2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 14:43:58 +08:00
linux-next/net/socket.c
John Fastabend db5980d804 net: fixes for skb_send_sock
A couple fixes to new skb_send_sock infrastructure. However, no users
currently exist for this code (adding user in next handful of patches)
so it should not be possible to trigger a panic with existing in-kernel
code.

Fixes: 306b13eb3c ("proto_ops: Add locked held versions of sendmsg and sendpage")
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-16 11:27:52 -07:00

3468 lines
84 KiB
C

/*
* NET An implementation of the SOCKET network access protocol.
*
* Version: @(#)socket.c 1.1.93 18/02/95
*
* Authors: Orest Zborowski, <obz@Kodak.COM>
* Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
*
* Fixes:
* Anonymous : NOTSOCK/BADF cleanup. Error fix in
* shutdown()
* Alan Cox : verify_area() fixes
* Alan Cox : Removed DDI
* Jonathan Kamens : SOCK_DGRAM reconnect bug
* Alan Cox : Moved a load of checks to the very
* top level.
* Alan Cox : Move address structures to/from user
* mode above the protocol layers.
* Rob Janssen : Allow 0 length sends.
* Alan Cox : Asynchronous I/O support (cribbed from the
* tty drivers).
* Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
* Jeff Uphoff : Made max number of sockets command-line
* configurable.
* Matti Aarnio : Made the number of sockets dynamic,
* to be allocated when needed, and mr.
* Uphoff's max is used as max to be
* allowed to allocate.
* Linus : Argh. removed all the socket allocation
* altogether: it's in the inode now.
* Alan Cox : Made sock_alloc()/sock_release() public
* for NetROM and future kernel nfsd type
* stuff.
* Alan Cox : sendmsg/recvmsg basics.
* Tom Dyas : Export net symbols.
* Marcin Dalecki : Fixed problems with CONFIG_NET="n".
* Alan Cox : Added thread locking to sys_* calls
* for sockets. May have errors at the
* moment.
* Kevin Buhr : Fixed the dumb errors in the above.
* Andi Kleen : Some small cleanups, optimizations,
* and fixed a copy_from_user() bug.
* Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
* Tigran Aivazian : Made listen(2) backlog sanity checks
* protocol-independent
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*
* This module is effectively the top level interface to the BSD socket
* paradigm.
*
* Based upon Swansea University Computer Society NET3.039
*/
#include <linux/mm.h>
#include <linux/socket.h>
#include <linux/file.h>
#include <linux/net.h>
#include <linux/interrupt.h>
#include <linux/thread_info.h>
#include <linux/rcupdate.h>
#include <linux/netdevice.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/mutex.h>
#include <linux/if_bridge.h>
#include <linux/if_frad.h>
#include <linux/if_vlan.h>
#include <linux/ptp_classify.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/cache.h>
#include <linux/module.h>
#include <linux/highmem.h>
#include <linux/mount.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/compat.h>
#include <linux/kmod.h>
#include <linux/audit.h>
#include <linux/wireless.h>
#include <linux/nsproxy.h>
#include <linux/magic.h>
#include <linux/slab.h>
#include <linux/xattr.h>
#include <linux/uaccess.h>
#include <asm/unistd.h>
#include <net/compat.h>
#include <net/wext.h>
#include <net/cls_cgroup.h>
#include <net/sock.h>
#include <linux/netfilter.h>
#include <linux/if_tun.h>
#include <linux/ipv6_route.h>
#include <linux/route.h>
#include <linux/sockios.h>
#include <linux/atalk.h>
#include <net/busy_poll.h>
#include <linux/errqueue.h>
#ifdef CONFIG_NET_RX_BUSY_POLL
unsigned int sysctl_net_busy_read __read_mostly;
unsigned int sysctl_net_busy_poll __read_mostly;
#endif
static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
static int sock_mmap(struct file *file, struct vm_area_struct *vma);
static int sock_close(struct inode *inode, struct file *file);
static unsigned int sock_poll(struct file *file,
struct poll_table_struct *wait);
static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
#ifdef CONFIG_COMPAT
static long compat_sock_ioctl(struct file *file,
unsigned int cmd, unsigned long arg);
#endif
static int sock_fasync(int fd, struct file *filp, int on);
static ssize_t sock_sendpage(struct file *file, struct page *page,
int offset, size_t size, loff_t *ppos, int more);
static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
struct pipe_inode_info *pipe, size_t len,
unsigned int flags);
/*
* Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
* in the operation structures but are done directly via the socketcall() multiplexor.
*/
static const struct file_operations socket_file_ops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read_iter = sock_read_iter,
.write_iter = sock_write_iter,
.poll = sock_poll,
.unlocked_ioctl = sock_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = compat_sock_ioctl,
#endif
.mmap = sock_mmap,
.release = sock_close,
.fasync = sock_fasync,
.sendpage = sock_sendpage,
.splice_write = generic_splice_sendpage,
.splice_read = sock_splice_read,
};
/*
* The protocol list. Each protocol is registered in here.
*/
static DEFINE_SPINLOCK(net_family_lock);
static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
/*
* Statistics counters of the socket lists
*/
static DEFINE_PER_CPU(int, sockets_in_use);
/*
* Support routines.
* Move socket addresses back and forth across the kernel/user
* divide and look after the messy bits.
*/
/**
* move_addr_to_kernel - copy a socket address into kernel space
* @uaddr: Address in user space
* @kaddr: Address in kernel space
* @ulen: Length in user space
*
* The address is copied into kernel space. If the provided address is
* too long an error code of -EINVAL is returned. If the copy gives
* invalid addresses -EFAULT is returned. On a success 0 is returned.
*/
int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
{
if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
return -EINVAL;
if (ulen == 0)
return 0;
if (copy_from_user(kaddr, uaddr, ulen))
return -EFAULT;
return audit_sockaddr(ulen, kaddr);
}
/**
* move_addr_to_user - copy an address to user space
* @kaddr: kernel space address
* @klen: length of address in kernel
* @uaddr: user space address
* @ulen: pointer to user length field
*
* The value pointed to by ulen on entry is the buffer length available.
* This is overwritten with the buffer space used. -EINVAL is returned
* if an overlong buffer is specified or a negative buffer size. -EFAULT
* is returned if either the buffer or the length field are not
* accessible.
* After copying the data up to the limit the user specifies, the true
* length of the data is written over the length limit the user
* specified. Zero is returned for a success.
*/
static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
void __user *uaddr, int __user *ulen)
{
int err;
int len;
BUG_ON(klen > sizeof(struct sockaddr_storage));
err = get_user(len, ulen);
if (err)
return err;
if (len > klen)
len = klen;
if (len < 0)
return -EINVAL;
if (len) {
if (audit_sockaddr(klen, kaddr))
return -ENOMEM;
if (copy_to_user(uaddr, kaddr, len))
return -EFAULT;
}
/*
* "fromlen shall refer to the value before truncation.."
* 1003.1g
*/
return __put_user(klen, ulen);
}
static struct kmem_cache *sock_inode_cachep __read_mostly;
static struct inode *sock_alloc_inode(struct super_block *sb)
{
struct socket_alloc *ei;
struct socket_wq *wq;
ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
if (!ei)
return NULL;
wq = kmalloc(sizeof(*wq), GFP_KERNEL);
if (!wq) {
kmem_cache_free(sock_inode_cachep, ei);
return NULL;
}
init_waitqueue_head(&wq->wait);
wq->fasync_list = NULL;
wq->flags = 0;
RCU_INIT_POINTER(ei->socket.wq, wq);
ei->socket.state = SS_UNCONNECTED;
ei->socket.flags = 0;
ei->socket.ops = NULL;
ei->socket.sk = NULL;
ei->socket.file = NULL;
return &ei->vfs_inode;
}
static void sock_destroy_inode(struct inode *inode)
{
struct socket_alloc *ei;
struct socket_wq *wq;
ei = container_of(inode, struct socket_alloc, vfs_inode);
wq = rcu_dereference_protected(ei->socket.wq, 1);
kfree_rcu(wq, rcu);
kmem_cache_free(sock_inode_cachep, ei);
}
static void init_once(void *foo)
{
struct socket_alloc *ei = (struct socket_alloc *)foo;
inode_init_once(&ei->vfs_inode);
}
static void init_inodecache(void)
{
sock_inode_cachep = kmem_cache_create("sock_inode_cache",
sizeof(struct socket_alloc),
0,
(SLAB_HWCACHE_ALIGN |
SLAB_RECLAIM_ACCOUNT |
SLAB_MEM_SPREAD | SLAB_ACCOUNT),
init_once);
BUG_ON(sock_inode_cachep == NULL);
}
static const struct super_operations sockfs_ops = {
.alloc_inode = sock_alloc_inode,
.destroy_inode = sock_destroy_inode,
.statfs = simple_statfs,
};
/*
* sockfs_dname() is called from d_path().
*/
static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
{
return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
d_inode(dentry)->i_ino);
}
static const struct dentry_operations sockfs_dentry_operations = {
.d_dname = sockfs_dname,
};
static int sockfs_xattr_get(const struct xattr_handler *handler,
struct dentry *dentry, struct inode *inode,
const char *suffix, void *value, size_t size)
{
if (value) {
if (dentry->d_name.len + 1 > size)
return -ERANGE;
memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
}
return dentry->d_name.len + 1;
}
#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
static const struct xattr_handler sockfs_xattr_handler = {
.name = XATTR_NAME_SOCKPROTONAME,
.get = sockfs_xattr_get,
};
static int sockfs_security_xattr_set(const struct xattr_handler *handler,
struct dentry *dentry, struct inode *inode,
const char *suffix, const void *value,
size_t size, int flags)
{
/* Handled by LSM. */
return -EAGAIN;
}
static const struct xattr_handler sockfs_security_xattr_handler = {
.prefix = XATTR_SECURITY_PREFIX,
.set = sockfs_security_xattr_set,
};
static const struct xattr_handler *sockfs_xattr_handlers[] = {
&sockfs_xattr_handler,
&sockfs_security_xattr_handler,
NULL
};
static struct dentry *sockfs_mount(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
sockfs_xattr_handlers,
&sockfs_dentry_operations, SOCKFS_MAGIC);
}
static struct vfsmount *sock_mnt __read_mostly;
static struct file_system_type sock_fs_type = {
.name = "sockfs",
.mount = sockfs_mount,
.kill_sb = kill_anon_super,
};
/*
* Obtains the first available file descriptor and sets it up for use.
*
* These functions create file structures and maps them to fd space
* of the current process. On success it returns file descriptor
* and file struct implicitly stored in sock->file.
* Note that another thread may close file descriptor before we return
* from this function. We use the fact that now we do not refer
* to socket after mapping. If one day we will need it, this
* function will increment ref. count on file by 1.
*
* In any case returned fd MAY BE not valid!
* This race condition is unavoidable
* with shared fd spaces, we cannot solve it inside kernel,
* but we take care of internal coherence yet.
*/
struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
{
struct qstr name = { .name = "" };
struct path path;
struct file *file;
if (dname) {
name.name = dname;
name.len = strlen(name.name);
} else if (sock->sk) {
name.name = sock->sk->sk_prot_creator->name;
name.len = strlen(name.name);
}
path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
if (unlikely(!path.dentry))
return ERR_PTR(-ENOMEM);
path.mnt = mntget(sock_mnt);
d_instantiate(path.dentry, SOCK_INODE(sock));
file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
&socket_file_ops);
if (IS_ERR(file)) {
/* drop dentry, keep inode */
ihold(d_inode(path.dentry));
path_put(&path);
return file;
}
sock->file = file;
file->f_flags = O_RDWR | (flags & O_NONBLOCK);
file->private_data = sock;
return file;
}
EXPORT_SYMBOL(sock_alloc_file);
static int sock_map_fd(struct socket *sock, int flags)
{
struct file *newfile;
int fd = get_unused_fd_flags(flags);
if (unlikely(fd < 0))
return fd;
newfile = sock_alloc_file(sock, flags, NULL);
if (likely(!IS_ERR(newfile))) {
fd_install(fd, newfile);
return fd;
}
put_unused_fd(fd);
return PTR_ERR(newfile);
}
struct socket *sock_from_file(struct file *file, int *err)
{
if (file->f_op == &socket_file_ops)
return file->private_data; /* set in sock_map_fd */
*err = -ENOTSOCK;
return NULL;
}
EXPORT_SYMBOL(sock_from_file);
/**
* sockfd_lookup - Go from a file number to its socket slot
* @fd: file handle
* @err: pointer to an error code return
*
* The file handle passed in is locked and the socket it is bound
* to is returned. If an error occurs the err pointer is overwritten
* with a negative errno code and NULL is returned. The function checks
* for both invalid handles and passing a handle which is not a socket.
*
* On a success the socket object pointer is returned.
*/
struct socket *sockfd_lookup(int fd, int *err)
{
struct file *file;
struct socket *sock;
file = fget(fd);
if (!file) {
*err = -EBADF;
return NULL;
}
sock = sock_from_file(file, err);
if (!sock)
fput(file);
return sock;
}
EXPORT_SYMBOL(sockfd_lookup);
static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
{
struct fd f = fdget(fd);
struct socket *sock;
*err = -EBADF;
if (f.file) {
sock = sock_from_file(f.file, err);
if (likely(sock)) {
*fput_needed = f.flags;
return sock;
}
fdput(f);
}
return NULL;
}
static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
size_t size)
{
ssize_t len;
ssize_t used = 0;
len = security_inode_listsecurity(d_inode(dentry), buffer, size);
if (len < 0)
return len;
used += len;
if (buffer) {
if (size < used)
return -ERANGE;
buffer += len;
}
len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
used += len;
if (buffer) {
if (size < used)
return -ERANGE;
memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
buffer += len;
}
return used;
}
static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
{
int err = simple_setattr(dentry, iattr);
if (!err && (iattr->ia_valid & ATTR_UID)) {
struct socket *sock = SOCKET_I(d_inode(dentry));
sock->sk->sk_uid = iattr->ia_uid;
}
return err;
}
static const struct inode_operations sockfs_inode_ops = {
.listxattr = sockfs_listxattr,
.setattr = sockfs_setattr,
};
/**
* sock_alloc - allocate a socket
*
* Allocate a new inode and socket object. The two are bound together
* and initialised. The socket is then returned. If we are out of inodes
* NULL is returned.
*/
struct socket *sock_alloc(void)
{
struct inode *inode;
struct socket *sock;
inode = new_inode_pseudo(sock_mnt->mnt_sb);
if (!inode)
return NULL;
sock = SOCKET_I(inode);
kmemcheck_annotate_bitfield(sock, type);
inode->i_ino = get_next_ino();
inode->i_mode = S_IFSOCK | S_IRWXUGO;
inode->i_uid = current_fsuid();
inode->i_gid = current_fsgid();
inode->i_op = &sockfs_inode_ops;
this_cpu_add(sockets_in_use, 1);
return sock;
}
EXPORT_SYMBOL(sock_alloc);
/**
* sock_release - close a socket
* @sock: socket to close
*
* The socket is released from the protocol stack if it has a release
* callback, and the inode is then released if the socket is bound to
* an inode not a file.
*/
void sock_release(struct socket *sock)
{
if (sock->ops) {
struct module *owner = sock->ops->owner;
sock->ops->release(sock);
sock->ops = NULL;
module_put(owner);
}
if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
pr_err("%s: fasync list not empty!\n", __func__);
this_cpu_sub(sockets_in_use, 1);
if (!sock->file) {
iput(SOCK_INODE(sock));
return;
}
sock->file = NULL;
}
EXPORT_SYMBOL(sock_release);
void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
{
u8 flags = *tx_flags;
if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
flags |= SKBTX_HW_TSTAMP;
if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
flags |= SKBTX_SW_TSTAMP;
if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
flags |= SKBTX_SCHED_TSTAMP;
*tx_flags = flags;
}
EXPORT_SYMBOL(__sock_tx_timestamp);
static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
{
int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
BUG_ON(ret == -EIOCBQUEUED);
return ret;
}
int sock_sendmsg(struct socket *sock, struct msghdr *msg)
{
int err = security_socket_sendmsg(sock, msg,
msg_data_left(msg));
return err ?: sock_sendmsg_nosec(sock, msg);
}
EXPORT_SYMBOL(sock_sendmsg);
int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
struct kvec *vec, size_t num, size_t size)
{
iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
return sock_sendmsg(sock, msg);
}
EXPORT_SYMBOL(kernel_sendmsg);
int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
struct kvec *vec, size_t num, size_t size)
{
struct socket *sock = sk->sk_socket;
if (!sock->ops->sendmsg_locked)
return sock_no_sendmsg_locked(sk, msg, size);
iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
}
EXPORT_SYMBOL(kernel_sendmsg_locked);
static bool skb_is_err_queue(const struct sk_buff *skb)
{
/* pkt_type of skbs enqueued on the error queue are set to
* PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
* in recvmsg, since skbs received on a local socket will never
* have a pkt_type of PACKET_OUTGOING.
*/
return skb->pkt_type == PACKET_OUTGOING;
}
/* On transmit, software and hardware timestamps are returned independently.
* As the two skb clones share the hardware timestamp, which may be updated
* before the software timestamp is received, a hardware TX timestamp may be
* returned only if there is no software TX timestamp. Ignore false software
* timestamps, which may be made in the __sock_recv_timestamp() call when the
* option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
* hardware timestamp.
*/
static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
{
return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
}
static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
{
struct scm_ts_pktinfo ts_pktinfo;
struct net_device *orig_dev;
if (!skb_mac_header_was_set(skb))
return;
memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
rcu_read_lock();
orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
if (orig_dev)
ts_pktinfo.if_index = orig_dev->ifindex;
rcu_read_unlock();
ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
sizeof(ts_pktinfo), &ts_pktinfo);
}
/*
* called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
*/
void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
struct sk_buff *skb)
{
int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
struct scm_timestamping tss;
int empty = 1, false_tstamp = 0;
struct skb_shared_hwtstamps *shhwtstamps =
skb_hwtstamps(skb);
/* Race occurred between timestamp enabling and packet
receiving. Fill in the current time for now. */
if (need_software_tstamp && skb->tstamp == 0) {
__net_timestamp(skb);
false_tstamp = 1;
}
if (need_software_tstamp) {
if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
struct timeval tv;
skb_get_timestamp(skb, &tv);
put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
sizeof(tv), &tv);
} else {
struct timespec ts;
skb_get_timestampns(skb, &ts);
put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
sizeof(ts), &ts);
}
}
memset(&tss, 0, sizeof(tss));
if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
empty = 0;
if (shhwtstamps &&
(sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
!skb_is_swtx_tstamp(skb, false_tstamp) &&
ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
empty = 0;
if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
!skb_is_err_queue(skb))
put_ts_pktinfo(msg, skb);
}
if (!empty) {
put_cmsg(msg, SOL_SOCKET,
SCM_TIMESTAMPING, sizeof(tss), &tss);
if (skb_is_err_queue(skb) && skb->len &&
SKB_EXT_ERR(skb)->opt_stats)
put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
skb->len, skb->data);
}
}
EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
struct sk_buff *skb)
{
int ack;
if (!sock_flag(sk, SOCK_WIFI_STATUS))
return;
if (!skb->wifi_acked_valid)
return;
ack = skb->wifi_acked;
put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
}
EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
struct sk_buff *skb)
{
if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
}
void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
struct sk_buff *skb)
{
sock_recv_timestamp(msg, sk, skb);
sock_recv_drops(msg, sk, skb);
}
EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
int flags)
{
return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
}
int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
{
int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
return err ?: sock_recvmsg_nosec(sock, msg, flags);
}
EXPORT_SYMBOL(sock_recvmsg);
/**
* kernel_recvmsg - Receive a message from a socket (kernel space)
* @sock: The socket to receive the message from
* @msg: Received message
* @vec: Input s/g array for message data
* @num: Size of input s/g array
* @size: Number of bytes to read
* @flags: Message flags (MSG_DONTWAIT, etc...)
*
* On return the msg structure contains the scatter/gather array passed in the
* vec argument. The array is modified so that it consists of the unfilled
* portion of the original array.
*
* The returned value is the total number of bytes received, or an error.
*/
int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
struct kvec *vec, size_t num, size_t size, int flags)
{
mm_segment_t oldfs = get_fs();
int result;
iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
set_fs(KERNEL_DS);
result = sock_recvmsg(sock, msg, flags);
set_fs(oldfs);
return result;
}
EXPORT_SYMBOL(kernel_recvmsg);
static ssize_t sock_sendpage(struct file *file, struct page *page,
int offset, size_t size, loff_t *ppos, int more)
{
struct socket *sock;
int flags;
sock = file->private_data;
flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
flags |= more;
return kernel_sendpage(sock, page, offset, size, flags);
}
static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
struct pipe_inode_info *pipe, size_t len,
unsigned int flags)
{
struct socket *sock = file->private_data;
if (unlikely(!sock->ops->splice_read))
return -EINVAL;
return sock->ops->splice_read(sock, ppos, pipe, len, flags);
}
static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
{
struct file *file = iocb->ki_filp;
struct socket *sock = file->private_data;
struct msghdr msg = {.msg_iter = *to,
.msg_iocb = iocb};
ssize_t res;
if (file->f_flags & O_NONBLOCK)
msg.msg_flags = MSG_DONTWAIT;
if (iocb->ki_pos != 0)
return -ESPIPE;
if (!iov_iter_count(to)) /* Match SYS5 behaviour */
return 0;
res = sock_recvmsg(sock, &msg, msg.msg_flags);
*to = msg.msg_iter;
return res;
}
static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct socket *sock = file->private_data;
struct msghdr msg = {.msg_iter = *from,
.msg_iocb = iocb};
ssize_t res;
if (iocb->ki_pos != 0)
return -ESPIPE;
if (file->f_flags & O_NONBLOCK)
msg.msg_flags = MSG_DONTWAIT;
if (sock->type == SOCK_SEQPACKET)
msg.msg_flags |= MSG_EOR;
res = sock_sendmsg(sock, &msg);
*from = msg.msg_iter;
return res;
}
/*
* Atomic setting of ioctl hooks to avoid race
* with module unload.
*/
static DEFINE_MUTEX(br_ioctl_mutex);
static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
{
mutex_lock(&br_ioctl_mutex);
br_ioctl_hook = hook;
mutex_unlock(&br_ioctl_mutex);
}
EXPORT_SYMBOL(brioctl_set);
static DEFINE_MUTEX(vlan_ioctl_mutex);
static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
{
mutex_lock(&vlan_ioctl_mutex);
vlan_ioctl_hook = hook;
mutex_unlock(&vlan_ioctl_mutex);
}
EXPORT_SYMBOL(vlan_ioctl_set);
static DEFINE_MUTEX(dlci_ioctl_mutex);
static int (*dlci_ioctl_hook) (unsigned int, void __user *);
void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
{
mutex_lock(&dlci_ioctl_mutex);
dlci_ioctl_hook = hook;
mutex_unlock(&dlci_ioctl_mutex);
}
EXPORT_SYMBOL(dlci_ioctl_set);
static long sock_do_ioctl(struct net *net, struct socket *sock,
unsigned int cmd, unsigned long arg)
{
int err;
void __user *argp = (void __user *)arg;
err = sock->ops->ioctl(sock, cmd, arg);
/*
* If this ioctl is unknown try to hand it down
* to the NIC driver.
*/
if (err == -ENOIOCTLCMD)
err = dev_ioctl(net, cmd, argp);
return err;
}
/*
* With an ioctl, arg may well be a user mode pointer, but we don't know
* what to do with it - that's up to the protocol still.
*/
static struct ns_common *get_net_ns(struct ns_common *ns)
{
return &get_net(container_of(ns, struct net, ns))->ns;
}
static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
{
struct socket *sock;
struct sock *sk;
void __user *argp = (void __user *)arg;
int pid, err;
struct net *net;
sock = file->private_data;
sk = sock->sk;
net = sock_net(sk);
if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
err = dev_ioctl(net, cmd, argp);
} else
#ifdef CONFIG_WEXT_CORE
if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
err = dev_ioctl(net, cmd, argp);
} else
#endif
switch (cmd) {
case FIOSETOWN:
case SIOCSPGRP:
err = -EFAULT;
if (get_user(pid, (int __user *)argp))
break;
err = f_setown(sock->file, pid, 1);
break;
case FIOGETOWN:
case SIOCGPGRP:
err = put_user(f_getown(sock->file),
(int __user *)argp);
break;
case SIOCGIFBR:
case SIOCSIFBR:
case SIOCBRADDBR:
case SIOCBRDELBR:
err = -ENOPKG;
if (!br_ioctl_hook)
request_module("bridge");
mutex_lock(&br_ioctl_mutex);
if (br_ioctl_hook)
err = br_ioctl_hook(net, cmd, argp);
mutex_unlock(&br_ioctl_mutex);
break;
case SIOCGIFVLAN:
case SIOCSIFVLAN:
err = -ENOPKG;
if (!vlan_ioctl_hook)
request_module("8021q");
mutex_lock(&vlan_ioctl_mutex);
if (vlan_ioctl_hook)
err = vlan_ioctl_hook(net, argp);
mutex_unlock(&vlan_ioctl_mutex);
break;
case SIOCADDDLCI:
case SIOCDELDLCI:
err = -ENOPKG;
if (!dlci_ioctl_hook)
request_module("dlci");
mutex_lock(&dlci_ioctl_mutex);
if (dlci_ioctl_hook)
err = dlci_ioctl_hook(cmd, argp);
mutex_unlock(&dlci_ioctl_mutex);
break;
case SIOCGSKNS:
err = -EPERM;
if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
break;
err = open_related_ns(&net->ns, get_net_ns);
break;
default:
err = sock_do_ioctl(net, sock, cmd, arg);
break;
}
return err;
}
int sock_create_lite(int family, int type, int protocol, struct socket **res)
{
int err;
struct socket *sock = NULL;
err = security_socket_create(family, type, protocol, 1);
if (err)
goto out;
sock = sock_alloc();
if (!sock) {
err = -ENOMEM;
goto out;
}
sock->type = type;
err = security_socket_post_create(sock, family, type, protocol, 1);
if (err)
goto out_release;
out:
*res = sock;
return err;
out_release:
sock_release(sock);
sock = NULL;
goto out;
}
EXPORT_SYMBOL(sock_create_lite);
/* No kernel lock held - perfect */
static unsigned int sock_poll(struct file *file, poll_table *wait)
{
unsigned int busy_flag = 0;
struct socket *sock;
/*
* We can't return errors to poll, so it's either yes or no.
*/
sock = file->private_data;
if (sk_can_busy_loop(sock->sk)) {
/* this socket can poll_ll so tell the system call */
busy_flag = POLL_BUSY_LOOP;
/* once, only if requested by syscall */
if (wait && (wait->_key & POLL_BUSY_LOOP))
sk_busy_loop(sock->sk, 1);
}
return busy_flag | sock->ops->poll(file, sock, wait);
}
static int sock_mmap(struct file *file, struct vm_area_struct *vma)
{
struct socket *sock = file->private_data;
return sock->ops->mmap(file, sock, vma);
}
static int sock_close(struct inode *inode, struct file *filp)
{
sock_release(SOCKET_I(inode));
return 0;
}
/*
* Update the socket async list
*
* Fasync_list locking strategy.
*
* 1. fasync_list is modified only under process context socket lock
* i.e. under semaphore.
* 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
* or under socket lock
*/
static int sock_fasync(int fd, struct file *filp, int on)
{
struct socket *sock = filp->private_data;
struct sock *sk = sock->sk;
struct socket_wq *wq;
if (sk == NULL)
return -EINVAL;
lock_sock(sk);
wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
fasync_helper(fd, filp, on, &wq->fasync_list);
if (!wq->fasync_list)
sock_reset_flag(sk, SOCK_FASYNC);
else
sock_set_flag(sk, SOCK_FASYNC);
release_sock(sk);
return 0;
}
/* This function may be called only under rcu_lock */
int sock_wake_async(struct socket_wq *wq, int how, int band)
{
if (!wq || !wq->fasync_list)
return -1;
switch (how) {
case SOCK_WAKE_WAITD:
if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
break;
goto call_kill;
case SOCK_WAKE_SPACE:
if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
break;
/* fall through */
case SOCK_WAKE_IO:
call_kill:
kill_fasync(&wq->fasync_list, SIGIO, band);
break;
case SOCK_WAKE_URG:
kill_fasync(&wq->fasync_list, SIGURG, band);
}
return 0;
}
EXPORT_SYMBOL(sock_wake_async);
int __sock_create(struct net *net, int family, int type, int protocol,
struct socket **res, int kern)
{
int err;
struct socket *sock;
const struct net_proto_family *pf;
/*
* Check protocol is in range
*/
if (family < 0 || family >= NPROTO)
return -EAFNOSUPPORT;
if (type < 0 || type >= SOCK_MAX)
return -EINVAL;
/* Compatibility.
This uglymoron is moved from INET layer to here to avoid
deadlock in module load.
*/
if (family == PF_INET && type == SOCK_PACKET) {
pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
current->comm);
family = PF_PACKET;
}
err = security_socket_create(family, type, protocol, kern);
if (err)
return err;
/*
* Allocate the socket and allow the family to set things up. if
* the protocol is 0, the family is instructed to select an appropriate
* default.
*/
sock = sock_alloc();
if (!sock) {
net_warn_ratelimited("socket: no more sockets\n");
return -ENFILE; /* Not exactly a match, but its the
closest posix thing */
}
sock->type = type;
#ifdef CONFIG_MODULES
/* Attempt to load a protocol module if the find failed.
*
* 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
* requested real, full-featured networking support upon configuration.
* Otherwise module support will break!
*/
if (rcu_access_pointer(net_families[family]) == NULL)
request_module("net-pf-%d", family);
#endif
rcu_read_lock();
pf = rcu_dereference(net_families[family]);
err = -EAFNOSUPPORT;
if (!pf)
goto out_release;
/*
* We will call the ->create function, that possibly is in a loadable
* module, so we have to bump that loadable module refcnt first.
*/
if (!try_module_get(pf->owner))
goto out_release;
/* Now protected by module ref count */
rcu_read_unlock();
err = pf->create(net, sock, protocol, kern);
if (err < 0)
goto out_module_put;
/*
* Now to bump the refcnt of the [loadable] module that owns this
* socket at sock_release time we decrement its refcnt.
*/
if (!try_module_get(sock->ops->owner))
goto out_module_busy;
/*
* Now that we're done with the ->create function, the [loadable]
* module can have its refcnt decremented
*/
module_put(pf->owner);
err = security_socket_post_create(sock, family, type, protocol, kern);
if (err)
goto out_sock_release;
*res = sock;
return 0;
out_module_busy:
err = -EAFNOSUPPORT;
out_module_put:
sock->ops = NULL;
module_put(pf->owner);
out_sock_release:
sock_release(sock);
return err;
out_release:
rcu_read_unlock();
goto out_sock_release;
}
EXPORT_SYMBOL(__sock_create);
int sock_create(int family, int type, int protocol, struct socket **res)
{
return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
}
EXPORT_SYMBOL(sock_create);
int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
{
return __sock_create(net, family, type, protocol, res, 1);
}
EXPORT_SYMBOL(sock_create_kern);
SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
{
int retval;
struct socket *sock;
int flags;
/* Check the SOCK_* constants for consistency. */
BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
flags = type & ~SOCK_TYPE_MASK;
if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
return -EINVAL;
type &= SOCK_TYPE_MASK;
if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
retval = sock_create(family, type, protocol, &sock);
if (retval < 0)
goto out;
retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
if (retval < 0)
goto out_release;
out:
/* It may be already another descriptor 8) Not kernel problem. */
return retval;
out_release:
sock_release(sock);
return retval;
}
/*
* Create a pair of connected sockets.
*/
SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
int __user *, usockvec)
{
struct socket *sock1, *sock2;
int fd1, fd2, err;
struct file *newfile1, *newfile2;
int flags;
flags = type & ~SOCK_TYPE_MASK;
if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
return -EINVAL;
type &= SOCK_TYPE_MASK;
if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
/*
* Obtain the first socket and check if the underlying protocol
* supports the socketpair call.
*/
err = sock_create(family, type, protocol, &sock1);
if (err < 0)
goto out;
err = sock_create(family, type, protocol, &sock2);
if (err < 0)
goto out_release_1;
err = sock1->ops->socketpair(sock1, sock2);
if (err < 0)
goto out_release_both;
fd1 = get_unused_fd_flags(flags);
if (unlikely(fd1 < 0)) {
err = fd1;
goto out_release_both;
}
fd2 = get_unused_fd_flags(flags);
if (unlikely(fd2 < 0)) {
err = fd2;
goto out_put_unused_1;
}
newfile1 = sock_alloc_file(sock1, flags, NULL);
if (IS_ERR(newfile1)) {
err = PTR_ERR(newfile1);
goto out_put_unused_both;
}
newfile2 = sock_alloc_file(sock2, flags, NULL);
if (IS_ERR(newfile2)) {
err = PTR_ERR(newfile2);
goto out_fput_1;
}
err = put_user(fd1, &usockvec[0]);
if (err)
goto out_fput_both;
err = put_user(fd2, &usockvec[1]);
if (err)
goto out_fput_both;
audit_fd_pair(fd1, fd2);
fd_install(fd1, newfile1);
fd_install(fd2, newfile2);
/* fd1 and fd2 may be already another descriptors.
* Not kernel problem.
*/
return 0;
out_fput_both:
fput(newfile2);
fput(newfile1);
put_unused_fd(fd2);
put_unused_fd(fd1);
goto out;
out_fput_1:
fput(newfile1);
put_unused_fd(fd2);
put_unused_fd(fd1);
sock_release(sock2);
goto out;
out_put_unused_both:
put_unused_fd(fd2);
out_put_unused_1:
put_unused_fd(fd1);
out_release_both:
sock_release(sock2);
out_release_1:
sock_release(sock1);
out:
return err;
}
/*
* Bind a name to a socket. Nothing much to do here since it's
* the protocol's responsibility to handle the local address.
*
* We move the socket address to kernel space before we call
* the protocol layer (having also checked the address is ok).
*/
SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
{
struct socket *sock;
struct sockaddr_storage address;
int err, fput_needed;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (sock) {
err = move_addr_to_kernel(umyaddr, addrlen, &address);
if (err >= 0) {
err = security_socket_bind(sock,
(struct sockaddr *)&address,
addrlen);
if (!err)
err = sock->ops->bind(sock,
(struct sockaddr *)
&address, addrlen);
}
fput_light(sock->file, fput_needed);
}
return err;
}
/*
* Perform a listen. Basically, we allow the protocol to do anything
* necessary for a listen, and if that works, we mark the socket as
* ready for listening.
*/
SYSCALL_DEFINE2(listen, int, fd, int, backlog)
{
struct socket *sock;
int err, fput_needed;
int somaxconn;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (sock) {
somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
if ((unsigned int)backlog > somaxconn)
backlog = somaxconn;
err = security_socket_listen(sock, backlog);
if (!err)
err = sock->ops->listen(sock, backlog);
fput_light(sock->file, fput_needed);
}
return err;
}
/*
* For accept, we attempt to create a new socket, set up the link
* with the client, wake up the client, then return the new
* connected fd. We collect the address of the connector in kernel
* space and move it to user at the very end. This is unclean because
* we open the socket then return an error.
*
* 1003.1g adds the ability to recvmsg() to query connection pending
* status to recvmsg. We need to add that support in a way thats
* clean when we restucture accept also.
*/
SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
int __user *, upeer_addrlen, int, flags)
{
struct socket *sock, *newsock;
struct file *newfile;
int err, len, newfd, fput_needed;
struct sockaddr_storage address;
if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
return -EINVAL;
if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (!sock)
goto out;
err = -ENFILE;
newsock = sock_alloc();
if (!newsock)
goto out_put;
newsock->type = sock->type;
newsock->ops = sock->ops;
/*
* We don't need try_module_get here, as the listening socket (sock)
* has the protocol module (sock->ops->owner) held.
*/
__module_get(newsock->ops->owner);
newfd = get_unused_fd_flags(flags);
if (unlikely(newfd < 0)) {
err = newfd;
sock_release(newsock);
goto out_put;
}
newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
if (IS_ERR(newfile)) {
err = PTR_ERR(newfile);
put_unused_fd(newfd);
sock_release(newsock);
goto out_put;
}
err = security_socket_accept(sock, newsock);
if (err)
goto out_fd;
err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
if (err < 0)
goto out_fd;
if (upeer_sockaddr) {
if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
&len, 2) < 0) {
err = -ECONNABORTED;
goto out_fd;
}
err = move_addr_to_user(&address,
len, upeer_sockaddr, upeer_addrlen);
if (err < 0)
goto out_fd;
}
/* File flags are not inherited via accept() unlike another OSes. */
fd_install(newfd, newfile);
err = newfd;
out_put:
fput_light(sock->file, fput_needed);
out:
return err;
out_fd:
fput(newfile);
put_unused_fd(newfd);
goto out_put;
}
SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
int __user *, upeer_addrlen)
{
return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
}
/*
* Attempt to connect to a socket with the server address. The address
* is in user space so we verify it is OK and move it to kernel space.
*
* For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
* break bindings
*
* NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
* other SEQPACKET protocols that take time to connect() as it doesn't
* include the -EINPROGRESS status for such sockets.
*/
SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
int, addrlen)
{
struct socket *sock;
struct sockaddr_storage address;
int err, fput_needed;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (!sock)
goto out;
err = move_addr_to_kernel(uservaddr, addrlen, &address);
if (err < 0)
goto out_put;
err =
security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
if (err)
goto out_put;
err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
sock->file->f_flags);
out_put:
fput_light(sock->file, fput_needed);
out:
return err;
}
/*
* Get the local address ('name') of a socket object. Move the obtained
* name to user space.
*/
SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
int __user *, usockaddr_len)
{
struct socket *sock;
struct sockaddr_storage address;
int len, err, fput_needed;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (!sock)
goto out;
err = security_socket_getsockname(sock);
if (err)
goto out_put;
err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
if (err)
goto out_put;
err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
out_put:
fput_light(sock->file, fput_needed);
out:
return err;
}
/*
* Get the remote address ('name') of a socket object. Move the obtained
* name to user space.
*/
SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
int __user *, usockaddr_len)
{
struct socket *sock;
struct sockaddr_storage address;
int len, err, fput_needed;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (sock != NULL) {
err = security_socket_getpeername(sock);
if (err) {
fput_light(sock->file, fput_needed);
return err;
}
err =
sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1);
if (!err)
err = move_addr_to_user(&address, len, usockaddr,
usockaddr_len);
fput_light(sock->file, fput_needed);
}
return err;
}
/*
* Send a datagram to a given address. We move the address into kernel
* space and check the user space data area is readable before invoking
* the protocol.
*/
SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
unsigned int, flags, struct sockaddr __user *, addr,
int, addr_len)
{
struct socket *sock;
struct sockaddr_storage address;
int err;
struct msghdr msg;
struct iovec iov;
int fput_needed;
err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
if (unlikely(err))
return err;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (!sock)
goto out;
msg.msg_name = NULL;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_namelen = 0;
if (addr) {
err = move_addr_to_kernel(addr, addr_len, &address);
if (err < 0)
goto out_put;
msg.msg_name = (struct sockaddr *)&address;
msg.msg_namelen = addr_len;
}
if (sock->file->f_flags & O_NONBLOCK)
flags |= MSG_DONTWAIT;
msg.msg_flags = flags;
err = sock_sendmsg(sock, &msg);
out_put:
fput_light(sock->file, fput_needed);
out:
return err;
}
/*
* Send a datagram down a socket.
*/
SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
unsigned int, flags)
{
return sys_sendto(fd, buff, len, flags, NULL, 0);
}
/*
* Receive a frame from the socket and optionally record the address of the
* sender. We verify the buffers are writable and if needed move the
* sender address from kernel to user space.
*/
SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
unsigned int, flags, struct sockaddr __user *, addr,
int __user *, addr_len)
{
struct socket *sock;
struct iovec iov;
struct msghdr msg;
struct sockaddr_storage address;
int err, err2;
int fput_needed;
err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
if (unlikely(err))
return err;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (!sock)
goto out;
msg.msg_control = NULL;
msg.msg_controllen = 0;
/* Save some cycles and don't copy the address if not needed */
msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
/* We assume all kernel code knows the size of sockaddr_storage */
msg.msg_namelen = 0;
msg.msg_iocb = NULL;
msg.msg_flags = 0;
if (sock->file->f_flags & O_NONBLOCK)
flags |= MSG_DONTWAIT;
err = sock_recvmsg(sock, &msg, flags);
if (err >= 0 && addr != NULL) {
err2 = move_addr_to_user(&address,
msg.msg_namelen, addr, addr_len);
if (err2 < 0)
err = err2;
}
fput_light(sock->file, fput_needed);
out:
return err;
}
/*
* Receive a datagram from a socket.
*/
SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
unsigned int, flags)
{
return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
}
/*
* Set a socket option. Because we don't know the option lengths we have
* to pass the user mode parameter for the protocols to sort out.
*/
SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
char __user *, optval, int, optlen)
{
int err, fput_needed;
struct socket *sock;
if (optlen < 0)
return -EINVAL;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (sock != NULL) {
err = security_socket_setsockopt(sock, level, optname);
if (err)
goto out_put;
if (level == SOL_SOCKET)
err =
sock_setsockopt(sock, level, optname, optval,
optlen);
else
err =
sock->ops->setsockopt(sock, level, optname, optval,
optlen);
out_put:
fput_light(sock->file, fput_needed);
}
return err;
}
/*
* Get a socket option. Because we don't know the option lengths we have
* to pass a user mode parameter for the protocols to sort out.
*/
SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
char __user *, optval, int __user *, optlen)
{
int err, fput_needed;
struct socket *sock;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (sock != NULL) {
err = security_socket_getsockopt(sock, level, optname);
if (err)
goto out_put;
if (level == SOL_SOCKET)
err =
sock_getsockopt(sock, level, optname, optval,
optlen);
else
err =
sock->ops->getsockopt(sock, level, optname, optval,
optlen);
out_put:
fput_light(sock->file, fput_needed);
}
return err;
}
/*
* Shutdown a socket.
*/
SYSCALL_DEFINE2(shutdown, int, fd, int, how)
{
int err, fput_needed;
struct socket *sock;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (sock != NULL) {
err = security_socket_shutdown(sock, how);
if (!err)
err = sock->ops->shutdown(sock, how);
fput_light(sock->file, fput_needed);
}
return err;
}
/* A couple of helpful macros for getting the address of the 32/64 bit
* fields which are the same type (int / unsigned) on our platforms.
*/
#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
struct used_address {
struct sockaddr_storage name;
unsigned int name_len;
};
static int copy_msghdr_from_user(struct msghdr *kmsg,
struct user_msghdr __user *umsg,
struct sockaddr __user **save_addr,
struct iovec **iov)
{
struct user_msghdr msg;
ssize_t err;
if (copy_from_user(&msg, umsg, sizeof(*umsg)))
return -EFAULT;
kmsg->msg_control = (void __force *)msg.msg_control;
kmsg->msg_controllen = msg.msg_controllen;
kmsg->msg_flags = msg.msg_flags;
kmsg->msg_namelen = msg.msg_namelen;
if (!msg.msg_name)
kmsg->msg_namelen = 0;
if (kmsg->msg_namelen < 0)
return -EINVAL;
if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
kmsg->msg_namelen = sizeof(struct sockaddr_storage);
if (save_addr)
*save_addr = msg.msg_name;
if (msg.msg_name && kmsg->msg_namelen) {
if (!save_addr) {
err = move_addr_to_kernel(msg.msg_name,
kmsg->msg_namelen,
kmsg->msg_name);
if (err < 0)
return err;
}
} else {
kmsg->msg_name = NULL;
kmsg->msg_namelen = 0;
}
if (msg.msg_iovlen > UIO_MAXIOV)
return -EMSGSIZE;
kmsg->msg_iocb = NULL;
return import_iovec(save_addr ? READ : WRITE,
msg.msg_iov, msg.msg_iovlen,
UIO_FASTIOV, iov, &kmsg->msg_iter);
}
static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
struct msghdr *msg_sys, unsigned int flags,
struct used_address *used_address,
unsigned int allowed_msghdr_flags)
{
struct compat_msghdr __user *msg_compat =
(struct compat_msghdr __user *)msg;
struct sockaddr_storage address;
struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
unsigned char ctl[sizeof(struct cmsghdr) + 20]
__aligned(sizeof(__kernel_size_t));
/* 20 is size of ipv6_pktinfo */
unsigned char *ctl_buf = ctl;
int ctl_len;
ssize_t err;
msg_sys->msg_name = &address;
if (MSG_CMSG_COMPAT & flags)
err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
else
err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
if (err < 0)
return err;
err = -ENOBUFS;
if (msg_sys->msg_controllen > INT_MAX)
goto out_freeiov;
flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
ctl_len = msg_sys->msg_controllen;
if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
err =
cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
sizeof(ctl));
if (err)
goto out_freeiov;
ctl_buf = msg_sys->msg_control;
ctl_len = msg_sys->msg_controllen;
} else if (ctl_len) {
BUILD_BUG_ON(sizeof(struct cmsghdr) !=
CMSG_ALIGN(sizeof(struct cmsghdr)));
if (ctl_len > sizeof(ctl)) {
ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
if (ctl_buf == NULL)
goto out_freeiov;
}
err = -EFAULT;
/*
* Careful! Before this, msg_sys->msg_control contains a user pointer.
* Afterwards, it will be a kernel pointer. Thus the compiler-assisted
* checking falls down on this.
*/
if (copy_from_user(ctl_buf,
(void __user __force *)msg_sys->msg_control,
ctl_len))
goto out_freectl;
msg_sys->msg_control = ctl_buf;
}
msg_sys->msg_flags = flags;
if (sock->file->f_flags & O_NONBLOCK)
msg_sys->msg_flags |= MSG_DONTWAIT;
/*
* If this is sendmmsg() and current destination address is same as
* previously succeeded address, omit asking LSM's decision.
* used_address->name_len is initialized to UINT_MAX so that the first
* destination address never matches.
*/
if (used_address && msg_sys->msg_name &&
used_address->name_len == msg_sys->msg_namelen &&
!memcmp(&used_address->name, msg_sys->msg_name,
used_address->name_len)) {
err = sock_sendmsg_nosec(sock, msg_sys);
goto out_freectl;
}
err = sock_sendmsg(sock, msg_sys);
/*
* If this is sendmmsg() and sending to current destination address was
* successful, remember it.
*/
if (used_address && err >= 0) {
used_address->name_len = msg_sys->msg_namelen;
if (msg_sys->msg_name)
memcpy(&used_address->name, msg_sys->msg_name,
used_address->name_len);
}
out_freectl:
if (ctl_buf != ctl)
sock_kfree_s(sock->sk, ctl_buf, ctl_len);
out_freeiov:
kfree(iov);
return err;
}
/*
* BSD sendmsg interface
*/
long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
{
int fput_needed, err;
struct msghdr msg_sys;
struct socket *sock;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (!sock)
goto out;
err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
fput_light(sock->file, fput_needed);
out:
return err;
}
SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
{
if (flags & MSG_CMSG_COMPAT)
return -EINVAL;
return __sys_sendmsg(fd, msg, flags);
}
/*
* Linux sendmmsg interface
*/
int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
unsigned int flags)
{
int fput_needed, err, datagrams;
struct socket *sock;
struct mmsghdr __user *entry;
struct compat_mmsghdr __user *compat_entry;
struct msghdr msg_sys;
struct used_address used_address;
unsigned int oflags = flags;
if (vlen > UIO_MAXIOV)
vlen = UIO_MAXIOV;
datagrams = 0;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (!sock)
return err;
used_address.name_len = UINT_MAX;
entry = mmsg;
compat_entry = (struct compat_mmsghdr __user *)mmsg;
err = 0;
flags |= MSG_BATCH;
while (datagrams < vlen) {
if (datagrams == vlen - 1)
flags = oflags;
if (MSG_CMSG_COMPAT & flags) {
err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
&msg_sys, flags, &used_address, MSG_EOR);
if (err < 0)
break;
err = __put_user(err, &compat_entry->msg_len);
++compat_entry;
} else {
err = ___sys_sendmsg(sock,
(struct user_msghdr __user *)entry,
&msg_sys, flags, &used_address, MSG_EOR);
if (err < 0)
break;
err = put_user(err, &entry->msg_len);
++entry;
}
if (err)
break;
++datagrams;
if (msg_data_left(&msg_sys))
break;
cond_resched();
}
fput_light(sock->file, fput_needed);
/* We only return an error if no datagrams were able to be sent */
if (datagrams != 0)
return datagrams;
return err;
}
SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
unsigned int, vlen, unsigned int, flags)
{
if (flags & MSG_CMSG_COMPAT)
return -EINVAL;
return __sys_sendmmsg(fd, mmsg, vlen, flags);
}
static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
struct msghdr *msg_sys, unsigned int flags, int nosec)
{
struct compat_msghdr __user *msg_compat =
(struct compat_msghdr __user *)msg;
struct iovec iovstack[UIO_FASTIOV];
struct iovec *iov = iovstack;
unsigned long cmsg_ptr;
int len;
ssize_t err;
/* kernel mode address */
struct sockaddr_storage addr;
/* user mode address pointers */
struct sockaddr __user *uaddr;
int __user *uaddr_len = COMPAT_NAMELEN(msg);
msg_sys->msg_name = &addr;
if (MSG_CMSG_COMPAT & flags)
err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
else
err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
if (err < 0)
return err;
cmsg_ptr = (unsigned long)msg_sys->msg_control;
msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
/* We assume all kernel code knows the size of sockaddr_storage */
msg_sys->msg_namelen = 0;
if (sock->file->f_flags & O_NONBLOCK)
flags |= MSG_DONTWAIT;
err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
if (err < 0)
goto out_freeiov;
len = err;
if (uaddr != NULL) {
err = move_addr_to_user(&addr,
msg_sys->msg_namelen, uaddr,
uaddr_len);
if (err < 0)
goto out_freeiov;
}
err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
COMPAT_FLAGS(msg));
if (err)
goto out_freeiov;
if (MSG_CMSG_COMPAT & flags)
err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
&msg_compat->msg_controllen);
else
err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
&msg->msg_controllen);
if (err)
goto out_freeiov;
err = len;
out_freeiov:
kfree(iov);
return err;
}
/*
* BSD recvmsg interface
*/
long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
{
int fput_needed, err;
struct msghdr msg_sys;
struct socket *sock;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (!sock)
goto out;
err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
fput_light(sock->file, fput_needed);
out:
return err;
}
SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
unsigned int, flags)
{
if (flags & MSG_CMSG_COMPAT)
return -EINVAL;
return __sys_recvmsg(fd, msg, flags);
}
/*
* Linux recvmmsg interface
*/
int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
unsigned int flags, struct timespec *timeout)
{
int fput_needed, err, datagrams;
struct socket *sock;
struct mmsghdr __user *entry;
struct compat_mmsghdr __user *compat_entry;
struct msghdr msg_sys;
struct timespec64 end_time;
struct timespec64 timeout64;
if (timeout &&
poll_select_set_timeout(&end_time, timeout->tv_sec,
timeout->tv_nsec))
return -EINVAL;
datagrams = 0;
sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (!sock)
return err;
err = sock_error(sock->sk);
if (err) {
datagrams = err;
goto out_put;
}
entry = mmsg;
compat_entry = (struct compat_mmsghdr __user *)mmsg;
while (datagrams < vlen) {
/*
* No need to ask LSM for more than the first datagram.
*/
if (MSG_CMSG_COMPAT & flags) {
err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
&msg_sys, flags & ~MSG_WAITFORONE,
datagrams);
if (err < 0)
break;
err = __put_user(err, &compat_entry->msg_len);
++compat_entry;
} else {
err = ___sys_recvmsg(sock,
(struct user_msghdr __user *)entry,
&msg_sys, flags & ~MSG_WAITFORONE,
datagrams);
if (err < 0)
break;
err = put_user(err, &entry->msg_len);
++entry;
}
if (err)
break;
++datagrams;
/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
if (flags & MSG_WAITFORONE)
flags |= MSG_DONTWAIT;
if (timeout) {
ktime_get_ts64(&timeout64);
*timeout = timespec64_to_timespec(
timespec64_sub(end_time, timeout64));
if (timeout->tv_sec < 0) {
timeout->tv_sec = timeout->tv_nsec = 0;
break;
}
/* Timeout, return less than vlen datagrams */
if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
break;
}
/* Out of band data, return right away */
if (msg_sys.msg_flags & MSG_OOB)
break;
cond_resched();
}
if (err == 0)
goto out_put;
if (datagrams == 0) {
datagrams = err;
goto out_put;
}
/*
* We may return less entries than requested (vlen) if the
* sock is non block and there aren't enough datagrams...
*/
if (err != -EAGAIN) {
/*
* ... or if recvmsg returns an error after we
* received some datagrams, where we record the
* error to return on the next call or if the
* app asks about it using getsockopt(SO_ERROR).
*/
sock->sk->sk_err = -err;
}
out_put:
fput_light(sock->file, fput_needed);
return datagrams;
}
SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
unsigned int, vlen, unsigned int, flags,
struct timespec __user *, timeout)
{
int datagrams;
struct timespec timeout_sys;
if (flags & MSG_CMSG_COMPAT)
return -EINVAL;
if (!timeout)
return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
return -EFAULT;
datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
if (datagrams > 0 &&
copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
datagrams = -EFAULT;
return datagrams;
}
#ifdef __ARCH_WANT_SYS_SOCKETCALL
/* Argument list sizes for sys_socketcall */
#define AL(x) ((x) * sizeof(unsigned long))
static const unsigned char nargs[21] = {
AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
AL(4), AL(5), AL(4)
};
#undef AL
/*
* System call vectors.
*
* Argument checking cleaned up. Saved 20% in size.
* This function doesn't need to set the kernel lock because
* it is set by the callees.
*/
SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
{
unsigned long a[AUDITSC_ARGS];
unsigned long a0, a1;
int err;
unsigned int len;
if (call < 1 || call > SYS_SENDMMSG)
return -EINVAL;
len = nargs[call];
if (len > sizeof(a))
return -EINVAL;
/* copy_from_user should be SMP safe. */
if (copy_from_user(a, args, len))
return -EFAULT;
err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
if (err)
return err;
a0 = a[0];
a1 = a[1];
switch (call) {
case SYS_SOCKET:
err = sys_socket(a0, a1, a[2]);
break;
case SYS_BIND:
err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
break;
case SYS_CONNECT:
err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
break;
case SYS_LISTEN:
err = sys_listen(a0, a1);
break;
case SYS_ACCEPT:
err = sys_accept4(a0, (struct sockaddr __user *)a1,
(int __user *)a[2], 0);
break;
case SYS_GETSOCKNAME:
err =
sys_getsockname(a0, (struct sockaddr __user *)a1,
(int __user *)a[2]);
break;
case SYS_GETPEERNAME:
err =
sys_getpeername(a0, (struct sockaddr __user *)a1,
(int __user *)a[2]);
break;
case SYS_SOCKETPAIR:
err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
break;
case SYS_SEND:
err = sys_send(a0, (void __user *)a1, a[2], a[3]);
break;
case SYS_SENDTO:
err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
(struct sockaddr __user *)a[4], a[5]);
break;
case SYS_RECV:
err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
break;
case SYS_RECVFROM:
err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
(struct sockaddr __user *)a[4],
(int __user *)a[5]);
break;
case SYS_SHUTDOWN:
err = sys_shutdown(a0, a1);
break;
case SYS_SETSOCKOPT:
err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
break;
case SYS_GETSOCKOPT:
err =
sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
(int __user *)a[4]);
break;
case SYS_SENDMSG:
err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
break;
case SYS_SENDMMSG:
err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
break;
case SYS_RECVMSG:
err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
break;
case SYS_RECVMMSG:
err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
(struct timespec __user *)a[4]);
break;
case SYS_ACCEPT4:
err = sys_accept4(a0, (struct sockaddr __user *)a1,
(int __user *)a[2], a[3]);
break;
default:
err = -EINVAL;
break;
}
return err;
}
#endif /* __ARCH_WANT_SYS_SOCKETCALL */
/**
* sock_register - add a socket protocol handler
* @ops: description of protocol
*
* This function is called by a protocol handler that wants to
* advertise its address family, and have it linked into the
* socket interface. The value ops->family corresponds to the
* socket system call protocol family.
*/
int sock_register(const struct net_proto_family *ops)
{
int err;
if (ops->family >= NPROTO) {
pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
return -ENOBUFS;
}
spin_lock(&net_family_lock);
if (rcu_dereference_protected(net_families[ops->family],
lockdep_is_held(&net_family_lock)))
err = -EEXIST;
else {
rcu_assign_pointer(net_families[ops->family], ops);
err = 0;
}
spin_unlock(&net_family_lock);
pr_info("NET: Registered protocol family %d\n", ops->family);
return err;
}
EXPORT_SYMBOL(sock_register);
/**
* sock_unregister - remove a protocol handler
* @family: protocol family to remove
*
* This function is called by a protocol handler that wants to
* remove its address family, and have it unlinked from the
* new socket creation.
*
* If protocol handler is a module, then it can use module reference
* counts to protect against new references. If protocol handler is not
* a module then it needs to provide its own protection in
* the ops->create routine.
*/
void sock_unregister(int family)
{
BUG_ON(family < 0 || family >= NPROTO);
spin_lock(&net_family_lock);
RCU_INIT_POINTER(net_families[family], NULL);
spin_unlock(&net_family_lock);
synchronize_rcu();
pr_info("NET: Unregistered protocol family %d\n", family);
}
EXPORT_SYMBOL(sock_unregister);
static int __init sock_init(void)
{
int err;
/*
* Initialize the network sysctl infrastructure.
*/
err = net_sysctl_init();
if (err)
goto out;
/*
* Initialize skbuff SLAB cache
*/
skb_init();
/*
* Initialize the protocols module.
*/
init_inodecache();
err = register_filesystem(&sock_fs_type);
if (err)
goto out_fs;
sock_mnt = kern_mount(&sock_fs_type);
if (IS_ERR(sock_mnt)) {
err = PTR_ERR(sock_mnt);
goto out_mount;
}
/* The real protocol initialization is performed in later initcalls.
*/
#ifdef CONFIG_NETFILTER
err = netfilter_init();
if (err)
goto out;
#endif
ptp_classifier_init();
out:
return err;
out_mount:
unregister_filesystem(&sock_fs_type);
out_fs:
goto out;
}
core_initcall(sock_init); /* early initcall */
#ifdef CONFIG_PROC_FS
void socket_seq_show(struct seq_file *seq)
{
int cpu;
int counter = 0;
for_each_possible_cpu(cpu)
counter += per_cpu(sockets_in_use, cpu);
/* It can be negative, by the way. 8) */
if (counter < 0)
counter = 0;
seq_printf(seq, "sockets: used %d\n", counter);
}
#endif /* CONFIG_PROC_FS */
#ifdef CONFIG_COMPAT
static int do_siocgstamp(struct net *net, struct socket *sock,
unsigned int cmd, void __user *up)
{
mm_segment_t old_fs = get_fs();
struct timeval ktv;
int err;
set_fs(KERNEL_DS);
err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
set_fs(old_fs);
if (!err)
err = compat_put_timeval(&ktv, up);
return err;
}
static int do_siocgstampns(struct net *net, struct socket *sock,
unsigned int cmd, void __user *up)
{
mm_segment_t old_fs = get_fs();
struct timespec kts;
int err;
set_fs(KERNEL_DS);
err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
set_fs(old_fs);
if (!err)
err = compat_put_timespec(&kts, up);
return err;
}
static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
{
struct ifreq __user *uifr;
int err;
uifr = compat_alloc_user_space(sizeof(struct ifreq));
if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
return -EFAULT;
err = dev_ioctl(net, SIOCGIFNAME, uifr);
if (err)
return err;
if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
return -EFAULT;
return 0;
}
static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
{
struct compat_ifconf ifc32;
struct ifconf ifc;
struct ifconf __user *uifc;
struct compat_ifreq __user *ifr32;
struct ifreq __user *ifr;
unsigned int i, j;
int err;
if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
return -EFAULT;
memset(&ifc, 0, sizeof(ifc));
if (ifc32.ifcbuf == 0) {
ifc32.ifc_len = 0;
ifc.ifc_len = 0;
ifc.ifc_req = NULL;
uifc = compat_alloc_user_space(sizeof(struct ifconf));
} else {
size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
sizeof(struct ifreq);
uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
ifc.ifc_len = len;
ifr = ifc.ifc_req = (void __user *)(uifc + 1);
ifr32 = compat_ptr(ifc32.ifcbuf);
for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
return -EFAULT;
ifr++;
ifr32++;
}
}
if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
return -EFAULT;
err = dev_ioctl(net, SIOCGIFCONF, uifc);
if (err)
return err;
if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
return -EFAULT;
ifr = ifc.ifc_req;
ifr32 = compat_ptr(ifc32.ifcbuf);
for (i = 0, j = 0;
i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
return -EFAULT;
ifr32++;
ifr++;
}
if (ifc32.ifcbuf == 0) {
/* Translate from 64-bit structure multiple to
* a 32-bit one.
*/
i = ifc.ifc_len;
i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
ifc32.ifc_len = i;
} else {
ifc32.ifc_len = i;
}
if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
return -EFAULT;
return 0;
}
static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
{
struct compat_ethtool_rxnfc __user *compat_rxnfc;
bool convert_in = false, convert_out = false;
size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
struct ethtool_rxnfc __user *rxnfc;
struct ifreq __user *ifr;
u32 rule_cnt = 0, actual_rule_cnt;
u32 ethcmd;
u32 data;
int ret;
if (get_user(data, &ifr32->ifr_ifru.ifru_data))
return -EFAULT;
compat_rxnfc = compat_ptr(data);
if (get_user(ethcmd, &compat_rxnfc->cmd))
return -EFAULT;
/* Most ethtool structures are defined without padding.
* Unfortunately struct ethtool_rxnfc is an exception.
*/
switch (ethcmd) {
default:
break;
case ETHTOOL_GRXCLSRLALL:
/* Buffer size is variable */
if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
return -EFAULT;
if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
return -ENOMEM;
buf_size += rule_cnt * sizeof(u32);
/* fall through */
case ETHTOOL_GRXRINGS:
case ETHTOOL_GRXCLSRLCNT:
case ETHTOOL_GRXCLSRULE:
case ETHTOOL_SRXCLSRLINS:
convert_out = true;
/* fall through */
case ETHTOOL_SRXCLSRLDEL:
buf_size += sizeof(struct ethtool_rxnfc);
convert_in = true;
break;
}
ifr = compat_alloc_user_space(buf_size);
rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
return -EFAULT;
if (put_user(convert_in ? rxnfc : compat_ptr(data),
&ifr->ifr_ifru.ifru_data))
return -EFAULT;
if (convert_in) {
/* We expect there to be holes between fs.m_ext and
* fs.ring_cookie and at the end of fs, but nowhere else.
*/
BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
sizeof(compat_rxnfc->fs.m_ext) !=
offsetof(struct ethtool_rxnfc, fs.m_ext) +
sizeof(rxnfc->fs.m_ext));
BUILD_BUG_ON(
offsetof(struct compat_ethtool_rxnfc, fs.location) -
offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
offsetof(struct ethtool_rxnfc, fs.location) -
offsetof(struct ethtool_rxnfc, fs.ring_cookie));
if (copy_in_user(rxnfc, compat_rxnfc,
(void __user *)(&rxnfc->fs.m_ext + 1) -
(void __user *)rxnfc) ||
copy_in_user(&rxnfc->fs.ring_cookie,
&compat_rxnfc->fs.ring_cookie,
(void __user *)(&rxnfc->fs.location + 1) -
(void __user *)&rxnfc->fs.ring_cookie) ||
copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
sizeof(rxnfc->rule_cnt)))
return -EFAULT;
}
ret = dev_ioctl(net, SIOCETHTOOL, ifr);
if (ret)
return ret;
if (convert_out) {
if (copy_in_user(compat_rxnfc, rxnfc,
(const void __user *)(&rxnfc->fs.m_ext + 1) -
(const void __user *)rxnfc) ||
copy_in_user(&compat_rxnfc->fs.ring_cookie,
&rxnfc->fs.ring_cookie,
(const void __user *)(&rxnfc->fs.location + 1) -
(const void __user *)&rxnfc->fs.ring_cookie) ||
copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
sizeof(rxnfc->rule_cnt)))
return -EFAULT;
if (ethcmd == ETHTOOL_GRXCLSRLALL) {
/* As an optimisation, we only copy the actual
* number of rules that the underlying
* function returned. Since Mallory might
* change the rule count in user memory, we
* check that it is less than the rule count
* originally given (as the user buffer size),
* which has been range-checked.
*/
if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
return -EFAULT;
if (actual_rule_cnt < rule_cnt)
rule_cnt = actual_rule_cnt;
if (copy_in_user(&compat_rxnfc->rule_locs[0],
&rxnfc->rule_locs[0],
rule_cnt * sizeof(u32)))
return -EFAULT;
}
}
return 0;
}
static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
{
void __user *uptr;
compat_uptr_t uptr32;
struct ifreq __user *uifr;
uifr = compat_alloc_user_space(sizeof(*uifr));
if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
return -EFAULT;
if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
return -EFAULT;
uptr = compat_ptr(uptr32);
if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
return -EFAULT;
return dev_ioctl(net, SIOCWANDEV, uifr);
}
static int bond_ioctl(struct net *net, unsigned int cmd,
struct compat_ifreq __user *ifr32)
{
struct ifreq kifr;
mm_segment_t old_fs;
int err;
switch (cmd) {
case SIOCBONDENSLAVE:
case SIOCBONDRELEASE:
case SIOCBONDSETHWADDR:
case SIOCBONDCHANGEACTIVE:
if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
return -EFAULT;
old_fs = get_fs();
set_fs(KERNEL_DS);
err = dev_ioctl(net, cmd,
(struct ifreq __user __force *) &kifr);
set_fs(old_fs);
return err;
default:
return -ENOIOCTLCMD;
}
}
/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
struct compat_ifreq __user *u_ifreq32)
{
struct ifreq __user *u_ifreq64;
char tmp_buf[IFNAMSIZ];
void __user *data64;
u32 data32;
if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
IFNAMSIZ))
return -EFAULT;
if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
return -EFAULT;
data64 = compat_ptr(data32);
u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
IFNAMSIZ))
return -EFAULT;
if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
return -EFAULT;
return dev_ioctl(net, cmd, u_ifreq64);
}
static int dev_ifsioc(struct net *net, struct socket *sock,
unsigned int cmd, struct compat_ifreq __user *uifr32)
{
struct ifreq __user *uifr;
int err;
uifr = compat_alloc_user_space(sizeof(*uifr));
if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
return -EFAULT;
err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
if (!err) {
switch (cmd) {
case SIOCGIFFLAGS:
case SIOCGIFMETRIC:
case SIOCGIFMTU:
case SIOCGIFMEM:
case SIOCGIFHWADDR:
case SIOCGIFINDEX:
case SIOCGIFADDR:
case SIOCGIFBRDADDR:
case SIOCGIFDSTADDR:
case SIOCGIFNETMASK:
case SIOCGIFPFLAGS:
case SIOCGIFTXQLEN:
case SIOCGMIIPHY:
case SIOCGMIIREG:
if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
err = -EFAULT;
break;
}
}
return err;
}
static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
struct compat_ifreq __user *uifr32)
{
struct ifreq ifr;
struct compat_ifmap __user *uifmap32;
mm_segment_t old_fs;
int err;
uifmap32 = &uifr32->ifr_ifru.ifru_map;
err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
err |= get_user(ifr.ifr_map.port, &uifmap32->port);
if (err)
return -EFAULT;
old_fs = get_fs();
set_fs(KERNEL_DS);
err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
set_fs(old_fs);
if (cmd == SIOCGIFMAP && !err) {
err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
err |= put_user(ifr.ifr_map.port, &uifmap32->port);
if (err)
err = -EFAULT;
}
return err;
}
struct rtentry32 {
u32 rt_pad1;
struct sockaddr rt_dst; /* target address */
struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
struct sockaddr rt_genmask; /* target network mask (IP) */
unsigned short rt_flags;
short rt_pad2;
u32 rt_pad3;
unsigned char rt_tos;
unsigned char rt_class;
short rt_pad4;
short rt_metric; /* +1 for binary compatibility! */
/* char * */ u32 rt_dev; /* forcing the device at add */
u32 rt_mtu; /* per route MTU/Window */
u32 rt_window; /* Window clamping */
unsigned short rt_irtt; /* Initial RTT */
};
struct in6_rtmsg32 {
struct in6_addr rtmsg_dst;
struct in6_addr rtmsg_src;
struct in6_addr rtmsg_gateway;
u32 rtmsg_type;
u16 rtmsg_dst_len;
u16 rtmsg_src_len;
u32 rtmsg_metric;
u32 rtmsg_info;
u32 rtmsg_flags;
s32 rtmsg_ifindex;
};
static int routing_ioctl(struct net *net, struct socket *sock,
unsigned int cmd, void __user *argp)
{
int ret;
void *r = NULL;
struct in6_rtmsg r6;
struct rtentry r4;
char devname[16];
u32 rtdev;
mm_segment_t old_fs = get_fs();
if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
struct in6_rtmsg32 __user *ur6 = argp;
ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3 * sizeof(struct in6_addr));
ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
r = (void *) &r6;
} else { /* ipv4 */
struct rtentry32 __user *ur4 = argp;
ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3 * sizeof(struct sockaddr));
ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
ret |= get_user(r4.rt_window, &(ur4->rt_window));
ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
ret |= get_user(rtdev, &(ur4->rt_dev));
if (rtdev) {
ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
r4.rt_dev = (char __user __force *)devname;
devname[15] = 0;
} else
r4.rt_dev = NULL;
r = (void *) &r4;
}
if (ret) {
ret = -EFAULT;
goto out;
}
set_fs(KERNEL_DS);
ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
set_fs(old_fs);
out:
return ret;
}
/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
* for some operations; this forces use of the newer bridge-utils that
* use compatible ioctls
*/
static int old_bridge_ioctl(compat_ulong_t __user *argp)
{
compat_ulong_t tmp;
if (get_user(tmp, argp))
return -EFAULT;
if (tmp == BRCTL_GET_VERSION)
return BRCTL_VERSION + 1;
return -EINVAL;
}
static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
unsigned int cmd, unsigned long arg)
{
void __user *argp = compat_ptr(arg);
struct sock *sk = sock->sk;
struct net *net = sock_net(sk);
if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
return compat_ifr_data_ioctl(net, cmd, argp);
switch (cmd) {
case SIOCSIFBR:
case SIOCGIFBR:
return old_bridge_ioctl(argp);
case SIOCGIFNAME:
return dev_ifname32(net, argp);
case SIOCGIFCONF:
return dev_ifconf(net, argp);
case SIOCETHTOOL:
return ethtool_ioctl(net, argp);
case SIOCWANDEV:
return compat_siocwandev(net, argp);
case SIOCGIFMAP:
case SIOCSIFMAP:
return compat_sioc_ifmap(net, cmd, argp);
case SIOCBONDENSLAVE:
case SIOCBONDRELEASE:
case SIOCBONDSETHWADDR:
case SIOCBONDCHANGEACTIVE:
return bond_ioctl(net, cmd, argp);
case SIOCADDRT:
case SIOCDELRT:
return routing_ioctl(net, sock, cmd, argp);
case SIOCGSTAMP:
return do_siocgstamp(net, sock, cmd, argp);
case SIOCGSTAMPNS:
return do_siocgstampns(net, sock, cmd, argp);
case SIOCBONDSLAVEINFOQUERY:
case SIOCBONDINFOQUERY:
case SIOCSHWTSTAMP:
case SIOCGHWTSTAMP:
return compat_ifr_data_ioctl(net, cmd, argp);
case FIOSETOWN:
case SIOCSPGRP:
case FIOGETOWN:
case SIOCGPGRP:
case SIOCBRADDBR:
case SIOCBRDELBR:
case SIOCGIFVLAN:
case SIOCSIFVLAN:
case SIOCADDDLCI:
case SIOCDELDLCI:
case SIOCGSKNS:
return sock_ioctl(file, cmd, arg);
case SIOCGIFFLAGS:
case SIOCSIFFLAGS:
case SIOCGIFMETRIC:
case SIOCSIFMETRIC:
case SIOCGIFMTU:
case SIOCSIFMTU:
case SIOCGIFMEM:
case SIOCSIFMEM:
case SIOCGIFHWADDR:
case SIOCSIFHWADDR:
case SIOCADDMULTI:
case SIOCDELMULTI:
case SIOCGIFINDEX:
case SIOCGIFADDR:
case SIOCSIFADDR:
case SIOCSIFHWBROADCAST:
case SIOCDIFADDR:
case SIOCGIFBRDADDR:
case SIOCSIFBRDADDR:
case SIOCGIFDSTADDR:
case SIOCSIFDSTADDR:
case SIOCGIFNETMASK:
case SIOCSIFNETMASK:
case SIOCSIFPFLAGS:
case SIOCGIFPFLAGS:
case SIOCGIFTXQLEN:
case SIOCSIFTXQLEN:
case SIOCBRADDIF:
case SIOCBRDELIF:
case SIOCSIFNAME:
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return dev_ifsioc(net, sock, cmd, argp);
case SIOCSARP:
case SIOCGARP:
case SIOCDARP:
case SIOCATMARK:
return sock_do_ioctl(net, sock, cmd, arg);
}
return -ENOIOCTLCMD;
}
static long compat_sock_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
struct socket *sock = file->private_data;
int ret = -ENOIOCTLCMD;
struct sock *sk;
struct net *net;
sk = sock->sk;
net = sock_net(sk);
if (sock->ops->compat_ioctl)
ret = sock->ops->compat_ioctl(sock, cmd, arg);
if (ret == -ENOIOCTLCMD &&
(cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
ret = compat_wext_handle_ioctl(net, cmd, arg);
if (ret == -ENOIOCTLCMD)
ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
return ret;
}
#endif
int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
{
return sock->ops->bind(sock, addr, addrlen);
}
EXPORT_SYMBOL(kernel_bind);
int kernel_listen(struct socket *sock, int backlog)
{
return sock->ops->listen(sock, backlog);
}
EXPORT_SYMBOL(kernel_listen);
int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
{
struct sock *sk = sock->sk;
int err;
err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
newsock);
if (err < 0)
goto done;
err = sock->ops->accept(sock, *newsock, flags, true);
if (err < 0) {
sock_release(*newsock);
*newsock = NULL;
goto done;
}
(*newsock)->ops = sock->ops;
__module_get((*newsock)->ops->owner);
done:
return err;
}
EXPORT_SYMBOL(kernel_accept);
int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
int flags)
{
return sock->ops->connect(sock, addr, addrlen, flags);
}
EXPORT_SYMBOL(kernel_connect);
int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
int *addrlen)
{
return sock->ops->getname(sock, addr, addrlen, 0);
}
EXPORT_SYMBOL(kernel_getsockname);
int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
int *addrlen)
{
return sock->ops->getname(sock, addr, addrlen, 1);
}
EXPORT_SYMBOL(kernel_getpeername);
int kernel_getsockopt(struct socket *sock, int level, int optname,
char *optval, int *optlen)
{
mm_segment_t oldfs = get_fs();
char __user *uoptval;
int __user *uoptlen;
int err;
uoptval = (char __user __force *) optval;
uoptlen = (int __user __force *) optlen;
set_fs(KERNEL_DS);
if (level == SOL_SOCKET)
err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
else
err = sock->ops->getsockopt(sock, level, optname, uoptval,
uoptlen);
set_fs(oldfs);
return err;
}
EXPORT_SYMBOL(kernel_getsockopt);
int kernel_setsockopt(struct socket *sock, int level, int optname,
char *optval, unsigned int optlen)
{
mm_segment_t oldfs = get_fs();
char __user *uoptval;
int err;
uoptval = (char __user __force *) optval;
set_fs(KERNEL_DS);
if (level == SOL_SOCKET)
err = sock_setsockopt(sock, level, optname, uoptval, optlen);
else
err = sock->ops->setsockopt(sock, level, optname, uoptval,
optlen);
set_fs(oldfs);
return err;
}
EXPORT_SYMBOL(kernel_setsockopt);
int kernel_sendpage(struct socket *sock, struct page *page, int offset,
size_t size, int flags)
{
if (sock->ops->sendpage)
return sock->ops->sendpage(sock, page, offset, size, flags);
return sock_no_sendpage(sock, page, offset, size, flags);
}
EXPORT_SYMBOL(kernel_sendpage);
int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
size_t size, int flags)
{
struct socket *sock = sk->sk_socket;
if (sock->ops->sendpage_locked)
return sock->ops->sendpage_locked(sk, page, offset, size,
flags);
return sock_no_sendpage_locked(sk, page, offset, size, flags);
}
EXPORT_SYMBOL(kernel_sendpage_locked);
int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
{
mm_segment_t oldfs = get_fs();
int err;
set_fs(KERNEL_DS);
err = sock->ops->ioctl(sock, cmd, arg);
set_fs(oldfs);
return err;
}
EXPORT_SYMBOL(kernel_sock_ioctl);
int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
{
return sock->ops->shutdown(sock, how);
}
EXPORT_SYMBOL(kernel_sock_shutdown);
/* This routine returns the IP overhead imposed by a socket i.e.
* the length of the underlying IP header, depending on whether
* this is an IPv4 or IPv6 socket and the length from IP options turned
* on at the socket. Assumes that the caller has a lock on the socket.
*/
u32 kernel_sock_ip_overhead(struct sock *sk)
{
struct inet_sock *inet;
struct ip_options_rcu *opt;
u32 overhead = 0;
#if IS_ENABLED(CONFIG_IPV6)
struct ipv6_pinfo *np;
struct ipv6_txoptions *optv6 = NULL;
#endif /* IS_ENABLED(CONFIG_IPV6) */
if (!sk)
return overhead;
switch (sk->sk_family) {
case AF_INET:
inet = inet_sk(sk);
overhead += sizeof(struct iphdr);
opt = rcu_dereference_protected(inet->inet_opt,
sock_owned_by_user(sk));
if (opt)
overhead += opt->opt.optlen;
return overhead;
#if IS_ENABLED(CONFIG_IPV6)
case AF_INET6:
np = inet6_sk(sk);
overhead += sizeof(struct ipv6hdr);
if (np)
optv6 = rcu_dereference_protected(np->opt,
sock_owned_by_user(sk));
if (optv6)
overhead += (optv6->opt_flen + optv6->opt_nflen);
return overhead;
#endif /* IS_ENABLED(CONFIG_IPV6) */
default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
return overhead;
}
}
EXPORT_SYMBOL(kernel_sock_ip_overhead);