw)
{
struct tb_port *downstream_port;
struct tb_switch *parent;
bool tbt3, xhci;
u32 val = 0;
int ret;
if (!tb_route(sw))
return 0;
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
if (ret)
return ret;
parent = tb_switch_parent(sw);
downstream_port = tb_port_at(tb_route(sw), parent);
sw->link_usb4 = link_is_usb4(downstream_port);
tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT3");
xhci = val & ROUTER_CS_6_HCI;
tbt3 = !(val & ROUTER_CS_6_TNS);
tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
tbt3 ? "yes" : "no", xhci ? "yes" : "no");
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
if (ret)
return ret;
if (sw->link_usb4 && tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
val |= ROUTER_CS_5_UTO;
xhci = false;
}
/* Only enable PCIe tunneling if the parent router supports it */
if (tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
val |= ROUTER_CS_5_PTO;
/*
* xHCI can be enabled if PCIe tunneling is supported
* and the parent does not have any USB3 dowstream
* adapters (so we cannot do USB 3.x tunneling).
*/
if (xhci)
val |= ROUTER_CS_5_HCO;
}
/* TBT3 supported by the CM */
val |= ROUTER_CS_5_C3S;
/* Tunneling configuration is ready now */
val |= ROUTER_CS_5_CV;
ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
if (ret)
return ret;
return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
ROUTER_CS_6_CR, 50);
}
/**
* usb4_switch_read_uid() - Read UID from USB4 router
* @sw: USB4 router
* @uid: UID is stored here
*
* Reads 64-bit UID from USB4 router config space.
*/
int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
{
return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
}
static int usb4_switch_drom_read_block(void *data,
unsigned int dwaddress, void *buf,
size_t dwords)
{
struct tb_switch *sw = data;
u8 status = 0;
u32 metadata;
int ret;
metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
USB4_DROM_ADDRESS_MASK;
ret = usb4_switch_op_write_metadata(sw, metadata);
if (ret)
return ret;
ret = usb4_switch_op(sw, USB4_SWITCH_OP_DROM_READ, &status);
if (ret)
return ret;
if (status)
return -EIO;
return usb4_switch_op_read_data(sw, buf, dwords);
}
/**
* usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
* @sw: USB4 router
* @address: Byte address inside DROM to start reading
* @buf: Buffer where the DROM content is stored
* @size: Number of bytes to read from DROM
*
* Uses USB4 router operations to read router DROM. For devices this
* should always work but for hosts it may return %-EOPNOTSUPP in which
* case the host router does not have DROM.
*/
int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
size_t size)
{
return usb4_do_read_data(address, buf, size,
usb4_switch_drom_read_block, sw);
}
static int usb4_set_port_configured(struct tb_port *port, bool configured)
{
int ret;
u32 val;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_19, 1);
if (ret)
return ret;
if (configured)
val |= PORT_CS_19_PC;
else
val &= ~PORT_CS_19_PC;
return tb_port_write(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_19, 1);
}
/**
* usb4_switch_configure_link() - Set upstream USB4 link configured
* @sw: USB4 router
*
* Sets the upstream USB4 link to be configured for power management
* purposes.
*/
int usb4_switch_configure_link(struct tb_switch *sw)
{
struct tb_port *up;
if (!tb_route(sw))
return 0;
up = tb_upstream_port(sw);
return usb4_set_port_configured(up, true);
}
/**
* usb4_switch_unconfigure_link() - Un-set upstream USB4 link configuration
* @sw: USB4 router
*
* Reverse of usb4_switch_configure_link().
*/
void usb4_switch_unconfigure_link(struct tb_switch *sw)
{
struct tb_port *up;
if (sw->is_unplugged || !tb_route(sw))
return;
up = tb_upstream_port(sw);
usb4_set_port_configured(up, false);
}
/**
* usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
* @sw: USB4 router
*
* Checks whether conditions are met so that lane bonding can be
* established with the upstream router. Call only for device routers.
*/
bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
{
struct tb_port *up;
int ret;
u32 val;
up = tb_upstream_port(sw);
ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
if (ret)
return false;
return !!(val & PORT_CS_18_BE);
}
/**
* usb4_switch_set_sleep() - Prepare the router to enter sleep
* @sw: USB4 router
*
* Enables wakes and sets sleep bit for the router. Returns when the
* router sleep ready bit has been asserted.
*/
int usb4_switch_set_sleep(struct tb_switch *sw)
{
int ret;
u32 val;
/* Set sleep bit and wait for sleep ready to be asserted */
ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
if (ret)
return ret;
val |= ROUTER_CS_5_SLP;
ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
if (ret)
return ret;
return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
ROUTER_CS_6_SLPR, 500);
}
/**
* usb4_switch_nvm_sector_size() - Return router NVM sector size
* @sw: USB4 router
*
* If the router supports NVM operations this function returns the NVM
* sector size in bytes. If NVM operations are not supported returns
* %-EOPNOTSUPP.
*/
int usb4_switch_nvm_sector_size(struct tb_switch *sw)
{
u32 metadata;
u8 status;
int ret;
ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &status);
if (ret)
return ret;
if (status)
return status == 0x2 ? -EOPNOTSUPP : -EIO;
ret = usb4_switch_op_read_metadata(sw, &metadata);
if (ret)
return ret;
return metadata & USB4_NVM_SECTOR_SIZE_MASK;
}
static int usb4_switch_nvm_read_block(void *data,
unsigned int dwaddress, void *buf, size_t dwords)
{
struct tb_switch *sw = data;
u8 status = 0;
u32 metadata;
int ret;
metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
USB4_NVM_READ_LENGTH_MASK;
metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
USB4_NVM_READ_OFFSET_MASK;
ret = usb4_switch_op_write_metadata(sw, metadata);
if (ret)
return ret;
ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_READ, &status);
if (ret)
return ret;
if (status)
return -EIO;
return usb4_switch_op_read_data(sw, buf, dwords);
}
/**
* usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
* @sw: USB4 router
* @address: Starting address in bytes
* @buf: Read data is placed here
* @size: How many bytes to read
*
* Reads NVM contents of the router. If NVM is not supported returns
* %-EOPNOTSUPP.
*/
int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
size_t size)
{
return usb4_do_read_data(address, buf, size,
usb4_switch_nvm_read_block, sw);
}
static int usb4_switch_nvm_set_offset(struct tb_switch *sw,
unsigned int address)
{
u32 metadata, dwaddress;
u8 status = 0;
int ret;
dwaddress = address / 4;
metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
USB4_NVM_SET_OFFSET_MASK;
ret = usb4_switch_op_write_metadata(sw, metadata);
if (ret)
return ret;
ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &status);
if (ret)
return ret;
return status ? -EIO : 0;
}
static int usb4_switch_nvm_write_next_block(void *data, const void *buf,
size_t dwords)
{
struct tb_switch *sw = data;
u8 status;
int ret;
ret = usb4_switch_op_write_data(sw, buf, dwords);
if (ret)
return ret;
ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_WRITE, &status);
if (ret)
return ret;
return status ? -EIO : 0;
}
/**
* usb4_switch_nvm_write() - Write to the router NVM
* @sw: USB4 router
* @address: Start address where to write in bytes
* @buf: Pointer to the data to write
* @size: Size of @buf in bytes
*
* Writes @buf to the router NVM using USB4 router operations. If NVM
* write is not supported returns %-EOPNOTSUPP.
*/
int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
const void *buf, size_t size)
{
int ret;
ret = usb4_switch_nvm_set_offset(sw, address);
if (ret)
return ret;
return usb4_do_write_data(address, buf, size,
usb4_switch_nvm_write_next_block, sw);
}
/**
* usb4_switch_nvm_authenticate() - Authenticate new NVM
* @sw: USB4 router
*
* After the new NVM has been written via usb4_switch_nvm_write(), this
* function triggers NVM authentication process. If the authentication
* is successful the router is power cycled and the new NVM starts
* running. In case of failure returns negative errno.
*/
int usb4_switch_nvm_authenticate(struct tb_switch *sw)
{
u8 status = 0;
int ret;
ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, &status);
if (ret)
return ret;
switch (status) {
case 0x0:
tb_sw_dbg(sw, "NVM authentication successful\n");
return 0;
case 0x1:
return -EINVAL;
case 0x2:
return -EAGAIN;
case 0x3:
return -EOPNOTSUPP;
default:
return -EIO;
}
}
/**
* usb4_switch_query_dp_resource() - Query availability of DP IN resource
* @sw: USB4 router
* @in: DP IN adapter
*
* For DP tunneling this function can be used to query availability of
* DP IN resource. Returns true if the resource is available for DP
* tunneling, false otherwise.
*/
bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
{
u8 status;
int ret;
ret = usb4_switch_op_write_metadata(sw, in->port);
if (ret)
return false;
ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &status);
/*
* If DP resource allocation is not supported assume it is
* always available.
*/
if (ret == -EOPNOTSUPP)
return true;
else if (ret)
return false;
return !status;
}
/**
* usb4_switch_alloc_dp_resource() - Allocate DP IN resource
* @sw: USB4 router
* @in: DP IN adapter
*
* Allocates DP IN resource for DP tunneling using USB4 router
* operations. If the resource was allocated returns %0. Otherwise
* returns negative errno, in particular %-EBUSY if the resource is
* already allocated.
*/
int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
{
u8 status;
int ret;
ret = usb4_switch_op_write_metadata(sw, in->port);
if (ret)
return ret;
ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &status);
if (ret == -EOPNOTSUPP)
return 0;
else if (ret)
return ret;
return status ? -EBUSY : 0;
}
/**
* usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
* @sw: USB4 router
* @in: DP IN adapter
*
* Releases the previously allocated DP IN resource.
*/
int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
{
u8 status;
int ret;
ret = usb4_switch_op_write_metadata(sw, in->port);
if (ret)
return ret;
ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &status);
if (ret == -EOPNOTSUPP)
return 0;
else if (ret)
return ret;
return status ? -EIO : 0;
}
static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
{
struct tb_port *p;
int usb4_idx = 0;
/* Assume port is primary */
tb_switch_for_each_port(sw, p) {
if (!tb_port_is_null(p))
continue;
if (tb_is_upstream_port(p))
continue;
if (!p->link_nr) {
if (p == port)
break;
usb4_idx++;
}
}
return usb4_idx;
}
/**
* usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
* @sw: USB4 router
* @port: USB4 port
*
* USB4 routers have direct mapping between USB4 ports and PCIe
* downstream adapters where the PCIe topology is extended. This
* function returns the corresponding downstream PCIe adapter or %NULL
* if no such mapping was possible.
*/
struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
const struct tb_port *port)
{
int usb4_idx = usb4_port_idx(sw, port);
struct tb_port *p;
int pcie_idx = 0;
/* Find PCIe down port matching usb4_port */
tb_switch_for_each_port(sw, p) {
if (!tb_port_is_pcie_down(p))
continue;
if (pcie_idx == usb4_idx)
return p;
pcie_idx++;
}
return NULL;
}
/**
* usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
* @sw: USB4 router
* @port: USB4 port
*
* USB4 routers have direct mapping between USB4 ports and USB 3.x
* downstream adapters where the USB 3.x topology is extended. This
* function returns the corresponding downstream USB 3.x adapter or
* %NULL if no such mapping was possible.
*/
struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
const struct tb_port *port)
{
int usb4_idx = usb4_port_idx(sw, port);
struct tb_port *p;
int usb_idx = 0;
/* Find USB3 down port matching usb4_port */
tb_switch_for_each_port(sw, p) {
if (!tb_port_is_usb3_down(p))
continue;
if (usb_idx == usb4_idx)
return p;
usb_idx++;
}
return NULL;
}
/**
* usb4_port_unlock() - Unlock USB4 downstream port
* @port: USB4 port to unlock
*
* Unlocks USB4 downstream port so that the connection manager can
* access the router below this port.
*/
int usb4_port_unlock(struct tb_port *port)
{
int ret;
u32 val;
ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
if (ret)
return ret;
val &= ~ADP_CS_4_LCK;
return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
}
static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
u32 value, int timeout_msec)
{
ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
do {
u32 val;
int ret;
ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
if (ret)
return ret;
if ((val & bit) == value)
return 0;
usleep_range(50, 100);
} while (ktime_before(ktime_get(), timeout));
return -ETIMEDOUT;
}
static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
{
if (dwords > USB4_DATA_DWORDS)
return -EINVAL;
return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
dwords);
}
static int usb4_port_write_data(struct tb_port *port, const void *data,
size_t dwords)
{
if (dwords > USB4_DATA_DWORDS)
return -EINVAL;
return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
dwords);
}
static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
u8 index, u8 reg, void *buf, u8 size)
{
size_t dwords = DIV_ROUND_UP(size, 4);
int ret;
u32 val;
if (!port->cap_usb4)
return -EINVAL;
val = reg;
val |= size << PORT_CS_1_LENGTH_SHIFT;
val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
if (target == USB4_SB_TARGET_RETIMER)
val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
val |= PORT_CS_1_PND;
ret = tb_port_write(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_1, 1);
if (ret)
return ret;
ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
PORT_CS_1_PND, 0, 500);
if (ret)
return ret;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_1, 1);
if (ret)
return ret;
if (val & PORT_CS_1_NR)
return -ENODEV;
if (val & PORT_CS_1_RC)
return -EIO;
return buf ? usb4_port_read_data(port, buf, dwords) : 0;
}
static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
u8 index, u8 reg, const void *buf, u8 size)
{
size_t dwords = DIV_ROUND_UP(size, 4);
int ret;
u32 val;
if (!port->cap_usb4)
return -EINVAL;
if (buf) {
ret = usb4_port_write_data(port, buf, dwords);
if (ret)
return ret;
}
val = reg;
val |= size << PORT_CS_1_LENGTH_SHIFT;
val |= PORT_CS_1_WNR_WRITE;
val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
if (target == USB4_SB_TARGET_RETIMER)
val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
val |= PORT_CS_1_PND;
ret = tb_port_write(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_1, 1);
if (ret)
return ret;
ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
PORT_CS_1_PND, 0, 500);
if (ret)
return ret;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_usb4 + PORT_CS_1, 1);
if (ret)
return ret;
if (val & PORT_CS_1_NR)
return -ENODEV;
if (val & PORT_CS_1_RC)
return -EIO;
return 0;
}
static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
{
ktime_t timeout;
u32 val;
int ret;
val = opcode;
ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
sizeof(val));
if (ret)
return ret;
timeout = ktime_add_ms(ktime_get(), timeout_msec);
do {
/* Check results */
ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
&val, sizeof(val));
if (ret)
return ret;
switch (val) {
case 0:
return 0;
case USB4_SB_OPCODE_ERR:
return -EAGAIN;
case USB4_SB_OPCODE_ONS:
return -EOPNOTSUPP;
default:
if (val != opcode)
return -EIO;
break;
}
} while (ktime_before(ktime_get(), timeout));
return -ETIMEDOUT;
}
/**
* usb4_port_enumerate_retimers() - Send RT broadcast transaction
* @port: USB4 port
*
* This forces the USB4 port to send broadcast RT transaction which
* makes the retimers on the link to assign index to themselves. Returns
* %0 in case of success and negative errno if there was an error.
*/
int usb4_port_enumerate_retimers(struct tb_port *port)
{
u32 val;
val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
USB4_SB_OPCODE, &val, sizeof(val));
}
static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
enum usb4_sb_opcode opcode,
int timeout_msec)
{
return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
timeout_msec);
}
/**
* usb4_port_retimer_read() - Read from retimer sideband registers
* @port: USB4 port
* @index: Retimer index
* @reg: Sideband register to read
* @buf: Data from @reg is stored here
* @size: Number of bytes to read
*
* Function reads retimer sideband registers starting from @reg. The
* retimer is connected to @port at @index. Returns %0 in case of
* success, and read data is copied to @buf. If there is no retimer
* present at given @index returns %-ENODEV. In any other failure
* returns negative errno.
*/
int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
u8 size)
{
return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
size);
}
/**
* usb4_port_retimer_write() - Write to retimer sideband registers
* @port: USB4 port
* @index: Retimer index
* @reg: Sideband register to write
* @buf: Data that is written starting from @reg
* @size: Number of bytes to write
*
* Writes retimer sideband registers starting from @reg. The retimer is
* connected to @port at @index. Returns %0 in case of success. If there
* is no retimer present at given @index returns %-ENODEV. In any other
* failure returns negative errno.
*/
int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
const void *buf, u8 size)
{
return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
size);
}
/**
* usb4_port_retimer_is_last() - Is the retimer last on-board retimer
* @port: USB4 port
* @index: Retimer index
*
* If the retimer at @index is last one (connected directly to the
* Type-C port) this function returns %1. If it is not returns %0. If
* the retimer is not present returns %-ENODEV. Otherwise returns
* negative errno.
*/
int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
{
u32 metadata;
int ret;
ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
500);
if (ret)
return ret;
ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
sizeof(metadata));
return ret ? ret : metadata & 1;
}
/**
* usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
* @port: USB4 port
* @index: Retimer index
*
* Reads NVM sector size (in bytes) of a retimer at @index. This
* operation can be used to determine whether the retimer supports NVM
* upgrade for example. Returns sector size in bytes or negative errno
* in case of error. Specifically returns %-ENODEV if there is no
* retimer at @index.
*/
int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
{
u32 metadata;
int ret;
ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
500);
if (ret)
return ret;
ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
sizeof(metadata));
return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
}
static int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
unsigned int address)
{
u32 metadata, dwaddress;
int ret;
dwaddress = address / 4;
metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
USB4_NVM_SET_OFFSET_MASK;
ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
sizeof(metadata));
if (ret)
return ret;
return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
500);
}
struct retimer_info {
struct tb_port *port;
u8 index;
};
static int usb4_port_retimer_nvm_write_next_block(void *data, const void *buf,
size_t dwords)
{
const struct retimer_info *info = data;
struct tb_port *port = info->port;
u8 index = info->index;
int ret;
ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
buf, dwords * 4);
if (ret)
return ret;
return usb4_port_retimer_op(port, index,
USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
}
/**
* usb4_port_retimer_nvm_write() - Write to retimer NVM
* @port: USB4 port
* @index: Retimer index
* @address: Byte address where to start the write
* @buf: Data to write
* @size: Size in bytes how much to write
*
* Writes @size bytes from @buf to the retimer NVM. Used for NVM
* upgrade. Returns %0 if the data was written successfully and negative
* errno in case of failure. Specifically returns %-ENODEV if there is
* no retimer at @index.
*/
int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
const void *buf, size_t size)
{
struct retimer_info info = { .port = port, .index = index };
int ret;
ret = usb4_port_retimer_nvm_set_offset(port, index, address);
if (ret)
return ret;
return usb4_do_write_data(address, buf, size,
usb4_port_retimer_nvm_write_next_block, &info);
}
/**
* usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
* @port: USB4 port
* @index: Retimer index
*
* After the new NVM image has been written via usb4_port_retimer_nvm_write()
* this function can be used to trigger the NVM upgrade process. If
* successful the retimer restarts with the new NVM and may not have the
* index set so one needs to call usb4_port_enumerate_retimers() to
* force index to be assigned.
*/
int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
{
u32 val;
/*
* We need to use the raw operation here because once the
* authentication completes the retimer index is not set anymore
* so we do not get back the status now.
*/
val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
USB4_SB_OPCODE, &val, sizeof(val));
}
/**
* usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
* @port: USB4 port
* @index: Retimer index
* @status: Raw status code read from metadata
*
* This can be called after usb4_port_retimer_nvm_authenticate() and
* usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
*
* Returns %0 if the authentication status was successfully read. The
* completion metadata (the result) is then stored into @status. If
* reading the status fails, returns negative errno.
*/
int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
u32 *status)
{
u32 metadata, val;
int ret;
ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
sizeof(val));
if (ret)
return ret;
switch (val) {
case 0:
*status = 0;
return 0;
case USB4_SB_OPCODE_ERR:
ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
&metadata, sizeof(metadata));
if (ret)
return ret;
*status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
return 0;
case USB4_SB_OPCODE_ONS:
return -EOPNOTSUPP;
default:
return -EIO;
}
}
static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
void *buf, size_t dwords)
{
const struct retimer_info *info = data;
struct tb_port *port = info->port;
u8 index = info->index;
u32 metadata;
int ret;
metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
if (dwords < USB4_DATA_DWORDS)
metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
sizeof(metadata));
if (ret)
return ret;
ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
if (ret)
return ret;
return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
dwords * 4);
}
/**
* usb4_port_retimer_nvm_read() - Read contents of retimer NVM
* @port: USB4 port
* @index: Retimer index
* @address: NVM address (in bytes) to start reading
* @buf: Data read from NVM is stored here
* @size: Number of bytes to read
*
* Reads retimer NVM and copies the contents to @buf. Returns %0 if the
* read was successful and negative errno in case of failure.
* Specifically returns %-ENODEV if there is no retimer at @index.
*/
int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
unsigned int address, void *buf, size_t size)
{
struct retimer_info info = { .port = port, .index = index };
return usb4_do_read_data(address, buf, size,
usb4_port_retimer_nvm_read_block, &info);
}
/**
* usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
* @port: USB3 adapter port
*
* Return maximum supported link rate of a USB3 adapter in Mb/s.
* Negative errno in case of error.
*/
int usb4_usb3_port_max_link_rate(struct tb_port *port)
{
int ret, lr;
u32 val;
if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
return -EINVAL;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_4, 1);
if (ret)
return ret;
lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
return lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
}
/**
* usb4_usb3_port_actual_link_rate() - Established USB3 link rate
* @port: USB3 adapter port
*
* Return actual established link rate of a USB3 adapter in Mb/s. If the
* link is not up returns %0 and negative errno in case of failure.
*/
int usb4_usb3_port_actual_link_rate(struct tb_port *port)
{
int ret, lr;
u32 val;
if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
return -EINVAL;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_4, 1);
if (ret)
return ret;
if (!(val & ADP_USB3_CS_4_ULV))
return 0;
lr = val & ADP_USB3_CS_4_ALR_MASK;
return lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000;
}
static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
{
int ret;
u32 val;
if (!tb_port_is_usb3_down(port))
return -EINVAL;
if (tb_route(port->sw))
return -EINVAL;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_2, 1);
if (ret)
return ret;
if (request)
val |= ADP_USB3_CS_2_CMR;
else
val &= ~ADP_USB3_CS_2_CMR;
ret = tb_port_write(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_2, 1);
if (ret)
return ret;
/*
* We can use val here directly as the CMR bit is in the same place
* as HCA. Just mask out others.
*/
val &= ADP_USB3_CS_2_CMR;
return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
ADP_USB3_CS_1_HCA, val, 1500);
}
static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
{
return usb4_usb3_port_cm_request(port, true);
}
static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
{
return usb4_usb3_port_cm_request(port, false);
}
static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
{
unsigned long uframes;
uframes = bw * 512UL << scale;
return DIV_ROUND_CLOSEST(uframes * 8000, 1000 * 1000);
}
static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
{
unsigned long uframes;
/* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
uframes = ((unsigned long)mbps * 1000 * 1000) / 8000;
return DIV_ROUND_UP(uframes, 512UL << scale);
}
static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
int *upstream_bw,
int *downstream_bw)
{
u32 val, bw, scale;
int ret;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_2, 1);
if (ret)
return ret;
ret = tb_port_read(port, &scale, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_3, 1);
if (ret)
return ret;
scale &= ADP_USB3_CS_3_SCALE_MASK;
bw = val & ADP_USB3_CS_2_AUBW_MASK;
*upstream_bw = usb3_bw_to_mbps(bw, scale);
bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
*downstream_bw = usb3_bw_to_mbps(bw, scale);
return 0;
}
/**
* usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
* @port: USB3 adapter port
* @upstream_bw: Allocated upstream bandwidth is stored here
* @downstream_bw: Allocated downstream bandwidth is stored here
*
* Stores currently allocated USB3 bandwidth into @upstream_bw and
* @downstream_bw in Mb/s. Returns %0 in case of success and negative
* errno in failure.
*/
int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
int *downstream_bw)
{
int ret;
ret = usb4_usb3_port_set_cm_request(port);
if (ret)
return ret;
ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
downstream_bw);
usb4_usb3_port_clear_cm_request(port);
return ret;
}
static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
int *upstream_bw,
int *downstream_bw)
{
u32 val, bw, scale;
int ret;
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_1, 1);
if (ret)
return ret;
ret = tb_port_read(port, &scale, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_3, 1);
if (ret)
return ret;
scale &= ADP_USB3_CS_3_SCALE_MASK;
bw = val & ADP_USB3_CS_1_CUBW_MASK;
*upstream_bw = usb3_bw_to_mbps(bw, scale);
bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
*downstream_bw = usb3_bw_to_mbps(bw, scale);
return 0;
}
static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
int upstream_bw,
int downstream_bw)
{
u32 val, ubw, dbw, scale;
int ret;
/* Read the used scale, hardware default is 0 */
ret = tb_port_read(port, &scale, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_3, 1);
if (ret)
return ret;
scale &= ADP_USB3_CS_3_SCALE_MASK;
ubw = mbps_to_usb3_bw(upstream_bw, scale);
dbw = mbps_to_usb3_bw(downstream_bw, scale);
ret = tb_port_read(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_2, 1);
if (ret)
return ret;
val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
val |= ubw;
return tb_port_write(port, &val, TB_CFG_PORT,
port->cap_adap + ADP_USB3_CS_2, 1);
}
/**
* usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
* @port: USB3 adapter port
* @upstream_bw: New upstream bandwidth
* @downstream_bw: New downstream bandwidth
*
* This can be used to set how much bandwidth is allocated for the USB3
* tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
* new values programmed to the USB3 adapter allocation registers. If
* the values are lower than what is currently consumed the allocation
* is set to what is currently consumed instead (consumed bandwidth
* cannot be taken away by CM). The actual new values are returned in
* @upstream_bw and @downstream_bw.
*
* Returns %0 in case of success and negative errno if there was a
* failure.
*/
int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
int *downstream_bw)
{
int ret, consumed_up, consumed_down, allocate_up, allocate_down;
ret = usb4_usb3_port_set_cm_request(port);
if (ret)
return ret;
ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
&consumed_down);
if (ret)
goto err_request;
/* Don't allow it go lower than what is consumed */
allocate_up = max(*upstream_bw, consumed_up);
allocate_down = max(*downstream_bw, consumed_down);
ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
allocate_down);
if (ret)
goto err_request;
*upstream_bw = allocate_up;
*downstream_bw = allocate_down;
err_request:
usb4_usb3_port_clear_cm_request(port);
return ret;
}
/**
* usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
* @port: USB3 adapter port
* @upstream_bw: New allocated upstream bandwidth
* @downstream_bw: New allocated downstream bandwidth
*
* Releases USB3 allocated bandwidth down to what is actually consumed.
* The new bandwidth is returned in @upstream_bw and @downstream_bw.
*
* Returns 0% in success and negative errno in case of failure.
*/
int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
int *downstream_bw)
{
int ret, consumed_up, consumed_down;
ret = usb4_usb3_port_set_cm_request(port);
if (ret)
return ret;
ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
&consumed_down);
if (ret)
goto err_request;
/*
* Always keep 1000 Mb/s to make sure xHCI has at least some
* bandwidth available for isochronous traffic.
*/
if (consumed_up < 1000)
consumed_up = 1000;
if (consumed_down < 1000)
consumed_down = 1000;
ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
consumed_down);
if (ret)
goto err_request;
*upstream_bw = consumed_up;
*downstream_bw = consumed_down;
err_request:
usb4_usb3_port_clear_cm_request(port);
return ret;
}