2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-25 13:43:55 +08:00
linux-next/drivers/media/common/tuners/xc4000.c
Devin Heitmueller 02dec50982 [media] xc4000: remove XREG_BUSY code only supported in xc5000
The xc4000 driver is based on the original xc5000 driver, and while the
xc5000 supports the XREG_BUSY register, the xc4000 does not.  So remove the
code in question.

Signed-off-by: Devin Heitmueller <dheitmueller@kernellabs.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2011-07-27 17:52:29 -03:00

1335 lines
34 KiB
C

/*
* Driver for Xceive XC4000 "QAM/8VSB single chip tuner"
*
* Copyright (c) 2007 Xceive Corporation
* Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
* Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com>
* Copyright (c) 2009 Davide Ferri <d.ferri@zero11.it>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/videodev2.h>
#include <linux/delay.h>
#include <linux/dvb/frontend.h>
#include <linux/i2c.h>
#include <asm/unaligned.h>
#include "dvb_frontend.h"
#include "xc4000.h"
#include "tuner-i2c.h"
#include "tuner-xc2028-types.h"
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
static int no_poweroff;
module_param(no_poweroff, int, 0644);
MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n"
"\t\t1 keep device energized and with tuner ready all the times.\n"
"\t\tFaster, but consumes more power and keeps the device hotter");
static DEFINE_MUTEX(xc4000_list_mutex);
static LIST_HEAD(hybrid_tuner_instance_list);
#define dprintk(level, fmt, arg...) if (debug >= level) \
printk(KERN_INFO "%s: " fmt, "xc4000", ## arg)
#define XC4000_DEFAULT_FIRMWARE "xc4000-01.fw"
#define XC4000_DEFAULT_FIRMWARE_SIZE 8434
/* struct for storing firmware table */
struct firmware_description {
unsigned int type;
v4l2_std_id id;
__u16 int_freq;
unsigned char *ptr;
unsigned int size;
};
struct firmware_properties {
unsigned int type;
v4l2_std_id id;
v4l2_std_id std_req;
__u16 int_freq;
unsigned int scode_table;
int scode_nr;
};
struct xc4000_priv {
struct tuner_i2c_props i2c_props;
struct list_head hybrid_tuner_instance_list;
struct firmware_description *firm;
int firm_size;
__u16 firm_version;
u32 if_khz;
u32 freq_hz;
u32 bandwidth;
u8 video_standard;
u8 rf_mode;
};
/* Misc Defines */
#define MAX_TV_STANDARD 23
#define XC_MAX_I2C_WRITE_LENGTH 64
/* Signal Types */
#define XC_RF_MODE_AIR 0
#define XC_RF_MODE_CABLE 1
/* Result codes */
#define XC_RESULT_SUCCESS 0
#define XC_RESULT_RESET_FAILURE 1
#define XC_RESULT_I2C_WRITE_FAILURE 2
#define XC_RESULT_I2C_READ_FAILURE 3
#define XC_RESULT_OUT_OF_RANGE 5
/* Product id */
#define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000
#define XC_PRODUCT_ID_FW_LOADED 0x0FA0 /* WAS: 0x1388*/
/* Registers */
#define XREG_INIT 0x00
#define XREG_VIDEO_MODE 0x01
#define XREG_AUDIO_MODE 0x02
#define XREG_RF_FREQ 0x03
#define XREG_D_CODE 0x04
#define XREG_IF_OUT 0x05 /* ?? */
#define XREG_SEEK_MODE 0x07 /* WAS: 0x06 */
#define XREG_POWER_DOWN 0x08 /* WAS: 0x0A Obsolete */
#define XREG_SIGNALSOURCE 0x0A /* WAS: 0x0D 0=Air, 1=Cable */
//#define XREG_SMOOTHEDCVBS 0x0E
//#define XREG_XTALFREQ 0x0F
//#define XREG_FINERFREQ 0x10
//#define XREG_DDIMODE 0x11
#define XREG_ADC_ENV 0x00
#define XREG_QUALITY 0x01
#define XREG_FRAME_LINES 0x02
#define XREG_HSYNC_FREQ 0x03
#define XREG_LOCK 0x04
#define XREG_FREQ_ERROR 0x05
#define XREG_SNR 0x06
#define XREG_VERSION 0x07
#define XREG_PRODUCT_ID 0x08
//#define XREG_BUILD 0x0D
/*
Basic firmware description. This will remain with
the driver for documentation purposes.
This represents an I2C firmware file encoded as a
string of unsigned char. Format is as follows:
char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB
char[1 ]=len0_LSB -> length of first write transaction
char[2 ]=data0 -> first byte to be sent
char[3 ]=data1
char[4 ]=data2
char[ ]=...
char[M ]=dataN -> last byte to be sent
char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB
char[M+2]=len1_LSB -> length of second write transaction
char[M+3]=data0
char[M+4]=data1
...
etc.
The [len] value should be interpreted as follows:
len= len_MSB _ len_LSB
len=1111_1111_1111_1111 : End of I2C_SEQUENCE
len=0000_0000_0000_0000 : Reset command: Do hardware reset
len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767)
len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms
For the RESET and WAIT commands, the two following bytes will contain
immediately the length of the following transaction.
*/
struct XC_TV_STANDARD {
char *Name;
u16 AudioMode;
u16 VideoMode;
};
/* Tuner standards */
#define MN_NTSC_PAL_BTSC 0
#define MN_NTSC_PAL_A2 1
#define MN_NTSC_PAL_EIAJ 2
#define MN_NTSC_PAL_Mono 3
#define BG_PAL_A2 4
#define BG_PAL_NICAM 5
#define BG_PAL_MONO 6
#define I_PAL_NICAM 7
#define I_PAL_NICAM_MONO 8
#define DK_PAL_A2 9
#define DK_PAL_NICAM 10
#define DK_PAL_MONO 11
#define DK_SECAM_A2DK1 12
#define DK_SECAM_A2LDK3 13
#define DK_SECAM_A2MONO 14
#define L_SECAM_NICAM 15
#define LC_SECAM_NICAM 16
#define FM_Radio_INPUT2 21
#define FM_Radio_INPUT1 22
/* WAS :
static struct XC_TV_STANDARD XC4000_Standard[MAX_TV_STANDARD] = {
{"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
{"M/N-NTSC/PAL-A2", 0x0600, 0x8020},
{"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
{"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
{"B/G-PAL-A2", 0x0A00, 0x8049},
{"B/G-PAL-NICAM", 0x0C04, 0x8049},
{"B/G-PAL-MONO", 0x0878, 0x8059},
{"I-PAL-NICAM", 0x1080, 0x8009},
{"I-PAL-NICAM-MONO", 0x0E78, 0x8009},
{"D/K-PAL-A2", 0x1600, 0x8009},
{"D/K-PAL-NICAM", 0x0E80, 0x8009},
{"D/K-PAL-MONO", 0x1478, 0x8009},
{"D/K-SECAM-A2 DK1", 0x1200, 0x8009},
{"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009},
{"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
{"L-SECAM-NICAM", 0x8E82, 0x0009},
{"L'-SECAM-NICAM", 0x8E82, 0x4009},
{"DTV6", 0x00C0, 0x8002},
{"DTV8", 0x00C0, 0x800B},
{"DTV7/8", 0x00C0, 0x801B},
{"DTV7", 0x00C0, 0x8007},
{"FM Radio-INPUT2", 0x9802, 0x9002},
{"FM Radio-INPUT1", 0x0208, 0x9002}
};*/
static struct XC_TV_STANDARD XC4000_Standard[MAX_TV_STANDARD] = {
{"M/N-NTSC/PAL-BTSC", 0x0000, 0x8020},
{"M/N-NTSC/PAL-A2", 0x0000, 0x8020},
{"M/N-NTSC/PAL-EIAJ", 0x0040, 0x8020},
{"M/N-NTSC/PAL-Mono", 0x0078, 0x8020},
{"B/G-PAL-A2", 0x0000, 0x8059},
{"B/G-PAL-NICAM", 0x0004, 0x8059},
{"B/G-PAL-MONO", 0x0078, 0x8059},
{"I-PAL-NICAM", 0x0080, 0x8049},
{"I-PAL-NICAM-MONO", 0x0078, 0x8049},
{"D/K-PAL-A2", 0x0000, 0x8049},
{"D/K-PAL-NICAM", 0x0080, 0x8049},
{"D/K-PAL-MONO", 0x0078, 0x8049},
{"D/K-SECAM-A2 DK1", 0x0000, 0x8049},
{"D/K-SECAM-A2 L/DK3", 0x0000, 0x8049},
{"D/K-SECAM-A2 MONO", 0x0078, 0x8049},
{"L-SECAM-NICAM", 0x8080, 0x0009},
{"L'-SECAM-NICAM", 0x8080, 0x4009},
{"DTV6", 0x00C0, 0x8002},
{"DTV8", 0x00C0, 0x800B},
{"DTV7/8", 0x00C0, 0x801B},
{"DTV7", 0x00C0, 0x8007},
{"FM Radio-INPUT2", 0x0008, 0x9800},
{"FM Radio-INPUT1", 0x0008, 0x9000}
};
static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe);
static int xc4000_is_firmware_loaded(struct dvb_frontend *fe);
static int xc4000_readreg(struct xc4000_priv *priv, u16 reg, u16 *val);
static int xc4000_TunerReset(struct dvb_frontend *fe);
static int xc_send_i2c_data(struct xc4000_priv *priv, u8 *buf, int len)
{
struct i2c_msg msg = { .addr = priv->i2c_props.addr,
.flags = 0, .buf = buf, .len = len };
if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
printk(KERN_ERR "xc4000: I2C write failed (len=%i)\n", len);
return XC_RESULT_I2C_WRITE_FAILURE;
}
return XC_RESULT_SUCCESS;
}
/* This routine is never used because the only time we read data from the
i2c bus is when we read registers, and we want that to be an atomic i2c
transaction in case we are on a multi-master bus */
static int xc_read_i2c_data(struct xc4000_priv *priv, u8 *buf, int len)
{
struct i2c_msg msg = { .addr = priv->i2c_props.addr,
.flags = I2C_M_RD, .buf = buf, .len = len };
if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
printk(KERN_ERR "xc4000 I2C read failed (len=%i)\n", len);
return -EREMOTEIO;
}
return 0;
}
static void xc_wait(int wait_ms)
{
msleep(wait_ms);
}
static int xc4000_TunerReset(struct dvb_frontend *fe)
{
struct xc4000_priv *priv = fe->tuner_priv;
int ret;
dprintk(1, "%s()\n", __func__);
if (fe->callback) {
ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
fe->dvb->priv :
priv->i2c_props.adap->algo_data,
DVB_FRONTEND_COMPONENT_TUNER,
XC4000_TUNER_RESET, 0);
if (ret) {
printk(KERN_ERR "xc4000: reset failed\n");
return XC_RESULT_RESET_FAILURE;
}
} else {
printk(KERN_ERR "xc4000: no tuner reset callback function, fatal\n");
return XC_RESULT_RESET_FAILURE;
}
return XC_RESULT_SUCCESS;
}
static int xc_write_reg(struct xc4000_priv *priv, u16 regAddr, u16 i2cData)
{
u8 buf[4];
int result;
buf[0] = (regAddr >> 8) & 0xFF;
buf[1] = regAddr & 0xFF;
buf[2] = (i2cData >> 8) & 0xFF;
buf[3] = i2cData & 0xFF;
result = xc_send_i2c_data(priv, buf, 4);
return result;
}
static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
{
struct xc4000_priv *priv = fe->tuner_priv;
int i, nbytes_to_send, result;
unsigned int len, pos, index;
u8 buf[XC_MAX_I2C_WRITE_LENGTH];
index = 0;
while ((i2c_sequence[index] != 0xFF) ||
(i2c_sequence[index + 1] != 0xFF)) {
len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
if (len == 0x0000) {
/* RESET command */
result = xc4000_TunerReset(fe);
index += 2;
if (result != XC_RESULT_SUCCESS)
return result;
} else if (len & 0x8000) {
/* WAIT command */
xc_wait(len & 0x7FFF);
index += 2;
} else {
/* Send i2c data whilst ensuring individual transactions
* do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
*/
index += 2;
buf[0] = i2c_sequence[index];
buf[1] = i2c_sequence[index + 1];
pos = 2;
while (pos < len) {
if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
nbytes_to_send =
XC_MAX_I2C_WRITE_LENGTH;
else
nbytes_to_send = (len - pos + 2);
for (i = 2; i < nbytes_to_send; i++) {
buf[i] = i2c_sequence[index + pos +
i - 2];
}
result = xc_send_i2c_data(priv, buf,
nbytes_to_send);
if (result != XC_RESULT_SUCCESS)
return result;
pos += nbytes_to_send - 2;
}
index += len;
}
}
return XC_RESULT_SUCCESS;
}
static int xc_initialize(struct xc4000_priv *priv)
{
dprintk(1, "%s()\n", __func__);
return xc_write_reg(priv, XREG_INIT, 0);
}
static int xc_SetTVStandard(struct xc4000_priv *priv,
u16 VideoMode, u16 AudioMode)
{
int ret;
dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
dprintk(1, "%s() Standard = %s\n",
__func__,
XC4000_Standard[priv->video_standard].Name);
ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
if (ret == XC_RESULT_SUCCESS)
ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);
return ret;
}
static int xc_SetSignalSource(struct xc4000_priv *priv, u16 rf_mode)
{
dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
rf_mode = XC_RF_MODE_CABLE;
printk(KERN_ERR
"%s(), Invalid mode, defaulting to CABLE",
__func__);
}
return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
}
static const struct dvb_tuner_ops xc4000_tuner_ops;
static int xc_set_RF_frequency(struct xc4000_priv *priv, u32 freq_hz)
{
u16 freq_code;
dprintk(1, "%s(%u)\n", __func__, freq_hz);
if ((freq_hz > xc4000_tuner_ops.info.frequency_max) ||
(freq_hz < xc4000_tuner_ops.info.frequency_min))
return XC_RESULT_OUT_OF_RANGE;
freq_code = (u16)(freq_hz / 15625);
/* WAS: Starting in firmware version 1.1.44, Xceive recommends using the
FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
only be used for fast scanning for channel lock) */
return xc_write_reg(priv, XREG_RF_FREQ, freq_code); /* WAS: XREG_FINERFREQ */
}
static int xc_set_IF_frequency(struct xc4000_priv *priv, u32 freq_khz)
{
u32 freq_code = (freq_khz * 1024)/1000;
dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
__func__, freq_khz, freq_code);
return xc_write_reg(priv, XREG_IF_OUT, freq_code);
}
static int xc_get_ADC_Envelope(struct xc4000_priv *priv, u16 *adc_envelope)
{
return xc4000_readreg(priv, XREG_ADC_ENV, adc_envelope);
}
static int xc_get_frequency_error(struct xc4000_priv *priv, u32 *freq_error_hz)
{
int result;
u16 regData;
u32 tmp;
result = xc4000_readreg(priv, XREG_FREQ_ERROR, &regData);
if (result != XC_RESULT_SUCCESS)
return result;
tmp = (u32)regData;
(*freq_error_hz) = (tmp * 15625) / 1000;
return result;
}
static int xc_get_lock_status(struct xc4000_priv *priv, u16 *lock_status)
{
return xc4000_readreg(priv, XREG_LOCK, lock_status);
}
static int xc_get_version(struct xc4000_priv *priv,
u8 *hw_majorversion, u8 *hw_minorversion,
u8 *fw_majorversion, u8 *fw_minorversion)
{
u16 data;
int result;
result = xc4000_readreg(priv, XREG_VERSION, &data);
if (result != XC_RESULT_SUCCESS)
return result;
(*hw_majorversion) = (data >> 12) & 0x0F;
(*hw_minorversion) = (data >> 8) & 0x0F;
(*fw_majorversion) = (data >> 4) & 0x0F;
(*fw_minorversion) = data & 0x0F;
return 0;
}
/* WAS THERE
static int xc_get_buildversion(struct xc4000_priv *priv, u16 *buildrev)
{
return xc4000_readreg(priv, XREG_BUILD, buildrev);
}*/
static int xc_get_hsync_freq(struct xc4000_priv *priv, u32 *hsync_freq_hz)
{
u16 regData;
int result;
result = xc4000_readreg(priv, XREG_HSYNC_FREQ, &regData);
if (result != XC_RESULT_SUCCESS)
return result;
(*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
return result;
}
static int xc_get_frame_lines(struct xc4000_priv *priv, u16 *frame_lines)
{
return xc4000_readreg(priv, XREG_FRAME_LINES, frame_lines);
}
static int xc_get_quality(struct xc4000_priv *priv, u16 *quality)
{
return xc4000_readreg(priv, XREG_QUALITY, quality);
}
static u16 WaitForLock(struct xc4000_priv *priv)
{
u16 lockState = 0;
int watchDogCount = 40;
while ((lockState == 0) && (watchDogCount > 0)) {
xc_get_lock_status(priv, &lockState);
if (lockState != 1) {
xc_wait(5);
watchDogCount--;
}
}
return lockState;
}
#define XC_TUNE_ANALOG 0
#define XC_TUNE_DIGITAL 1
static int xc_tune_channel(struct xc4000_priv *priv, u32 freq_hz, int mode)
{
int found = 0;
dprintk(1, "%s(%u)\n", __func__, freq_hz);
if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
return 0;
if (mode == XC_TUNE_ANALOG) {
if (WaitForLock(priv) == 1)
found = 1;
}
return found;
}
static int xc4000_readreg(struct xc4000_priv *priv, u16 reg, u16 *val)
{
u8 buf[2] = { reg >> 8, reg & 0xff };
u8 bval[2] = { 0, 0 };
struct i2c_msg msg[2] = {
{ .addr = priv->i2c_props.addr,
.flags = 0, .buf = &buf[0], .len = 2 },
{ .addr = priv->i2c_props.addr,
.flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
};
if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
printk(KERN_WARNING "xc4000: I2C read failed\n");
return -EREMOTEIO;
}
*val = (bval[0] << 8) | bval[1];
return XC_RESULT_SUCCESS;
}
static int seek_firmware(struct dvb_frontend *fe, unsigned int type,
v4l2_std_id *id)
{
struct xc4000_priv *priv = fe->tuner_priv;
int i, best_i = -1, best_nr_matches = 0;
unsigned int type_mask = 0;
printk("%s called, want type=", __func__);
if (debug) {
// dump_firm_type(type);
printk("(%x), id %016llx.\n", type, (unsigned long long)*id);
}
if (!priv->firm) {
printk("Error! firmware not loaded\n");
return -EINVAL;
}
if (((type & ~SCODE) == 0) && (*id == 0))
*id = V4L2_STD_PAL;
if (type & BASE)
type_mask = BASE_TYPES;
else if (type & SCODE) {
type &= SCODE_TYPES;
type_mask = SCODE_TYPES & ~HAS_IF;
} else if (type & DTV_TYPES)
type_mask = DTV_TYPES;
else if (type & STD_SPECIFIC_TYPES)
type_mask = STD_SPECIFIC_TYPES;
type &= type_mask;
if (!(type & SCODE))
type_mask = ~0;
/* Seek for exact match */
for (i = 0; i < priv->firm_size; i++) {
if ((type == (priv->firm[i].type & type_mask)) &&
(*id == priv->firm[i].id))
goto found;
}
/* Seek for generic video standard match */
for (i = 0; i < priv->firm_size; i++) {
v4l2_std_id match_mask;
int nr_matches;
if (type != (priv->firm[i].type & type_mask))
continue;
match_mask = *id & priv->firm[i].id;
if (!match_mask)
continue;
if ((*id & match_mask) == *id)
goto found; /* Supports all the requested standards */
nr_matches = hweight64(match_mask);
if (nr_matches > best_nr_matches) {
best_nr_matches = nr_matches;
best_i = i;
}
}
if (best_nr_matches > 0) {
printk("Selecting best matching firmware (%d bits) for "
"type=", best_nr_matches);
// dump_firm_type(type);
printk("(%x), id %016llx:\n", type, (unsigned long long)*id);
i = best_i;
goto found;
}
/*FIXME: Would make sense to seek for type "hint" match ? */
i = -ENOENT;
goto ret;
found:
*id = priv->firm[i].id;
ret:
printk("%s firmware for type=", (i < 0) ? "Can't find" : "Found");
if (debug) {
// dump_firm_type(type);
printk("(%x), id %016llx.\n", type, (unsigned long long)*id);
}
return i;
}
static int load_firmware(struct dvb_frontend *fe, unsigned int type,
v4l2_std_id *id)
{
struct xc4000_priv *priv = fe->tuner_priv;
int pos, rc;
unsigned char *p;
printk("%s called\n", __func__);
pos = seek_firmware(fe, type, id);
if (pos < 0)
return pos;
printk("Loading firmware for type=");
// dump_firm_type(priv->firm[pos].type);
printk("(%x), id %016llx.\n", priv->firm[pos].type,
(unsigned long long)*id);
p = priv->firm[pos].ptr;
rc = xc_load_i2c_sequence(fe, p);
printk("load i2c sequence result=%d\n", rc);
return rc;
}
//static int load_all_firmwares(struct dvb_frontend *fe)
static int xc4000_fwupload(struct dvb_frontend *fe)
{
struct xc4000_priv *priv = fe->tuner_priv;
const struct firmware *fw = NULL;
const unsigned char *p, *endp;
int rc = 0;
int n, n_array;
char name[33];
char *fname;
printk("%s called\n", __func__);
fname = XC4000_DEFAULT_FIRMWARE;
printk("Reading firmware %s\n", fname);
rc = request_firmware(&fw, fname, priv->i2c_props.adap->dev.parent);
if (rc < 0) {
if (rc == -ENOENT)
printk("Error: firmware %s not found.\n",
fname);
else
printk("Error %d while requesting firmware %s \n",
rc, fname);
return rc;
}
p = fw->data;
endp = p + fw->size;
if (fw->size < sizeof(name) - 1 + 2 + 2) {
printk("Error: firmware file %s has invalid size!\n",
fname);
goto corrupt;
}
memcpy(name, p, sizeof(name) - 1);
name[sizeof(name) - 1] = 0;
p += sizeof(name) - 1;
priv->firm_version = get_unaligned_le16(p);
p += 2;
n_array = get_unaligned_le16(p);
p += 2;
printk("Loading %d firmware images from %s, type: %s, ver %d.%d\n",
n_array, fname, name,
priv->firm_version >> 8, priv->firm_version & 0xff);
priv->firm = kzalloc(sizeof(*priv->firm) * n_array, GFP_KERNEL);
if (priv->firm == NULL) {
printk("Not enough memory to load firmware file.\n");
rc = -ENOMEM;
goto err;
}
priv->firm_size = n_array;
n = -1;
while (p < endp) {
__u32 type, size;
v4l2_std_id id;
__u16 int_freq = 0;
n++;
if (n >= n_array) {
printk("More firmware images in file than "
"were expected!\n");
goto corrupt;
}
/* Checks if there's enough bytes to read */
if (endp - p < sizeof(type) + sizeof(id) + sizeof(size))
goto header;
type = get_unaligned_le32(p);
p += sizeof(type);
id = get_unaligned_le64(p);
p += sizeof(id);
if (type & HAS_IF) {
int_freq = get_unaligned_le16(p);
p += sizeof(int_freq);
if (endp - p < sizeof(size))
goto header;
}
size = get_unaligned_le32(p);
p += sizeof(size);
if (!size || size > endp - p) {
printk("Firmware type ");
// dump_firm_type(type);
printk("(%x), id %llx is corrupted "
"(size=%d, expected %d)\n",
type, (unsigned long long)id,
(unsigned)(endp - p), size);
goto corrupt;
}
priv->firm[n].ptr = kzalloc(size, GFP_KERNEL);
if (priv->firm[n].ptr == NULL) {
printk("Not enough memory to load firmware file.\n");
rc = -ENOMEM;
goto err;
}
printk("Reading firmware type ");
if (debug) {
// dump_firm_type_and_int_freq(type, int_freq);
printk("(%x), id %llx, size=%d.\n",
type, (unsigned long long)id, size);
}
memcpy(priv->firm[n].ptr, p, size);
priv->firm[n].type = type;
priv->firm[n].id = id;
priv->firm[n].size = size;
priv->firm[n].int_freq = int_freq;
p += size;
}
if (n + 1 != priv->firm_size) {
printk("Firmware file is incomplete!\n");
goto corrupt;
}
goto done;
header:
printk("Firmware header is incomplete!\n");
corrupt:
rc = -EINVAL;
printk("Error: firmware file is corrupted!\n");
err:
printk("Releasing partially loaded firmware file.\n");
// free_firmware(priv);
done:
release_firmware(fw);
if (rc == 0)
printk("Firmware files loaded.\n");
return rc;
}
static void xc_debug_dump(struct xc4000_priv *priv)
{
u16 adc_envelope;
u32 freq_error_hz = 0;
u16 lock_status;
u32 hsync_freq_hz = 0;
u16 frame_lines;
u16 quality;
u8 hw_majorversion = 0, hw_minorversion = 0;
u8 fw_majorversion = 0, fw_minorversion = 0;
// u16 fw_buildversion = 0;
/* Wait for stats to stabilize.
* Frame Lines needs two frame times after initial lock
* before it is valid.
*/
xc_wait(100);
xc_get_ADC_Envelope(priv, &adc_envelope);
dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
xc_get_frequency_error(priv, &freq_error_hz);
dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
xc_get_lock_status(priv, &lock_status);
dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
lock_status);
xc_get_version(priv, &hw_majorversion, &hw_minorversion,
&fw_majorversion, &fw_minorversion);
// WAS:
// xc_get_buildversion(priv, &fw_buildversion);
// dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x.%04x\n",
// hw_majorversion, hw_minorversion,
// fw_majorversion, fw_minorversion, fw_buildversion);
// NOW:
dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n",
hw_majorversion, hw_minorversion,
fw_majorversion, fw_minorversion);
xc_get_hsync_freq(priv, &hsync_freq_hz);
dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
xc_get_frame_lines(priv, &frame_lines);
dprintk(1, "*** Frame lines = %d\n", frame_lines);
xc_get_quality(priv, &quality);
dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
}
static int xc4000_set_params(struct dvb_frontend *fe,
struct dvb_frontend_parameters *params)
{
struct xc4000_priv *priv = fe->tuner_priv;
int ret;
if (xc4000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS)
xc_load_fw_and_init_tuner(fe);
dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency);
if (fe->ops.info.type == FE_ATSC) {
dprintk(1, "%s() ATSC\n", __func__);
switch (params->u.vsb.modulation) {
case VSB_8:
case VSB_16:
dprintk(1, "%s() VSB modulation\n", __func__);
priv->rf_mode = XC_RF_MODE_AIR;
priv->freq_hz = params->frequency - 1750000;
priv->bandwidth = BANDWIDTH_6_MHZ;
priv->video_standard = DTV6;
break;
case QAM_64:
case QAM_256:
case QAM_AUTO:
dprintk(1, "%s() QAM modulation\n", __func__);
priv->rf_mode = XC_RF_MODE_CABLE;
priv->freq_hz = params->frequency - 1750000;
priv->bandwidth = BANDWIDTH_6_MHZ;
priv->video_standard = DTV6;
break;
default:
return -EINVAL;
}
} else if (fe->ops.info.type == FE_OFDM) {
dprintk(1, "%s() OFDM\n", __func__);
switch (params->u.ofdm.bandwidth) {
case BANDWIDTH_6_MHZ:
priv->bandwidth = BANDWIDTH_6_MHZ;
priv->video_standard = DTV6;
priv->freq_hz = params->frequency - 1750000;
break;
case BANDWIDTH_7_MHZ:
printk(KERN_ERR "xc4000 bandwidth 7MHz not supported\n");
return -EINVAL;
case BANDWIDTH_8_MHZ:
priv->bandwidth = BANDWIDTH_8_MHZ;
priv->video_standard = DTV8;
priv->freq_hz = params->frequency - 2750000;
break;
default:
printk(KERN_ERR "xc4000 bandwidth not set!\n");
return -EINVAL;
}
priv->rf_mode = XC_RF_MODE_AIR;
} else {
printk(KERN_ERR "xc4000 modulation type not supported!\n");
return -EINVAL;
}
dprintk(1, "%s() frequency=%d (compensated)\n",
__func__, priv->freq_hz);
ret = xc_SetSignalSource(priv, priv->rf_mode);
if (ret != XC_RESULT_SUCCESS) {
printk(KERN_ERR
"xc4000: xc_SetSignalSource(%d) failed\n",
priv->rf_mode);
return -EREMOTEIO;
}
ret = xc_SetTVStandard(priv,
XC4000_Standard[priv->video_standard].VideoMode,
XC4000_Standard[priv->video_standard].AudioMode);
if (ret != XC_RESULT_SUCCESS) {
printk(KERN_ERR "xc4000: xc_SetTVStandard failed\n");
return -EREMOTEIO;
}
ret = xc_set_IF_frequency(priv, priv->if_khz);
if (ret != XC_RESULT_SUCCESS) {
printk(KERN_ERR "xc4000: xc_Set_IF_frequency(%d) failed\n",
priv->if_khz);
return -EIO;
}
xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL);
if (debug)
xc_debug_dump(priv);
return 0;
}
static int xc4000_is_firmware_loaded(struct dvb_frontend *fe)
{
struct xc4000_priv *priv = fe->tuner_priv;
int ret;
u16 id;
ret = xc4000_readreg(priv, XREG_PRODUCT_ID, &id);
if (ret == XC_RESULT_SUCCESS) {
if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
ret = XC_RESULT_RESET_FAILURE;
else
ret = XC_RESULT_SUCCESS;
}
dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
ret == XC_RESULT_SUCCESS ? "True" : "False", id);
return ret;
}
static int xc4000_set_analog_params(struct dvb_frontend *fe,
struct analog_parameters *params)
{
struct xc4000_priv *priv = fe->tuner_priv;
int ret;
if (xc4000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS)
xc_load_fw_and_init_tuner(fe);
dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
__func__, params->frequency);
/* Fix me: it could be air. */
priv->rf_mode = params->mode;
if (params->mode > XC_RF_MODE_CABLE)
priv->rf_mode = XC_RF_MODE_CABLE;
/* params->frequency is in units of 62.5khz */
priv->freq_hz = params->frequency * 62500;
/* FIX ME: Some video standards may have several possible audio
standards. We simply default to one of them here.
*/
if (params->std & V4L2_STD_MN) {
/* default to BTSC audio standard */
priv->video_standard = MN_NTSC_PAL_BTSC;
goto tune_channel;
}
if (params->std & V4L2_STD_PAL_BG) {
/* default to NICAM audio standard */
priv->video_standard = BG_PAL_NICAM;
goto tune_channel;
}
if (params->std & V4L2_STD_PAL_I) {
/* default to NICAM audio standard */
priv->video_standard = I_PAL_NICAM;
goto tune_channel;
}
if (params->std & V4L2_STD_PAL_DK) {
/* default to NICAM audio standard */
priv->video_standard = DK_PAL_NICAM;
goto tune_channel;
}
if (params->std & V4L2_STD_SECAM_DK) {
/* default to A2 DK1 audio standard */
priv->video_standard = DK_SECAM_A2DK1;
goto tune_channel;
}
if (params->std & V4L2_STD_SECAM_L) {
priv->video_standard = L_SECAM_NICAM;
goto tune_channel;
}
if (params->std & V4L2_STD_SECAM_LC) {
priv->video_standard = LC_SECAM_NICAM;
goto tune_channel;
}
tune_channel:
ret = xc_SetSignalSource(priv, priv->rf_mode);
if (ret != XC_RESULT_SUCCESS) {
printk(KERN_ERR
"xc4000: xc_SetSignalSource(%d) failed\n",
priv->rf_mode);
return -EREMOTEIO;
}
ret = xc_SetTVStandard(priv,
XC4000_Standard[priv->video_standard].VideoMode,
XC4000_Standard[priv->video_standard].AudioMode);
if (ret != XC_RESULT_SUCCESS) {
printk(KERN_ERR "xc4000: xc_SetTVStandard failed\n");
return -EREMOTEIO;
}
xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
if (debug)
xc_debug_dump(priv);
return 0;
}
static int xc4000_get_frequency(struct dvb_frontend *fe, u32 *freq)
{
struct xc4000_priv *priv = fe->tuner_priv;
dprintk(1, "%s()\n", __func__);
*freq = priv->freq_hz;
return 0;
}
static int xc4000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
{
struct xc4000_priv *priv = fe->tuner_priv;
dprintk(1, "%s()\n", __func__);
*bw = priv->bandwidth;
return 0;
}
static int xc4000_get_status(struct dvb_frontend *fe, u32 *status)
{
struct xc4000_priv *priv = fe->tuner_priv;
u16 lock_status = 0;
xc_get_lock_status(priv, &lock_status);
dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
*status = lock_status;
return 0;
}
static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe)
{
struct xc4000_priv *priv = fe->tuner_priv;
int ret = 0;
if (xc4000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
ret = xc4000_fwupload(fe);
if (ret != XC_RESULT_SUCCESS)
return ret;
}
/* Start the tuner self-calibration process */
ret |= xc_initialize(priv);
/* Wait for calibration to complete.
* We could continue but XC4000 will clock stretch subsequent
* I2C transactions until calibration is complete. This way we
* don't have to rely on clock stretching working.
*/
xc_wait(100);
/* Default to "CABLE" mode */
ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
return ret;
}
static int xc4000_sleep(struct dvb_frontend *fe)
{
int ret;
dprintk(1, "%s()\n", __func__);
/* Avoid firmware reload on slow devices */
if (no_poweroff)
return 0;
/* According to Xceive technical support, the "powerdown" register
was removed in newer versions of the firmware. The "supported"
way to sleep the tuner is to pull the reset pin low for 10ms */
ret = xc4000_TunerReset(fe);
if (ret != XC_RESULT_SUCCESS) {
printk(KERN_ERR
"xc4000: %s() unable to shutdown tuner\n",
__func__);
return -EREMOTEIO;
} else
return XC_RESULT_SUCCESS;
}
static int xc4000_init(struct dvb_frontend *fe)
{
struct xc4000_priv *priv = fe->tuner_priv;
dprintk(1, "%s()\n", __func__);
if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
printk(KERN_ERR "xc4000: Unable to initialise tuner\n");
return -EREMOTEIO;
}
if (debug)
xc_debug_dump(priv);
return 0;
}
static int xc4000_release(struct dvb_frontend *fe)
{
struct xc4000_priv *priv = fe->tuner_priv;
dprintk(1, "%s()\n", __func__);
mutex_lock(&xc4000_list_mutex);
if (priv)
hybrid_tuner_release_state(priv);
mutex_unlock(&xc4000_list_mutex);
fe->tuner_priv = NULL;
return 0;
}
static const struct dvb_tuner_ops xc4000_tuner_ops = {
.info = {
.name = "Xceive XC4000",
.frequency_min = 1000000,
.frequency_max = 1023000000,
.frequency_step = 50000,
},
.release = xc4000_release,
.init = xc4000_init,
.sleep = xc4000_sleep,
.set_params = xc4000_set_params,
.set_analog_params = xc4000_set_analog_params,
.get_frequency = xc4000_get_frequency,
.get_bandwidth = xc4000_get_bandwidth,
.get_status = xc4000_get_status
};
struct dvb_frontend *xc4000_attach(struct dvb_frontend *fe,
struct i2c_adapter *i2c,
struct xc4000_config *cfg)
{
struct xc4000_priv *priv = NULL;
int instance;
v4l2_std_id std0;
u16 id = 0;
int rc;
dprintk(1, "%s(%d-%04x)\n", __func__,
i2c ? i2c_adapter_id(i2c) : -1,
cfg ? cfg->i2c_address : -1);
mutex_lock(&xc4000_list_mutex);
instance = hybrid_tuner_request_state(struct xc4000_priv, priv,
hybrid_tuner_instance_list,
i2c, cfg->i2c_address, "xc4000");
switch (instance) {
case 0:
goto fail;
break;
case 1:
/* new tuner instance */
priv->bandwidth = BANDWIDTH_6_MHZ;
fe->tuner_priv = priv;
break;
default:
/* existing tuner instance */
fe->tuner_priv = priv;
break;
}
if (priv->if_khz == 0) {
/* If the IF hasn't been set yet, use the value provided by
the caller (occurs in hybrid devices where the analog
call to xc4000_attach occurs before the digital side) */
priv->if_khz = cfg->if_khz;
}
/* Check if firmware has been loaded. It is possible that another
instance of the driver has loaded the firmware.
*/
if (xc4000_readreg(priv, XREG_PRODUCT_ID, &id) != XC_RESULT_SUCCESS)
goto fail;
switch (id) {
case XC_PRODUCT_ID_FW_LOADED:
printk(KERN_INFO
"xc4000: Successfully identified at address 0x%02x\n",
cfg->i2c_address);
printk(KERN_INFO
"xc4000: Firmware has been loaded previously\n");
break;
case XC_PRODUCT_ID_FW_NOT_LOADED:
printk(KERN_INFO
"xc4000: Successfully identified at address 0x%02x\n",
cfg->i2c_address);
printk(KERN_INFO
"xc4000: Firmware has not been loaded previously\n");
break;
default:
printk(KERN_ERR
"xc4000: Device not found at addr 0x%02x (0x%x)\n",
cfg->i2c_address, id);
goto fail;
}
mutex_unlock(&xc4000_list_mutex);
memcpy(&fe->ops.tuner_ops, &xc4000_tuner_ops,
sizeof(struct dvb_tuner_ops));
/* FIXME: For now, load the firmware at startup. We will remove this
before the code goes to production... */
xc4000_fwupload(fe);
printk("xc4000_fwupload done\n");
std0 = 0;
// rc = load_firmware(fe, BASE | new_fw.type, &std0);
rc = load_firmware(fe, BASE, &std0);
if (rc != XC_RESULT_SUCCESS) {
tuner_err("Error %d while loading base firmware\n",
rc);
goto fail;
}
/* Load INIT1, if needed */
tuner_dbg("Load init1 firmware, if exists\n");
// rc = load_firmware(fe, BASE | INIT1 | new_fw.type, &std0);
rc = load_firmware(fe, BASE | INIT1, &std0);
printk("init1 load result %x\n", rc);
if (xc4000_readreg(priv, XREG_PRODUCT_ID, &id) != XC_RESULT_SUCCESS)
goto fail;
printk("djh id is now %x\n", id);
return fe;
fail:
mutex_unlock(&xc4000_list_mutex);
xc4000_release(fe);
return NULL;
}
EXPORT_SYMBOL(xc4000_attach);
MODULE_AUTHOR("Steven Toth, Davide Ferri");
MODULE_DESCRIPTION("Xceive xc4000 silicon tuner driver");
MODULE_LICENSE("GPL");