mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-25 13:43:55 +08:00
02dec50982
The xc4000 driver is based on the original xc5000 driver, and while the xc5000 supports the XREG_BUSY register, the xc4000 does not. So remove the code in question. Signed-off-by: Devin Heitmueller <dheitmueller@kernellabs.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
1335 lines
34 KiB
C
1335 lines
34 KiB
C
/*
|
|
* Driver for Xceive XC4000 "QAM/8VSB single chip tuner"
|
|
*
|
|
* Copyright (c) 2007 Xceive Corporation
|
|
* Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
|
|
* Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com>
|
|
* Copyright (c) 2009 Davide Ferri <d.ferri@zero11.it>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
*
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/videodev2.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dvb/frontend.h>
|
|
#include <linux/i2c.h>
|
|
#include <asm/unaligned.h>
|
|
|
|
#include "dvb_frontend.h"
|
|
|
|
#include "xc4000.h"
|
|
#include "tuner-i2c.h"
|
|
#include "tuner-xc2028-types.h"
|
|
|
|
static int debug;
|
|
module_param(debug, int, 0644);
|
|
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
|
|
|
|
static int no_poweroff;
|
|
module_param(no_poweroff, int, 0644);
|
|
MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n"
|
|
"\t\t1 keep device energized and with tuner ready all the times.\n"
|
|
"\t\tFaster, but consumes more power and keeps the device hotter");
|
|
|
|
static DEFINE_MUTEX(xc4000_list_mutex);
|
|
static LIST_HEAD(hybrid_tuner_instance_list);
|
|
|
|
#define dprintk(level, fmt, arg...) if (debug >= level) \
|
|
printk(KERN_INFO "%s: " fmt, "xc4000", ## arg)
|
|
|
|
#define XC4000_DEFAULT_FIRMWARE "xc4000-01.fw"
|
|
#define XC4000_DEFAULT_FIRMWARE_SIZE 8434
|
|
|
|
|
|
/* struct for storing firmware table */
|
|
struct firmware_description {
|
|
unsigned int type;
|
|
v4l2_std_id id;
|
|
__u16 int_freq;
|
|
unsigned char *ptr;
|
|
unsigned int size;
|
|
};
|
|
|
|
struct firmware_properties {
|
|
unsigned int type;
|
|
v4l2_std_id id;
|
|
v4l2_std_id std_req;
|
|
__u16 int_freq;
|
|
unsigned int scode_table;
|
|
int scode_nr;
|
|
};
|
|
|
|
struct xc4000_priv {
|
|
struct tuner_i2c_props i2c_props;
|
|
struct list_head hybrid_tuner_instance_list;
|
|
struct firmware_description *firm;
|
|
int firm_size;
|
|
__u16 firm_version;
|
|
u32 if_khz;
|
|
u32 freq_hz;
|
|
u32 bandwidth;
|
|
u8 video_standard;
|
|
u8 rf_mode;
|
|
};
|
|
|
|
/* Misc Defines */
|
|
#define MAX_TV_STANDARD 23
|
|
#define XC_MAX_I2C_WRITE_LENGTH 64
|
|
|
|
/* Signal Types */
|
|
#define XC_RF_MODE_AIR 0
|
|
#define XC_RF_MODE_CABLE 1
|
|
|
|
/* Result codes */
|
|
#define XC_RESULT_SUCCESS 0
|
|
#define XC_RESULT_RESET_FAILURE 1
|
|
#define XC_RESULT_I2C_WRITE_FAILURE 2
|
|
#define XC_RESULT_I2C_READ_FAILURE 3
|
|
#define XC_RESULT_OUT_OF_RANGE 5
|
|
|
|
/* Product id */
|
|
#define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000
|
|
#define XC_PRODUCT_ID_FW_LOADED 0x0FA0 /* WAS: 0x1388*/
|
|
|
|
/* Registers */
|
|
#define XREG_INIT 0x00
|
|
#define XREG_VIDEO_MODE 0x01
|
|
#define XREG_AUDIO_MODE 0x02
|
|
#define XREG_RF_FREQ 0x03
|
|
#define XREG_D_CODE 0x04
|
|
#define XREG_IF_OUT 0x05 /* ?? */
|
|
#define XREG_SEEK_MODE 0x07 /* WAS: 0x06 */
|
|
#define XREG_POWER_DOWN 0x08 /* WAS: 0x0A Obsolete */
|
|
#define XREG_SIGNALSOURCE 0x0A /* WAS: 0x0D 0=Air, 1=Cable */
|
|
//#define XREG_SMOOTHEDCVBS 0x0E
|
|
//#define XREG_XTALFREQ 0x0F
|
|
//#define XREG_FINERFREQ 0x10
|
|
//#define XREG_DDIMODE 0x11
|
|
|
|
#define XREG_ADC_ENV 0x00
|
|
#define XREG_QUALITY 0x01
|
|
#define XREG_FRAME_LINES 0x02
|
|
#define XREG_HSYNC_FREQ 0x03
|
|
#define XREG_LOCK 0x04
|
|
#define XREG_FREQ_ERROR 0x05
|
|
#define XREG_SNR 0x06
|
|
#define XREG_VERSION 0x07
|
|
#define XREG_PRODUCT_ID 0x08
|
|
//#define XREG_BUILD 0x0D
|
|
|
|
/*
|
|
Basic firmware description. This will remain with
|
|
the driver for documentation purposes.
|
|
|
|
This represents an I2C firmware file encoded as a
|
|
string of unsigned char. Format is as follows:
|
|
|
|
char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB
|
|
char[1 ]=len0_LSB -> length of first write transaction
|
|
char[2 ]=data0 -> first byte to be sent
|
|
char[3 ]=data1
|
|
char[4 ]=data2
|
|
char[ ]=...
|
|
char[M ]=dataN -> last byte to be sent
|
|
char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB
|
|
char[M+2]=len1_LSB -> length of second write transaction
|
|
char[M+3]=data0
|
|
char[M+4]=data1
|
|
...
|
|
etc.
|
|
|
|
The [len] value should be interpreted as follows:
|
|
|
|
len= len_MSB _ len_LSB
|
|
len=1111_1111_1111_1111 : End of I2C_SEQUENCE
|
|
len=0000_0000_0000_0000 : Reset command: Do hardware reset
|
|
len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767)
|
|
len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms
|
|
|
|
For the RESET and WAIT commands, the two following bytes will contain
|
|
immediately the length of the following transaction.
|
|
|
|
*/
|
|
struct XC_TV_STANDARD {
|
|
char *Name;
|
|
u16 AudioMode;
|
|
u16 VideoMode;
|
|
};
|
|
|
|
/* Tuner standards */
|
|
#define MN_NTSC_PAL_BTSC 0
|
|
#define MN_NTSC_PAL_A2 1
|
|
#define MN_NTSC_PAL_EIAJ 2
|
|
#define MN_NTSC_PAL_Mono 3
|
|
#define BG_PAL_A2 4
|
|
#define BG_PAL_NICAM 5
|
|
#define BG_PAL_MONO 6
|
|
#define I_PAL_NICAM 7
|
|
#define I_PAL_NICAM_MONO 8
|
|
#define DK_PAL_A2 9
|
|
#define DK_PAL_NICAM 10
|
|
#define DK_PAL_MONO 11
|
|
#define DK_SECAM_A2DK1 12
|
|
#define DK_SECAM_A2LDK3 13
|
|
#define DK_SECAM_A2MONO 14
|
|
#define L_SECAM_NICAM 15
|
|
#define LC_SECAM_NICAM 16
|
|
#define FM_Radio_INPUT2 21
|
|
#define FM_Radio_INPUT1 22
|
|
|
|
/* WAS :
|
|
static struct XC_TV_STANDARD XC4000_Standard[MAX_TV_STANDARD] = {
|
|
{"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
|
|
{"M/N-NTSC/PAL-A2", 0x0600, 0x8020},
|
|
{"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
|
|
{"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
|
|
{"B/G-PAL-A2", 0x0A00, 0x8049},
|
|
{"B/G-PAL-NICAM", 0x0C04, 0x8049},
|
|
{"B/G-PAL-MONO", 0x0878, 0x8059},
|
|
{"I-PAL-NICAM", 0x1080, 0x8009},
|
|
{"I-PAL-NICAM-MONO", 0x0E78, 0x8009},
|
|
{"D/K-PAL-A2", 0x1600, 0x8009},
|
|
{"D/K-PAL-NICAM", 0x0E80, 0x8009},
|
|
{"D/K-PAL-MONO", 0x1478, 0x8009},
|
|
{"D/K-SECAM-A2 DK1", 0x1200, 0x8009},
|
|
{"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009},
|
|
{"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
|
|
{"L-SECAM-NICAM", 0x8E82, 0x0009},
|
|
{"L'-SECAM-NICAM", 0x8E82, 0x4009},
|
|
{"DTV6", 0x00C0, 0x8002},
|
|
{"DTV8", 0x00C0, 0x800B},
|
|
{"DTV7/8", 0x00C0, 0x801B},
|
|
{"DTV7", 0x00C0, 0x8007},
|
|
{"FM Radio-INPUT2", 0x9802, 0x9002},
|
|
{"FM Radio-INPUT1", 0x0208, 0x9002}
|
|
};*/
|
|
|
|
static struct XC_TV_STANDARD XC4000_Standard[MAX_TV_STANDARD] = {
|
|
{"M/N-NTSC/PAL-BTSC", 0x0000, 0x8020},
|
|
{"M/N-NTSC/PAL-A2", 0x0000, 0x8020},
|
|
{"M/N-NTSC/PAL-EIAJ", 0x0040, 0x8020},
|
|
{"M/N-NTSC/PAL-Mono", 0x0078, 0x8020},
|
|
{"B/G-PAL-A2", 0x0000, 0x8059},
|
|
{"B/G-PAL-NICAM", 0x0004, 0x8059},
|
|
{"B/G-PAL-MONO", 0x0078, 0x8059},
|
|
{"I-PAL-NICAM", 0x0080, 0x8049},
|
|
{"I-PAL-NICAM-MONO", 0x0078, 0x8049},
|
|
{"D/K-PAL-A2", 0x0000, 0x8049},
|
|
{"D/K-PAL-NICAM", 0x0080, 0x8049},
|
|
{"D/K-PAL-MONO", 0x0078, 0x8049},
|
|
{"D/K-SECAM-A2 DK1", 0x0000, 0x8049},
|
|
{"D/K-SECAM-A2 L/DK3", 0x0000, 0x8049},
|
|
{"D/K-SECAM-A2 MONO", 0x0078, 0x8049},
|
|
{"L-SECAM-NICAM", 0x8080, 0x0009},
|
|
{"L'-SECAM-NICAM", 0x8080, 0x4009},
|
|
{"DTV6", 0x00C0, 0x8002},
|
|
{"DTV8", 0x00C0, 0x800B},
|
|
{"DTV7/8", 0x00C0, 0x801B},
|
|
{"DTV7", 0x00C0, 0x8007},
|
|
{"FM Radio-INPUT2", 0x0008, 0x9800},
|
|
{"FM Radio-INPUT1", 0x0008, 0x9000}
|
|
};
|
|
|
|
static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe);
|
|
static int xc4000_is_firmware_loaded(struct dvb_frontend *fe);
|
|
static int xc4000_readreg(struct xc4000_priv *priv, u16 reg, u16 *val);
|
|
static int xc4000_TunerReset(struct dvb_frontend *fe);
|
|
|
|
static int xc_send_i2c_data(struct xc4000_priv *priv, u8 *buf, int len)
|
|
{
|
|
struct i2c_msg msg = { .addr = priv->i2c_props.addr,
|
|
.flags = 0, .buf = buf, .len = len };
|
|
|
|
if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
|
|
printk(KERN_ERR "xc4000: I2C write failed (len=%i)\n", len);
|
|
return XC_RESULT_I2C_WRITE_FAILURE;
|
|
}
|
|
return XC_RESULT_SUCCESS;
|
|
}
|
|
|
|
/* This routine is never used because the only time we read data from the
|
|
i2c bus is when we read registers, and we want that to be an atomic i2c
|
|
transaction in case we are on a multi-master bus */
|
|
static int xc_read_i2c_data(struct xc4000_priv *priv, u8 *buf, int len)
|
|
{
|
|
struct i2c_msg msg = { .addr = priv->i2c_props.addr,
|
|
.flags = I2C_M_RD, .buf = buf, .len = len };
|
|
|
|
if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
|
|
printk(KERN_ERR "xc4000 I2C read failed (len=%i)\n", len);
|
|
return -EREMOTEIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void xc_wait(int wait_ms)
|
|
{
|
|
msleep(wait_ms);
|
|
}
|
|
|
|
static int xc4000_TunerReset(struct dvb_frontend *fe)
|
|
{
|
|
struct xc4000_priv *priv = fe->tuner_priv;
|
|
int ret;
|
|
|
|
dprintk(1, "%s()\n", __func__);
|
|
|
|
if (fe->callback) {
|
|
ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
|
|
fe->dvb->priv :
|
|
priv->i2c_props.adap->algo_data,
|
|
DVB_FRONTEND_COMPONENT_TUNER,
|
|
XC4000_TUNER_RESET, 0);
|
|
if (ret) {
|
|
printk(KERN_ERR "xc4000: reset failed\n");
|
|
return XC_RESULT_RESET_FAILURE;
|
|
}
|
|
} else {
|
|
printk(KERN_ERR "xc4000: no tuner reset callback function, fatal\n");
|
|
return XC_RESULT_RESET_FAILURE;
|
|
}
|
|
return XC_RESULT_SUCCESS;
|
|
}
|
|
|
|
static int xc_write_reg(struct xc4000_priv *priv, u16 regAddr, u16 i2cData)
|
|
{
|
|
u8 buf[4];
|
|
int result;
|
|
|
|
buf[0] = (regAddr >> 8) & 0xFF;
|
|
buf[1] = regAddr & 0xFF;
|
|
buf[2] = (i2cData >> 8) & 0xFF;
|
|
buf[3] = i2cData & 0xFF;
|
|
result = xc_send_i2c_data(priv, buf, 4);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
|
|
{
|
|
struct xc4000_priv *priv = fe->tuner_priv;
|
|
|
|
int i, nbytes_to_send, result;
|
|
unsigned int len, pos, index;
|
|
u8 buf[XC_MAX_I2C_WRITE_LENGTH];
|
|
|
|
index = 0;
|
|
while ((i2c_sequence[index] != 0xFF) ||
|
|
(i2c_sequence[index + 1] != 0xFF)) {
|
|
len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
|
|
if (len == 0x0000) {
|
|
/* RESET command */
|
|
result = xc4000_TunerReset(fe);
|
|
index += 2;
|
|
if (result != XC_RESULT_SUCCESS)
|
|
return result;
|
|
} else if (len & 0x8000) {
|
|
/* WAIT command */
|
|
xc_wait(len & 0x7FFF);
|
|
index += 2;
|
|
} else {
|
|
/* Send i2c data whilst ensuring individual transactions
|
|
* do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
|
|
*/
|
|
index += 2;
|
|
buf[0] = i2c_sequence[index];
|
|
buf[1] = i2c_sequence[index + 1];
|
|
pos = 2;
|
|
while (pos < len) {
|
|
if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
|
|
nbytes_to_send =
|
|
XC_MAX_I2C_WRITE_LENGTH;
|
|
else
|
|
nbytes_to_send = (len - pos + 2);
|
|
for (i = 2; i < nbytes_to_send; i++) {
|
|
buf[i] = i2c_sequence[index + pos +
|
|
i - 2];
|
|
}
|
|
result = xc_send_i2c_data(priv, buf,
|
|
nbytes_to_send);
|
|
|
|
if (result != XC_RESULT_SUCCESS)
|
|
return result;
|
|
|
|
pos += nbytes_to_send - 2;
|
|
}
|
|
index += len;
|
|
}
|
|
}
|
|
return XC_RESULT_SUCCESS;
|
|
}
|
|
|
|
static int xc_initialize(struct xc4000_priv *priv)
|
|
{
|
|
dprintk(1, "%s()\n", __func__);
|
|
return xc_write_reg(priv, XREG_INIT, 0);
|
|
}
|
|
|
|
static int xc_SetTVStandard(struct xc4000_priv *priv,
|
|
u16 VideoMode, u16 AudioMode)
|
|
{
|
|
int ret;
|
|
dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
|
|
dprintk(1, "%s() Standard = %s\n",
|
|
__func__,
|
|
XC4000_Standard[priv->video_standard].Name);
|
|
|
|
ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
|
|
if (ret == XC_RESULT_SUCCESS)
|
|
ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int xc_SetSignalSource(struct xc4000_priv *priv, u16 rf_mode)
|
|
{
|
|
dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
|
|
rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
|
|
|
|
if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
|
|
rf_mode = XC_RF_MODE_CABLE;
|
|
printk(KERN_ERR
|
|
"%s(), Invalid mode, defaulting to CABLE",
|
|
__func__);
|
|
}
|
|
return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
|
|
}
|
|
|
|
static const struct dvb_tuner_ops xc4000_tuner_ops;
|
|
|
|
static int xc_set_RF_frequency(struct xc4000_priv *priv, u32 freq_hz)
|
|
{
|
|
u16 freq_code;
|
|
|
|
dprintk(1, "%s(%u)\n", __func__, freq_hz);
|
|
|
|
if ((freq_hz > xc4000_tuner_ops.info.frequency_max) ||
|
|
(freq_hz < xc4000_tuner_ops.info.frequency_min))
|
|
return XC_RESULT_OUT_OF_RANGE;
|
|
|
|
freq_code = (u16)(freq_hz / 15625);
|
|
|
|
/* WAS: Starting in firmware version 1.1.44, Xceive recommends using the
|
|
FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
|
|
only be used for fast scanning for channel lock) */
|
|
return xc_write_reg(priv, XREG_RF_FREQ, freq_code); /* WAS: XREG_FINERFREQ */
|
|
}
|
|
|
|
|
|
static int xc_set_IF_frequency(struct xc4000_priv *priv, u32 freq_khz)
|
|
{
|
|
u32 freq_code = (freq_khz * 1024)/1000;
|
|
dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
|
|
__func__, freq_khz, freq_code);
|
|
|
|
return xc_write_reg(priv, XREG_IF_OUT, freq_code);
|
|
}
|
|
|
|
|
|
static int xc_get_ADC_Envelope(struct xc4000_priv *priv, u16 *adc_envelope)
|
|
{
|
|
return xc4000_readreg(priv, XREG_ADC_ENV, adc_envelope);
|
|
}
|
|
|
|
static int xc_get_frequency_error(struct xc4000_priv *priv, u32 *freq_error_hz)
|
|
{
|
|
int result;
|
|
u16 regData;
|
|
u32 tmp;
|
|
|
|
result = xc4000_readreg(priv, XREG_FREQ_ERROR, ®Data);
|
|
if (result != XC_RESULT_SUCCESS)
|
|
return result;
|
|
|
|
tmp = (u32)regData;
|
|
(*freq_error_hz) = (tmp * 15625) / 1000;
|
|
return result;
|
|
}
|
|
|
|
static int xc_get_lock_status(struct xc4000_priv *priv, u16 *lock_status)
|
|
{
|
|
return xc4000_readreg(priv, XREG_LOCK, lock_status);
|
|
}
|
|
|
|
static int xc_get_version(struct xc4000_priv *priv,
|
|
u8 *hw_majorversion, u8 *hw_minorversion,
|
|
u8 *fw_majorversion, u8 *fw_minorversion)
|
|
{
|
|
u16 data;
|
|
int result;
|
|
|
|
result = xc4000_readreg(priv, XREG_VERSION, &data);
|
|
if (result != XC_RESULT_SUCCESS)
|
|
return result;
|
|
|
|
(*hw_majorversion) = (data >> 12) & 0x0F;
|
|
(*hw_minorversion) = (data >> 8) & 0x0F;
|
|
(*fw_majorversion) = (data >> 4) & 0x0F;
|
|
(*fw_minorversion) = data & 0x0F;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* WAS THERE
|
|
static int xc_get_buildversion(struct xc4000_priv *priv, u16 *buildrev)
|
|
{
|
|
return xc4000_readreg(priv, XREG_BUILD, buildrev);
|
|
}*/
|
|
|
|
static int xc_get_hsync_freq(struct xc4000_priv *priv, u32 *hsync_freq_hz)
|
|
{
|
|
u16 regData;
|
|
int result;
|
|
|
|
result = xc4000_readreg(priv, XREG_HSYNC_FREQ, ®Data);
|
|
if (result != XC_RESULT_SUCCESS)
|
|
return result;
|
|
|
|
(*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
|
|
return result;
|
|
}
|
|
|
|
static int xc_get_frame_lines(struct xc4000_priv *priv, u16 *frame_lines)
|
|
{
|
|
return xc4000_readreg(priv, XREG_FRAME_LINES, frame_lines);
|
|
}
|
|
|
|
static int xc_get_quality(struct xc4000_priv *priv, u16 *quality)
|
|
{
|
|
return xc4000_readreg(priv, XREG_QUALITY, quality);
|
|
}
|
|
|
|
static u16 WaitForLock(struct xc4000_priv *priv)
|
|
{
|
|
u16 lockState = 0;
|
|
int watchDogCount = 40;
|
|
|
|
while ((lockState == 0) && (watchDogCount > 0)) {
|
|
xc_get_lock_status(priv, &lockState);
|
|
if (lockState != 1) {
|
|
xc_wait(5);
|
|
watchDogCount--;
|
|
}
|
|
}
|
|
return lockState;
|
|
}
|
|
|
|
#define XC_TUNE_ANALOG 0
|
|
#define XC_TUNE_DIGITAL 1
|
|
static int xc_tune_channel(struct xc4000_priv *priv, u32 freq_hz, int mode)
|
|
{
|
|
int found = 0;
|
|
|
|
dprintk(1, "%s(%u)\n", __func__, freq_hz);
|
|
|
|
if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
|
|
return 0;
|
|
|
|
if (mode == XC_TUNE_ANALOG) {
|
|
if (WaitForLock(priv) == 1)
|
|
found = 1;
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
static int xc4000_readreg(struct xc4000_priv *priv, u16 reg, u16 *val)
|
|
{
|
|
u8 buf[2] = { reg >> 8, reg & 0xff };
|
|
u8 bval[2] = { 0, 0 };
|
|
struct i2c_msg msg[2] = {
|
|
{ .addr = priv->i2c_props.addr,
|
|
.flags = 0, .buf = &buf[0], .len = 2 },
|
|
{ .addr = priv->i2c_props.addr,
|
|
.flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
|
|
};
|
|
|
|
if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
|
|
printk(KERN_WARNING "xc4000: I2C read failed\n");
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
*val = (bval[0] << 8) | bval[1];
|
|
return XC_RESULT_SUCCESS;
|
|
}
|
|
|
|
|
|
static int seek_firmware(struct dvb_frontend *fe, unsigned int type,
|
|
v4l2_std_id *id)
|
|
{
|
|
struct xc4000_priv *priv = fe->tuner_priv;
|
|
int i, best_i = -1, best_nr_matches = 0;
|
|
unsigned int type_mask = 0;
|
|
|
|
printk("%s called, want type=", __func__);
|
|
if (debug) {
|
|
// dump_firm_type(type);
|
|
printk("(%x), id %016llx.\n", type, (unsigned long long)*id);
|
|
}
|
|
|
|
if (!priv->firm) {
|
|
printk("Error! firmware not loaded\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (((type & ~SCODE) == 0) && (*id == 0))
|
|
*id = V4L2_STD_PAL;
|
|
|
|
if (type & BASE)
|
|
type_mask = BASE_TYPES;
|
|
else if (type & SCODE) {
|
|
type &= SCODE_TYPES;
|
|
type_mask = SCODE_TYPES & ~HAS_IF;
|
|
} else if (type & DTV_TYPES)
|
|
type_mask = DTV_TYPES;
|
|
else if (type & STD_SPECIFIC_TYPES)
|
|
type_mask = STD_SPECIFIC_TYPES;
|
|
|
|
type &= type_mask;
|
|
|
|
if (!(type & SCODE))
|
|
type_mask = ~0;
|
|
|
|
/* Seek for exact match */
|
|
for (i = 0; i < priv->firm_size; i++) {
|
|
if ((type == (priv->firm[i].type & type_mask)) &&
|
|
(*id == priv->firm[i].id))
|
|
goto found;
|
|
}
|
|
|
|
/* Seek for generic video standard match */
|
|
for (i = 0; i < priv->firm_size; i++) {
|
|
v4l2_std_id match_mask;
|
|
int nr_matches;
|
|
|
|
if (type != (priv->firm[i].type & type_mask))
|
|
continue;
|
|
|
|
match_mask = *id & priv->firm[i].id;
|
|
if (!match_mask)
|
|
continue;
|
|
|
|
if ((*id & match_mask) == *id)
|
|
goto found; /* Supports all the requested standards */
|
|
|
|
nr_matches = hweight64(match_mask);
|
|
if (nr_matches > best_nr_matches) {
|
|
best_nr_matches = nr_matches;
|
|
best_i = i;
|
|
}
|
|
}
|
|
|
|
if (best_nr_matches > 0) {
|
|
printk("Selecting best matching firmware (%d bits) for "
|
|
"type=", best_nr_matches);
|
|
// dump_firm_type(type);
|
|
printk("(%x), id %016llx:\n", type, (unsigned long long)*id);
|
|
i = best_i;
|
|
goto found;
|
|
}
|
|
|
|
/*FIXME: Would make sense to seek for type "hint" match ? */
|
|
|
|
i = -ENOENT;
|
|
goto ret;
|
|
|
|
found:
|
|
*id = priv->firm[i].id;
|
|
|
|
ret:
|
|
printk("%s firmware for type=", (i < 0) ? "Can't find" : "Found");
|
|
if (debug) {
|
|
// dump_firm_type(type);
|
|
printk("(%x), id %016llx.\n", type, (unsigned long long)*id);
|
|
}
|
|
return i;
|
|
}
|
|
|
|
static int load_firmware(struct dvb_frontend *fe, unsigned int type,
|
|
v4l2_std_id *id)
|
|
{
|
|
struct xc4000_priv *priv = fe->tuner_priv;
|
|
int pos, rc;
|
|
unsigned char *p;
|
|
|
|
printk("%s called\n", __func__);
|
|
|
|
pos = seek_firmware(fe, type, id);
|
|
if (pos < 0)
|
|
return pos;
|
|
|
|
printk("Loading firmware for type=");
|
|
// dump_firm_type(priv->firm[pos].type);
|
|
printk("(%x), id %016llx.\n", priv->firm[pos].type,
|
|
(unsigned long long)*id);
|
|
|
|
p = priv->firm[pos].ptr;
|
|
|
|
rc = xc_load_i2c_sequence(fe, p);
|
|
printk("load i2c sequence result=%d\n", rc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
//static int load_all_firmwares(struct dvb_frontend *fe)
|
|
static int xc4000_fwupload(struct dvb_frontend *fe)
|
|
{
|
|
struct xc4000_priv *priv = fe->tuner_priv;
|
|
const struct firmware *fw = NULL;
|
|
const unsigned char *p, *endp;
|
|
int rc = 0;
|
|
int n, n_array;
|
|
char name[33];
|
|
char *fname;
|
|
|
|
printk("%s called\n", __func__);
|
|
|
|
fname = XC4000_DEFAULT_FIRMWARE;
|
|
|
|
printk("Reading firmware %s\n", fname);
|
|
rc = request_firmware(&fw, fname, priv->i2c_props.adap->dev.parent);
|
|
if (rc < 0) {
|
|
if (rc == -ENOENT)
|
|
printk("Error: firmware %s not found.\n",
|
|
fname);
|
|
else
|
|
printk("Error %d while requesting firmware %s \n",
|
|
rc, fname);
|
|
|
|
return rc;
|
|
}
|
|
p = fw->data;
|
|
endp = p + fw->size;
|
|
|
|
if (fw->size < sizeof(name) - 1 + 2 + 2) {
|
|
printk("Error: firmware file %s has invalid size!\n",
|
|
fname);
|
|
goto corrupt;
|
|
}
|
|
|
|
memcpy(name, p, sizeof(name) - 1);
|
|
name[sizeof(name) - 1] = 0;
|
|
p += sizeof(name) - 1;
|
|
|
|
priv->firm_version = get_unaligned_le16(p);
|
|
p += 2;
|
|
|
|
n_array = get_unaligned_le16(p);
|
|
p += 2;
|
|
|
|
printk("Loading %d firmware images from %s, type: %s, ver %d.%d\n",
|
|
n_array, fname, name,
|
|
priv->firm_version >> 8, priv->firm_version & 0xff);
|
|
|
|
priv->firm = kzalloc(sizeof(*priv->firm) * n_array, GFP_KERNEL);
|
|
if (priv->firm == NULL) {
|
|
printk("Not enough memory to load firmware file.\n");
|
|
rc = -ENOMEM;
|
|
goto err;
|
|
}
|
|
priv->firm_size = n_array;
|
|
|
|
n = -1;
|
|
while (p < endp) {
|
|
__u32 type, size;
|
|
v4l2_std_id id;
|
|
__u16 int_freq = 0;
|
|
|
|
n++;
|
|
if (n >= n_array) {
|
|
printk("More firmware images in file than "
|
|
"were expected!\n");
|
|
goto corrupt;
|
|
}
|
|
|
|
/* Checks if there's enough bytes to read */
|
|
if (endp - p < sizeof(type) + sizeof(id) + sizeof(size))
|
|
goto header;
|
|
|
|
type = get_unaligned_le32(p);
|
|
p += sizeof(type);
|
|
|
|
id = get_unaligned_le64(p);
|
|
p += sizeof(id);
|
|
|
|
if (type & HAS_IF) {
|
|
int_freq = get_unaligned_le16(p);
|
|
p += sizeof(int_freq);
|
|
if (endp - p < sizeof(size))
|
|
goto header;
|
|
}
|
|
|
|
size = get_unaligned_le32(p);
|
|
p += sizeof(size);
|
|
|
|
if (!size || size > endp - p) {
|
|
printk("Firmware type ");
|
|
// dump_firm_type(type);
|
|
printk("(%x), id %llx is corrupted "
|
|
"(size=%d, expected %d)\n",
|
|
type, (unsigned long long)id,
|
|
(unsigned)(endp - p), size);
|
|
goto corrupt;
|
|
}
|
|
|
|
priv->firm[n].ptr = kzalloc(size, GFP_KERNEL);
|
|
if (priv->firm[n].ptr == NULL) {
|
|
printk("Not enough memory to load firmware file.\n");
|
|
rc = -ENOMEM;
|
|
goto err;
|
|
}
|
|
printk("Reading firmware type ");
|
|
if (debug) {
|
|
// dump_firm_type_and_int_freq(type, int_freq);
|
|
printk("(%x), id %llx, size=%d.\n",
|
|
type, (unsigned long long)id, size);
|
|
}
|
|
|
|
memcpy(priv->firm[n].ptr, p, size);
|
|
priv->firm[n].type = type;
|
|
priv->firm[n].id = id;
|
|
priv->firm[n].size = size;
|
|
priv->firm[n].int_freq = int_freq;
|
|
|
|
p += size;
|
|
}
|
|
|
|
if (n + 1 != priv->firm_size) {
|
|
printk("Firmware file is incomplete!\n");
|
|
goto corrupt;
|
|
}
|
|
|
|
goto done;
|
|
|
|
header:
|
|
printk("Firmware header is incomplete!\n");
|
|
corrupt:
|
|
rc = -EINVAL;
|
|
printk("Error: firmware file is corrupted!\n");
|
|
|
|
err:
|
|
printk("Releasing partially loaded firmware file.\n");
|
|
// free_firmware(priv);
|
|
|
|
done:
|
|
release_firmware(fw);
|
|
if (rc == 0)
|
|
printk("Firmware files loaded.\n");
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
static void xc_debug_dump(struct xc4000_priv *priv)
|
|
{
|
|
u16 adc_envelope;
|
|
u32 freq_error_hz = 0;
|
|
u16 lock_status;
|
|
u32 hsync_freq_hz = 0;
|
|
u16 frame_lines;
|
|
u16 quality;
|
|
u8 hw_majorversion = 0, hw_minorversion = 0;
|
|
u8 fw_majorversion = 0, fw_minorversion = 0;
|
|
// u16 fw_buildversion = 0;
|
|
|
|
/* Wait for stats to stabilize.
|
|
* Frame Lines needs two frame times after initial lock
|
|
* before it is valid.
|
|
*/
|
|
xc_wait(100);
|
|
|
|
xc_get_ADC_Envelope(priv, &adc_envelope);
|
|
dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
|
|
|
|
xc_get_frequency_error(priv, &freq_error_hz);
|
|
dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
|
|
|
|
xc_get_lock_status(priv, &lock_status);
|
|
dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
|
|
lock_status);
|
|
|
|
xc_get_version(priv, &hw_majorversion, &hw_minorversion,
|
|
&fw_majorversion, &fw_minorversion);
|
|
// WAS:
|
|
// xc_get_buildversion(priv, &fw_buildversion);
|
|
// dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x.%04x\n",
|
|
// hw_majorversion, hw_minorversion,
|
|
// fw_majorversion, fw_minorversion, fw_buildversion);
|
|
// NOW:
|
|
dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n",
|
|
hw_majorversion, hw_minorversion,
|
|
fw_majorversion, fw_minorversion);
|
|
|
|
xc_get_hsync_freq(priv, &hsync_freq_hz);
|
|
dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
|
|
|
|
xc_get_frame_lines(priv, &frame_lines);
|
|
dprintk(1, "*** Frame lines = %d\n", frame_lines);
|
|
|
|
xc_get_quality(priv, &quality);
|
|
dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
|
|
}
|
|
|
|
static int xc4000_set_params(struct dvb_frontend *fe,
|
|
struct dvb_frontend_parameters *params)
|
|
{
|
|
struct xc4000_priv *priv = fe->tuner_priv;
|
|
int ret;
|
|
|
|
if (xc4000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS)
|
|
xc_load_fw_and_init_tuner(fe);
|
|
|
|
dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency);
|
|
|
|
if (fe->ops.info.type == FE_ATSC) {
|
|
dprintk(1, "%s() ATSC\n", __func__);
|
|
switch (params->u.vsb.modulation) {
|
|
case VSB_8:
|
|
case VSB_16:
|
|
dprintk(1, "%s() VSB modulation\n", __func__);
|
|
priv->rf_mode = XC_RF_MODE_AIR;
|
|
priv->freq_hz = params->frequency - 1750000;
|
|
priv->bandwidth = BANDWIDTH_6_MHZ;
|
|
priv->video_standard = DTV6;
|
|
break;
|
|
case QAM_64:
|
|
case QAM_256:
|
|
case QAM_AUTO:
|
|
dprintk(1, "%s() QAM modulation\n", __func__);
|
|
priv->rf_mode = XC_RF_MODE_CABLE;
|
|
priv->freq_hz = params->frequency - 1750000;
|
|
priv->bandwidth = BANDWIDTH_6_MHZ;
|
|
priv->video_standard = DTV6;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
} else if (fe->ops.info.type == FE_OFDM) {
|
|
dprintk(1, "%s() OFDM\n", __func__);
|
|
switch (params->u.ofdm.bandwidth) {
|
|
case BANDWIDTH_6_MHZ:
|
|
priv->bandwidth = BANDWIDTH_6_MHZ;
|
|
priv->video_standard = DTV6;
|
|
priv->freq_hz = params->frequency - 1750000;
|
|
break;
|
|
case BANDWIDTH_7_MHZ:
|
|
printk(KERN_ERR "xc4000 bandwidth 7MHz not supported\n");
|
|
return -EINVAL;
|
|
case BANDWIDTH_8_MHZ:
|
|
priv->bandwidth = BANDWIDTH_8_MHZ;
|
|
priv->video_standard = DTV8;
|
|
priv->freq_hz = params->frequency - 2750000;
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "xc4000 bandwidth not set!\n");
|
|
return -EINVAL;
|
|
}
|
|
priv->rf_mode = XC_RF_MODE_AIR;
|
|
} else {
|
|
printk(KERN_ERR "xc4000 modulation type not supported!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dprintk(1, "%s() frequency=%d (compensated)\n",
|
|
__func__, priv->freq_hz);
|
|
|
|
ret = xc_SetSignalSource(priv, priv->rf_mode);
|
|
if (ret != XC_RESULT_SUCCESS) {
|
|
printk(KERN_ERR
|
|
"xc4000: xc_SetSignalSource(%d) failed\n",
|
|
priv->rf_mode);
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
ret = xc_SetTVStandard(priv,
|
|
XC4000_Standard[priv->video_standard].VideoMode,
|
|
XC4000_Standard[priv->video_standard].AudioMode);
|
|
if (ret != XC_RESULT_SUCCESS) {
|
|
printk(KERN_ERR "xc4000: xc_SetTVStandard failed\n");
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
ret = xc_set_IF_frequency(priv, priv->if_khz);
|
|
if (ret != XC_RESULT_SUCCESS) {
|
|
printk(KERN_ERR "xc4000: xc_Set_IF_frequency(%d) failed\n",
|
|
priv->if_khz);
|
|
return -EIO;
|
|
}
|
|
|
|
xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL);
|
|
|
|
if (debug)
|
|
xc_debug_dump(priv);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int xc4000_is_firmware_loaded(struct dvb_frontend *fe)
|
|
{
|
|
struct xc4000_priv *priv = fe->tuner_priv;
|
|
int ret;
|
|
u16 id;
|
|
|
|
ret = xc4000_readreg(priv, XREG_PRODUCT_ID, &id);
|
|
if (ret == XC_RESULT_SUCCESS) {
|
|
if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
|
|
ret = XC_RESULT_RESET_FAILURE;
|
|
else
|
|
ret = XC_RESULT_SUCCESS;
|
|
}
|
|
|
|
dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
|
|
ret == XC_RESULT_SUCCESS ? "True" : "False", id);
|
|
return ret;
|
|
}
|
|
|
|
static int xc4000_set_analog_params(struct dvb_frontend *fe,
|
|
struct analog_parameters *params)
|
|
{
|
|
struct xc4000_priv *priv = fe->tuner_priv;
|
|
int ret;
|
|
|
|
if (xc4000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS)
|
|
xc_load_fw_and_init_tuner(fe);
|
|
|
|
dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
|
|
__func__, params->frequency);
|
|
|
|
/* Fix me: it could be air. */
|
|
priv->rf_mode = params->mode;
|
|
if (params->mode > XC_RF_MODE_CABLE)
|
|
priv->rf_mode = XC_RF_MODE_CABLE;
|
|
|
|
/* params->frequency is in units of 62.5khz */
|
|
priv->freq_hz = params->frequency * 62500;
|
|
|
|
/* FIX ME: Some video standards may have several possible audio
|
|
standards. We simply default to one of them here.
|
|
*/
|
|
if (params->std & V4L2_STD_MN) {
|
|
/* default to BTSC audio standard */
|
|
priv->video_standard = MN_NTSC_PAL_BTSC;
|
|
goto tune_channel;
|
|
}
|
|
|
|
if (params->std & V4L2_STD_PAL_BG) {
|
|
/* default to NICAM audio standard */
|
|
priv->video_standard = BG_PAL_NICAM;
|
|
goto tune_channel;
|
|
}
|
|
|
|
if (params->std & V4L2_STD_PAL_I) {
|
|
/* default to NICAM audio standard */
|
|
priv->video_standard = I_PAL_NICAM;
|
|
goto tune_channel;
|
|
}
|
|
|
|
if (params->std & V4L2_STD_PAL_DK) {
|
|
/* default to NICAM audio standard */
|
|
priv->video_standard = DK_PAL_NICAM;
|
|
goto tune_channel;
|
|
}
|
|
|
|
if (params->std & V4L2_STD_SECAM_DK) {
|
|
/* default to A2 DK1 audio standard */
|
|
priv->video_standard = DK_SECAM_A2DK1;
|
|
goto tune_channel;
|
|
}
|
|
|
|
if (params->std & V4L2_STD_SECAM_L) {
|
|
priv->video_standard = L_SECAM_NICAM;
|
|
goto tune_channel;
|
|
}
|
|
|
|
if (params->std & V4L2_STD_SECAM_LC) {
|
|
priv->video_standard = LC_SECAM_NICAM;
|
|
goto tune_channel;
|
|
}
|
|
|
|
tune_channel:
|
|
ret = xc_SetSignalSource(priv, priv->rf_mode);
|
|
if (ret != XC_RESULT_SUCCESS) {
|
|
printk(KERN_ERR
|
|
"xc4000: xc_SetSignalSource(%d) failed\n",
|
|
priv->rf_mode);
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
ret = xc_SetTVStandard(priv,
|
|
XC4000_Standard[priv->video_standard].VideoMode,
|
|
XC4000_Standard[priv->video_standard].AudioMode);
|
|
if (ret != XC_RESULT_SUCCESS) {
|
|
printk(KERN_ERR "xc4000: xc_SetTVStandard failed\n");
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
|
|
|
|
if (debug)
|
|
xc_debug_dump(priv);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int xc4000_get_frequency(struct dvb_frontend *fe, u32 *freq)
|
|
{
|
|
struct xc4000_priv *priv = fe->tuner_priv;
|
|
dprintk(1, "%s()\n", __func__);
|
|
*freq = priv->freq_hz;
|
|
return 0;
|
|
}
|
|
|
|
static int xc4000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
|
|
{
|
|
struct xc4000_priv *priv = fe->tuner_priv;
|
|
dprintk(1, "%s()\n", __func__);
|
|
|
|
*bw = priv->bandwidth;
|
|
return 0;
|
|
}
|
|
|
|
static int xc4000_get_status(struct dvb_frontend *fe, u32 *status)
|
|
{
|
|
struct xc4000_priv *priv = fe->tuner_priv;
|
|
u16 lock_status = 0;
|
|
|
|
xc_get_lock_status(priv, &lock_status);
|
|
|
|
dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
|
|
|
|
*status = lock_status;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe)
|
|
{
|
|
struct xc4000_priv *priv = fe->tuner_priv;
|
|
int ret = 0;
|
|
|
|
if (xc4000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
|
|
ret = xc4000_fwupload(fe);
|
|
if (ret != XC_RESULT_SUCCESS)
|
|
return ret;
|
|
}
|
|
|
|
/* Start the tuner self-calibration process */
|
|
ret |= xc_initialize(priv);
|
|
|
|
/* Wait for calibration to complete.
|
|
* We could continue but XC4000 will clock stretch subsequent
|
|
* I2C transactions until calibration is complete. This way we
|
|
* don't have to rely on clock stretching working.
|
|
*/
|
|
xc_wait(100);
|
|
|
|
/* Default to "CABLE" mode */
|
|
ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int xc4000_sleep(struct dvb_frontend *fe)
|
|
{
|
|
int ret;
|
|
|
|
dprintk(1, "%s()\n", __func__);
|
|
|
|
/* Avoid firmware reload on slow devices */
|
|
if (no_poweroff)
|
|
return 0;
|
|
|
|
/* According to Xceive technical support, the "powerdown" register
|
|
was removed in newer versions of the firmware. The "supported"
|
|
way to sleep the tuner is to pull the reset pin low for 10ms */
|
|
ret = xc4000_TunerReset(fe);
|
|
if (ret != XC_RESULT_SUCCESS) {
|
|
printk(KERN_ERR
|
|
"xc4000: %s() unable to shutdown tuner\n",
|
|
__func__);
|
|
return -EREMOTEIO;
|
|
} else
|
|
return XC_RESULT_SUCCESS;
|
|
}
|
|
|
|
static int xc4000_init(struct dvb_frontend *fe)
|
|
{
|
|
struct xc4000_priv *priv = fe->tuner_priv;
|
|
dprintk(1, "%s()\n", __func__);
|
|
|
|
if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
|
|
printk(KERN_ERR "xc4000: Unable to initialise tuner\n");
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
if (debug)
|
|
xc_debug_dump(priv);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int xc4000_release(struct dvb_frontend *fe)
|
|
{
|
|
struct xc4000_priv *priv = fe->tuner_priv;
|
|
|
|
dprintk(1, "%s()\n", __func__);
|
|
|
|
mutex_lock(&xc4000_list_mutex);
|
|
|
|
if (priv)
|
|
hybrid_tuner_release_state(priv);
|
|
|
|
mutex_unlock(&xc4000_list_mutex);
|
|
|
|
fe->tuner_priv = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct dvb_tuner_ops xc4000_tuner_ops = {
|
|
.info = {
|
|
.name = "Xceive XC4000",
|
|
.frequency_min = 1000000,
|
|
.frequency_max = 1023000000,
|
|
.frequency_step = 50000,
|
|
},
|
|
|
|
.release = xc4000_release,
|
|
.init = xc4000_init,
|
|
.sleep = xc4000_sleep,
|
|
|
|
.set_params = xc4000_set_params,
|
|
.set_analog_params = xc4000_set_analog_params,
|
|
.get_frequency = xc4000_get_frequency,
|
|
.get_bandwidth = xc4000_get_bandwidth,
|
|
.get_status = xc4000_get_status
|
|
};
|
|
|
|
struct dvb_frontend *xc4000_attach(struct dvb_frontend *fe,
|
|
struct i2c_adapter *i2c,
|
|
struct xc4000_config *cfg)
|
|
{
|
|
struct xc4000_priv *priv = NULL;
|
|
int instance;
|
|
v4l2_std_id std0;
|
|
u16 id = 0;
|
|
int rc;
|
|
|
|
dprintk(1, "%s(%d-%04x)\n", __func__,
|
|
i2c ? i2c_adapter_id(i2c) : -1,
|
|
cfg ? cfg->i2c_address : -1);
|
|
|
|
mutex_lock(&xc4000_list_mutex);
|
|
|
|
instance = hybrid_tuner_request_state(struct xc4000_priv, priv,
|
|
hybrid_tuner_instance_list,
|
|
i2c, cfg->i2c_address, "xc4000");
|
|
switch (instance) {
|
|
case 0:
|
|
goto fail;
|
|
break;
|
|
case 1:
|
|
/* new tuner instance */
|
|
priv->bandwidth = BANDWIDTH_6_MHZ;
|
|
fe->tuner_priv = priv;
|
|
break;
|
|
default:
|
|
/* existing tuner instance */
|
|
fe->tuner_priv = priv;
|
|
break;
|
|
}
|
|
|
|
if (priv->if_khz == 0) {
|
|
/* If the IF hasn't been set yet, use the value provided by
|
|
the caller (occurs in hybrid devices where the analog
|
|
call to xc4000_attach occurs before the digital side) */
|
|
priv->if_khz = cfg->if_khz;
|
|
}
|
|
|
|
/* Check if firmware has been loaded. It is possible that another
|
|
instance of the driver has loaded the firmware.
|
|
*/
|
|
|
|
if (xc4000_readreg(priv, XREG_PRODUCT_ID, &id) != XC_RESULT_SUCCESS)
|
|
goto fail;
|
|
|
|
switch (id) {
|
|
case XC_PRODUCT_ID_FW_LOADED:
|
|
printk(KERN_INFO
|
|
"xc4000: Successfully identified at address 0x%02x\n",
|
|
cfg->i2c_address);
|
|
printk(KERN_INFO
|
|
"xc4000: Firmware has been loaded previously\n");
|
|
break;
|
|
case XC_PRODUCT_ID_FW_NOT_LOADED:
|
|
printk(KERN_INFO
|
|
"xc4000: Successfully identified at address 0x%02x\n",
|
|
cfg->i2c_address);
|
|
printk(KERN_INFO
|
|
"xc4000: Firmware has not been loaded previously\n");
|
|
break;
|
|
default:
|
|
printk(KERN_ERR
|
|
"xc4000: Device not found at addr 0x%02x (0x%x)\n",
|
|
cfg->i2c_address, id);
|
|
goto fail;
|
|
}
|
|
|
|
mutex_unlock(&xc4000_list_mutex);
|
|
|
|
memcpy(&fe->ops.tuner_ops, &xc4000_tuner_ops,
|
|
sizeof(struct dvb_tuner_ops));
|
|
|
|
/* FIXME: For now, load the firmware at startup. We will remove this
|
|
before the code goes to production... */
|
|
xc4000_fwupload(fe);
|
|
printk("xc4000_fwupload done\n");
|
|
|
|
std0 = 0;
|
|
// rc = load_firmware(fe, BASE | new_fw.type, &std0);
|
|
rc = load_firmware(fe, BASE, &std0);
|
|
if (rc != XC_RESULT_SUCCESS) {
|
|
tuner_err("Error %d while loading base firmware\n",
|
|
rc);
|
|
goto fail;
|
|
}
|
|
|
|
/* Load INIT1, if needed */
|
|
tuner_dbg("Load init1 firmware, if exists\n");
|
|
|
|
// rc = load_firmware(fe, BASE | INIT1 | new_fw.type, &std0);
|
|
rc = load_firmware(fe, BASE | INIT1, &std0);
|
|
printk("init1 load result %x\n", rc);
|
|
|
|
if (xc4000_readreg(priv, XREG_PRODUCT_ID, &id) != XC_RESULT_SUCCESS)
|
|
goto fail;
|
|
printk("djh id is now %x\n", id);
|
|
|
|
return fe;
|
|
fail:
|
|
mutex_unlock(&xc4000_list_mutex);
|
|
|
|
xc4000_release(fe);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(xc4000_attach);
|
|
|
|
MODULE_AUTHOR("Steven Toth, Davide Ferri");
|
|
MODULE_DESCRIPTION("Xceive xc4000 silicon tuner driver");
|
|
MODULE_LICENSE("GPL");
|