mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-18 18:23:53 +08:00
01c7026705
The page cache needs to know whether the filesystem supports THPs so that it doesn't send THPs to filesystems which can't handle them. Dave Chinner points out that getting from the page mapping to the filesystem type is too many steps (mapping->host->i_sb->s_type->fs_flags) so cache that information in the address space flags. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Song Liu <songliubraving@fb.com> Cc: Rik van Riel <riel@surriel.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Dave Chinner <dchinner@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Link: https://lkml.kernel.org/r/20200916032717.22917-1-willy@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
953 lines
27 KiB
C
953 lines
27 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _LINUX_PAGEMAP_H
|
|
#define _LINUX_PAGEMAP_H
|
|
|
|
/*
|
|
* Copyright 1995 Linus Torvalds
|
|
*/
|
|
#include <linux/mm.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/list.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/hardirq.h> /* for in_interrupt() */
|
|
#include <linux/hugetlb_inline.h>
|
|
|
|
struct pagevec;
|
|
|
|
/*
|
|
* Bits in mapping->flags.
|
|
*/
|
|
enum mapping_flags {
|
|
AS_EIO = 0, /* IO error on async write */
|
|
AS_ENOSPC = 1, /* ENOSPC on async write */
|
|
AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
|
|
AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
|
|
AS_EXITING = 4, /* final truncate in progress */
|
|
/* writeback related tags are not used */
|
|
AS_NO_WRITEBACK_TAGS = 5,
|
|
AS_THP_SUPPORT = 6, /* THPs supported */
|
|
};
|
|
|
|
/**
|
|
* mapping_set_error - record a writeback error in the address_space
|
|
* @mapping: the mapping in which an error should be set
|
|
* @error: the error to set in the mapping
|
|
*
|
|
* When writeback fails in some way, we must record that error so that
|
|
* userspace can be informed when fsync and the like are called. We endeavor
|
|
* to report errors on any file that was open at the time of the error. Some
|
|
* internal callers also need to know when writeback errors have occurred.
|
|
*
|
|
* When a writeback error occurs, most filesystems will want to call
|
|
* mapping_set_error to record the error in the mapping so that it can be
|
|
* reported when the application calls fsync(2).
|
|
*/
|
|
static inline void mapping_set_error(struct address_space *mapping, int error)
|
|
{
|
|
if (likely(!error))
|
|
return;
|
|
|
|
/* Record in wb_err for checkers using errseq_t based tracking */
|
|
__filemap_set_wb_err(mapping, error);
|
|
|
|
/* Record it in superblock */
|
|
if (mapping->host)
|
|
errseq_set(&mapping->host->i_sb->s_wb_err, error);
|
|
|
|
/* Record it in flags for now, for legacy callers */
|
|
if (error == -ENOSPC)
|
|
set_bit(AS_ENOSPC, &mapping->flags);
|
|
else
|
|
set_bit(AS_EIO, &mapping->flags);
|
|
}
|
|
|
|
static inline void mapping_set_unevictable(struct address_space *mapping)
|
|
{
|
|
set_bit(AS_UNEVICTABLE, &mapping->flags);
|
|
}
|
|
|
|
static inline void mapping_clear_unevictable(struct address_space *mapping)
|
|
{
|
|
clear_bit(AS_UNEVICTABLE, &mapping->flags);
|
|
}
|
|
|
|
static inline bool mapping_unevictable(struct address_space *mapping)
|
|
{
|
|
return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
|
|
}
|
|
|
|
static inline void mapping_set_exiting(struct address_space *mapping)
|
|
{
|
|
set_bit(AS_EXITING, &mapping->flags);
|
|
}
|
|
|
|
static inline int mapping_exiting(struct address_space *mapping)
|
|
{
|
|
return test_bit(AS_EXITING, &mapping->flags);
|
|
}
|
|
|
|
static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
|
|
{
|
|
set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
|
|
}
|
|
|
|
static inline int mapping_use_writeback_tags(struct address_space *mapping)
|
|
{
|
|
return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
|
|
}
|
|
|
|
static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
|
|
{
|
|
return mapping->gfp_mask;
|
|
}
|
|
|
|
/* Restricts the given gfp_mask to what the mapping allows. */
|
|
static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
|
|
gfp_t gfp_mask)
|
|
{
|
|
return mapping_gfp_mask(mapping) & gfp_mask;
|
|
}
|
|
|
|
/*
|
|
* This is non-atomic. Only to be used before the mapping is activated.
|
|
* Probably needs a barrier...
|
|
*/
|
|
static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
|
|
{
|
|
m->gfp_mask = mask;
|
|
}
|
|
|
|
static inline bool mapping_thp_support(struct address_space *mapping)
|
|
{
|
|
return test_bit(AS_THP_SUPPORT, &mapping->flags);
|
|
}
|
|
|
|
void release_pages(struct page **pages, int nr);
|
|
|
|
/*
|
|
* speculatively take a reference to a page.
|
|
* If the page is free (_refcount == 0), then _refcount is untouched, and 0
|
|
* is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
|
|
*
|
|
* This function must be called inside the same rcu_read_lock() section as has
|
|
* been used to lookup the page in the pagecache radix-tree (or page table):
|
|
* this allows allocators to use a synchronize_rcu() to stabilize _refcount.
|
|
*
|
|
* Unless an RCU grace period has passed, the count of all pages coming out
|
|
* of the allocator must be considered unstable. page_count may return higher
|
|
* than expected, and put_page must be able to do the right thing when the
|
|
* page has been finished with, no matter what it is subsequently allocated
|
|
* for (because put_page is what is used here to drop an invalid speculative
|
|
* reference).
|
|
*
|
|
* This is the interesting part of the lockless pagecache (and lockless
|
|
* get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
|
|
* has the following pattern:
|
|
* 1. find page in radix tree
|
|
* 2. conditionally increment refcount
|
|
* 3. check the page is still in pagecache (if no, goto 1)
|
|
*
|
|
* Remove-side that cares about stability of _refcount (eg. reclaim) has the
|
|
* following (with the i_pages lock held):
|
|
* A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
|
|
* B. remove page from pagecache
|
|
* C. free the page
|
|
*
|
|
* There are 2 critical interleavings that matter:
|
|
* - 2 runs before A: in this case, A sees elevated refcount and bails out
|
|
* - A runs before 2: in this case, 2 sees zero refcount and retries;
|
|
* subsequently, B will complete and 1 will find no page, causing the
|
|
* lookup to return NULL.
|
|
*
|
|
* It is possible that between 1 and 2, the page is removed then the exact same
|
|
* page is inserted into the same position in pagecache. That's OK: the
|
|
* old find_get_page using a lock could equally have run before or after
|
|
* such a re-insertion, depending on order that locks are granted.
|
|
*
|
|
* Lookups racing against pagecache insertion isn't a big problem: either 1
|
|
* will find the page or it will not. Likewise, the old find_get_page could run
|
|
* either before the insertion or afterwards, depending on timing.
|
|
*/
|
|
static inline int __page_cache_add_speculative(struct page *page, int count)
|
|
{
|
|
#ifdef CONFIG_TINY_RCU
|
|
# ifdef CONFIG_PREEMPT_COUNT
|
|
VM_BUG_ON(!in_atomic() && !irqs_disabled());
|
|
# endif
|
|
/*
|
|
* Preempt must be disabled here - we rely on rcu_read_lock doing
|
|
* this for us.
|
|
*
|
|
* Pagecache won't be truncated from interrupt context, so if we have
|
|
* found a page in the radix tree here, we have pinned its refcount by
|
|
* disabling preempt, and hence no need for the "speculative get" that
|
|
* SMP requires.
|
|
*/
|
|
VM_BUG_ON_PAGE(page_count(page) == 0, page);
|
|
page_ref_add(page, count);
|
|
|
|
#else
|
|
if (unlikely(!page_ref_add_unless(page, count, 0))) {
|
|
/*
|
|
* Either the page has been freed, or will be freed.
|
|
* In either case, retry here and the caller should
|
|
* do the right thing (see comments above).
|
|
*/
|
|
return 0;
|
|
}
|
|
#endif
|
|
VM_BUG_ON_PAGE(PageTail(page), page);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static inline int page_cache_get_speculative(struct page *page)
|
|
{
|
|
return __page_cache_add_speculative(page, 1);
|
|
}
|
|
|
|
static inline int page_cache_add_speculative(struct page *page, int count)
|
|
{
|
|
return __page_cache_add_speculative(page, count);
|
|
}
|
|
|
|
/**
|
|
* attach_page_private - Attach private data to a page.
|
|
* @page: Page to attach data to.
|
|
* @data: Data to attach to page.
|
|
*
|
|
* Attaching private data to a page increments the page's reference count.
|
|
* The data must be detached before the page will be freed.
|
|
*/
|
|
static inline void attach_page_private(struct page *page, void *data)
|
|
{
|
|
get_page(page);
|
|
set_page_private(page, (unsigned long)data);
|
|
SetPagePrivate(page);
|
|
}
|
|
|
|
/**
|
|
* detach_page_private - Detach private data from a page.
|
|
* @page: Page to detach data from.
|
|
*
|
|
* Removes the data that was previously attached to the page and decrements
|
|
* the refcount on the page.
|
|
*
|
|
* Return: Data that was attached to the page.
|
|
*/
|
|
static inline void *detach_page_private(struct page *page)
|
|
{
|
|
void *data = (void *)page_private(page);
|
|
|
|
if (!PagePrivate(page))
|
|
return NULL;
|
|
ClearPagePrivate(page);
|
|
set_page_private(page, 0);
|
|
put_page(page);
|
|
|
|
return data;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
extern struct page *__page_cache_alloc(gfp_t gfp);
|
|
#else
|
|
static inline struct page *__page_cache_alloc(gfp_t gfp)
|
|
{
|
|
return alloc_pages(gfp, 0);
|
|
}
|
|
#endif
|
|
|
|
static inline struct page *page_cache_alloc(struct address_space *x)
|
|
{
|
|
return __page_cache_alloc(mapping_gfp_mask(x));
|
|
}
|
|
|
|
static inline gfp_t readahead_gfp_mask(struct address_space *x)
|
|
{
|
|
return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
|
|
}
|
|
|
|
typedef int filler_t(void *, struct page *);
|
|
|
|
pgoff_t page_cache_next_miss(struct address_space *mapping,
|
|
pgoff_t index, unsigned long max_scan);
|
|
pgoff_t page_cache_prev_miss(struct address_space *mapping,
|
|
pgoff_t index, unsigned long max_scan);
|
|
|
|
#define FGP_ACCESSED 0x00000001
|
|
#define FGP_LOCK 0x00000002
|
|
#define FGP_CREAT 0x00000004
|
|
#define FGP_WRITE 0x00000008
|
|
#define FGP_NOFS 0x00000010
|
|
#define FGP_NOWAIT 0x00000020
|
|
#define FGP_FOR_MMAP 0x00000040
|
|
#define FGP_HEAD 0x00000080
|
|
|
|
struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
|
|
int fgp_flags, gfp_t cache_gfp_mask);
|
|
|
|
/**
|
|
* find_get_page - find and get a page reference
|
|
* @mapping: the address_space to search
|
|
* @offset: the page index
|
|
*
|
|
* Looks up the page cache slot at @mapping & @offset. If there is a
|
|
* page cache page, it is returned with an increased refcount.
|
|
*
|
|
* Otherwise, %NULL is returned.
|
|
*/
|
|
static inline struct page *find_get_page(struct address_space *mapping,
|
|
pgoff_t offset)
|
|
{
|
|
return pagecache_get_page(mapping, offset, 0, 0);
|
|
}
|
|
|
|
static inline struct page *find_get_page_flags(struct address_space *mapping,
|
|
pgoff_t offset, int fgp_flags)
|
|
{
|
|
return pagecache_get_page(mapping, offset, fgp_flags, 0);
|
|
}
|
|
|
|
/**
|
|
* find_lock_page - locate, pin and lock a pagecache page
|
|
* @mapping: the address_space to search
|
|
* @offset: the page index
|
|
*
|
|
* Looks up the page cache entry at @mapping & @offset. If there is a
|
|
* page cache page, it is returned locked and with an increased
|
|
* refcount.
|
|
*
|
|
* Context: May sleep.
|
|
* Return: A struct page or %NULL if there is no page in the cache for this
|
|
* index.
|
|
*/
|
|
static inline struct page *find_lock_page(struct address_space *mapping,
|
|
pgoff_t index)
|
|
{
|
|
return pagecache_get_page(mapping, index, FGP_LOCK, 0);
|
|
}
|
|
|
|
/**
|
|
* find_lock_head - Locate, pin and lock a pagecache page.
|
|
* @mapping: The address_space to search.
|
|
* @offset: The page index.
|
|
*
|
|
* Looks up the page cache entry at @mapping & @offset. If there is a
|
|
* page cache page, its head page is returned locked and with an increased
|
|
* refcount.
|
|
*
|
|
* Context: May sleep.
|
|
* Return: A struct page which is !PageTail, or %NULL if there is no page
|
|
* in the cache for this index.
|
|
*/
|
|
static inline struct page *find_lock_head(struct address_space *mapping,
|
|
pgoff_t index)
|
|
{
|
|
return pagecache_get_page(mapping, index, FGP_LOCK | FGP_HEAD, 0);
|
|
}
|
|
|
|
/**
|
|
* find_or_create_page - locate or add a pagecache page
|
|
* @mapping: the page's address_space
|
|
* @index: the page's index into the mapping
|
|
* @gfp_mask: page allocation mode
|
|
*
|
|
* Looks up the page cache slot at @mapping & @offset. If there is a
|
|
* page cache page, it is returned locked and with an increased
|
|
* refcount.
|
|
*
|
|
* If the page is not present, a new page is allocated using @gfp_mask
|
|
* and added to the page cache and the VM's LRU list. The page is
|
|
* returned locked and with an increased refcount.
|
|
*
|
|
* On memory exhaustion, %NULL is returned.
|
|
*
|
|
* find_or_create_page() may sleep, even if @gfp_flags specifies an
|
|
* atomic allocation!
|
|
*/
|
|
static inline struct page *find_or_create_page(struct address_space *mapping,
|
|
pgoff_t index, gfp_t gfp_mask)
|
|
{
|
|
return pagecache_get_page(mapping, index,
|
|
FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
|
|
gfp_mask);
|
|
}
|
|
|
|
/**
|
|
* grab_cache_page_nowait - returns locked page at given index in given cache
|
|
* @mapping: target address_space
|
|
* @index: the page index
|
|
*
|
|
* Same as grab_cache_page(), but do not wait if the page is unavailable.
|
|
* This is intended for speculative data generators, where the data can
|
|
* be regenerated if the page couldn't be grabbed. This routine should
|
|
* be safe to call while holding the lock for another page.
|
|
*
|
|
* Clear __GFP_FS when allocating the page to avoid recursion into the fs
|
|
* and deadlock against the caller's locked page.
|
|
*/
|
|
static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
|
|
pgoff_t index)
|
|
{
|
|
return pagecache_get_page(mapping, index,
|
|
FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
|
|
mapping_gfp_mask(mapping));
|
|
}
|
|
|
|
/* Does this page contain this index? */
|
|
static inline bool thp_contains(struct page *head, pgoff_t index)
|
|
{
|
|
/* HugeTLBfs indexes the page cache in units of hpage_size */
|
|
if (PageHuge(head))
|
|
return head->index == index;
|
|
return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL));
|
|
}
|
|
|
|
/*
|
|
* Given the page we found in the page cache, return the page corresponding
|
|
* to this index in the file
|
|
*/
|
|
static inline struct page *find_subpage(struct page *head, pgoff_t index)
|
|
{
|
|
/* HugeTLBfs wants the head page regardless */
|
|
if (PageHuge(head))
|
|
return head;
|
|
|
|
return head + (index & (thp_nr_pages(head) - 1));
|
|
}
|
|
|
|
unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
|
|
unsigned int nr_entries, struct page **entries,
|
|
pgoff_t *indices);
|
|
unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
|
|
pgoff_t end, unsigned int nr_pages,
|
|
struct page **pages);
|
|
static inline unsigned find_get_pages(struct address_space *mapping,
|
|
pgoff_t *start, unsigned int nr_pages,
|
|
struct page **pages)
|
|
{
|
|
return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
|
|
pages);
|
|
}
|
|
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
|
|
unsigned int nr_pages, struct page **pages);
|
|
unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
|
|
pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
|
|
struct page **pages);
|
|
static inline unsigned find_get_pages_tag(struct address_space *mapping,
|
|
pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
|
|
struct page **pages)
|
|
{
|
|
return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
|
|
nr_pages, pages);
|
|
}
|
|
|
|
struct page *grab_cache_page_write_begin(struct address_space *mapping,
|
|
pgoff_t index, unsigned flags);
|
|
|
|
/*
|
|
* Returns locked page at given index in given cache, creating it if needed.
|
|
*/
|
|
static inline struct page *grab_cache_page(struct address_space *mapping,
|
|
pgoff_t index)
|
|
{
|
|
return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
|
|
}
|
|
|
|
extern struct page * read_cache_page(struct address_space *mapping,
|
|
pgoff_t index, filler_t *filler, void *data);
|
|
extern struct page * read_cache_page_gfp(struct address_space *mapping,
|
|
pgoff_t index, gfp_t gfp_mask);
|
|
extern int read_cache_pages(struct address_space *mapping,
|
|
struct list_head *pages, filler_t *filler, void *data);
|
|
|
|
static inline struct page *read_mapping_page(struct address_space *mapping,
|
|
pgoff_t index, void *data)
|
|
{
|
|
return read_cache_page(mapping, index, NULL, data);
|
|
}
|
|
|
|
/*
|
|
* Get index of the page with in radix-tree
|
|
* (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
|
|
*/
|
|
static inline pgoff_t page_to_index(struct page *page)
|
|
{
|
|
pgoff_t pgoff;
|
|
|
|
if (likely(!PageTransTail(page)))
|
|
return page->index;
|
|
|
|
/*
|
|
* We don't initialize ->index for tail pages: calculate based on
|
|
* head page
|
|
*/
|
|
pgoff = compound_head(page)->index;
|
|
pgoff += page - compound_head(page);
|
|
return pgoff;
|
|
}
|
|
|
|
/*
|
|
* Get the offset in PAGE_SIZE.
|
|
* (TODO: hugepage should have ->index in PAGE_SIZE)
|
|
*/
|
|
static inline pgoff_t page_to_pgoff(struct page *page)
|
|
{
|
|
if (unlikely(PageHeadHuge(page)))
|
|
return page->index << compound_order(page);
|
|
|
|
return page_to_index(page);
|
|
}
|
|
|
|
/*
|
|
* Return byte-offset into filesystem object for page.
|
|
*/
|
|
static inline loff_t page_offset(struct page *page)
|
|
{
|
|
return ((loff_t)page->index) << PAGE_SHIFT;
|
|
}
|
|
|
|
static inline loff_t page_file_offset(struct page *page)
|
|
{
|
|
return ((loff_t)page_index(page)) << PAGE_SHIFT;
|
|
}
|
|
|
|
extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
|
|
unsigned long address);
|
|
|
|
static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
|
|
unsigned long address)
|
|
{
|
|
pgoff_t pgoff;
|
|
if (unlikely(is_vm_hugetlb_page(vma)))
|
|
return linear_hugepage_index(vma, address);
|
|
pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
|
|
pgoff += vma->vm_pgoff;
|
|
return pgoff;
|
|
}
|
|
|
|
/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
|
|
struct wait_page_key {
|
|
struct page *page;
|
|
int bit_nr;
|
|
int page_match;
|
|
};
|
|
|
|
struct wait_page_queue {
|
|
struct page *page;
|
|
int bit_nr;
|
|
wait_queue_entry_t wait;
|
|
};
|
|
|
|
static inline bool wake_page_match(struct wait_page_queue *wait_page,
|
|
struct wait_page_key *key)
|
|
{
|
|
if (wait_page->page != key->page)
|
|
return false;
|
|
key->page_match = 1;
|
|
|
|
if (wait_page->bit_nr != key->bit_nr)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
extern void __lock_page(struct page *page);
|
|
extern int __lock_page_killable(struct page *page);
|
|
extern int __lock_page_async(struct page *page, struct wait_page_queue *wait);
|
|
extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
|
|
unsigned int flags);
|
|
extern void unlock_page(struct page *page);
|
|
|
|
/*
|
|
* Return true if the page was successfully locked
|
|
*/
|
|
static inline int trylock_page(struct page *page)
|
|
{
|
|
page = compound_head(page);
|
|
return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
|
|
}
|
|
|
|
/*
|
|
* lock_page may only be called if we have the page's inode pinned.
|
|
*/
|
|
static inline void lock_page(struct page *page)
|
|
{
|
|
might_sleep();
|
|
if (!trylock_page(page))
|
|
__lock_page(page);
|
|
}
|
|
|
|
/*
|
|
* lock_page_killable is like lock_page but can be interrupted by fatal
|
|
* signals. It returns 0 if it locked the page and -EINTR if it was
|
|
* killed while waiting.
|
|
*/
|
|
static inline int lock_page_killable(struct page *page)
|
|
{
|
|
might_sleep();
|
|
if (!trylock_page(page))
|
|
return __lock_page_killable(page);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* lock_page_async - Lock the page, unless this would block. If the page
|
|
* is already locked, then queue a callback when the page becomes unlocked.
|
|
* This callback can then retry the operation.
|
|
*
|
|
* Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page
|
|
* was already locked and the callback defined in 'wait' was queued.
|
|
*/
|
|
static inline int lock_page_async(struct page *page,
|
|
struct wait_page_queue *wait)
|
|
{
|
|
if (!trylock_page(page))
|
|
return __lock_page_async(page, wait);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* lock_page_or_retry - Lock the page, unless this would block and the
|
|
* caller indicated that it can handle a retry.
|
|
*
|
|
* Return value and mmap_lock implications depend on flags; see
|
|
* __lock_page_or_retry().
|
|
*/
|
|
static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
|
|
unsigned int flags)
|
|
{
|
|
might_sleep();
|
|
return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
|
|
}
|
|
|
|
/*
|
|
* This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
|
|
* and should not be used directly.
|
|
*/
|
|
extern void wait_on_page_bit(struct page *page, int bit_nr);
|
|
extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
|
|
|
|
/*
|
|
* Wait for a page to be unlocked.
|
|
*
|
|
* This must be called with the caller "holding" the page,
|
|
* ie with increased "page->count" so that the page won't
|
|
* go away during the wait..
|
|
*/
|
|
static inline void wait_on_page_locked(struct page *page)
|
|
{
|
|
if (PageLocked(page))
|
|
wait_on_page_bit(compound_head(page), PG_locked);
|
|
}
|
|
|
|
static inline int wait_on_page_locked_killable(struct page *page)
|
|
{
|
|
if (!PageLocked(page))
|
|
return 0;
|
|
return wait_on_page_bit_killable(compound_head(page), PG_locked);
|
|
}
|
|
|
|
extern void put_and_wait_on_page_locked(struct page *page);
|
|
|
|
void wait_on_page_writeback(struct page *page);
|
|
extern void end_page_writeback(struct page *page);
|
|
void wait_for_stable_page(struct page *page);
|
|
|
|
void page_endio(struct page *page, bool is_write, int err);
|
|
|
|
/*
|
|
* Add an arbitrary waiter to a page's wait queue
|
|
*/
|
|
extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
|
|
|
|
/*
|
|
* Fault everything in given userspace address range in.
|
|
*/
|
|
static inline int fault_in_pages_writeable(char __user *uaddr, int size)
|
|
{
|
|
char __user *end = uaddr + size - 1;
|
|
|
|
if (unlikely(size == 0))
|
|
return 0;
|
|
|
|
if (unlikely(uaddr > end))
|
|
return -EFAULT;
|
|
/*
|
|
* Writing zeroes into userspace here is OK, because we know that if
|
|
* the zero gets there, we'll be overwriting it.
|
|
*/
|
|
do {
|
|
if (unlikely(__put_user(0, uaddr) != 0))
|
|
return -EFAULT;
|
|
uaddr += PAGE_SIZE;
|
|
} while (uaddr <= end);
|
|
|
|
/* Check whether the range spilled into the next page. */
|
|
if (((unsigned long)uaddr & PAGE_MASK) ==
|
|
((unsigned long)end & PAGE_MASK))
|
|
return __put_user(0, end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int fault_in_pages_readable(const char __user *uaddr, int size)
|
|
{
|
|
volatile char c;
|
|
const char __user *end = uaddr + size - 1;
|
|
|
|
if (unlikely(size == 0))
|
|
return 0;
|
|
|
|
if (unlikely(uaddr > end))
|
|
return -EFAULT;
|
|
|
|
do {
|
|
if (unlikely(__get_user(c, uaddr) != 0))
|
|
return -EFAULT;
|
|
uaddr += PAGE_SIZE;
|
|
} while (uaddr <= end);
|
|
|
|
/* Check whether the range spilled into the next page. */
|
|
if (((unsigned long)uaddr & PAGE_MASK) ==
|
|
((unsigned long)end & PAGE_MASK)) {
|
|
return __get_user(c, end);
|
|
}
|
|
|
|
(void)c;
|
|
return 0;
|
|
}
|
|
|
|
int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
|
|
pgoff_t index, gfp_t gfp_mask);
|
|
int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
|
|
pgoff_t index, gfp_t gfp_mask);
|
|
extern void delete_from_page_cache(struct page *page);
|
|
extern void __delete_from_page_cache(struct page *page, void *shadow);
|
|
int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
|
|
void delete_from_page_cache_batch(struct address_space *mapping,
|
|
struct pagevec *pvec);
|
|
|
|
#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
|
|
|
|
void page_cache_sync_readahead(struct address_space *, struct file_ra_state *,
|
|
struct file *, pgoff_t index, unsigned long req_count);
|
|
void page_cache_async_readahead(struct address_space *, struct file_ra_state *,
|
|
struct file *, struct page *, pgoff_t index,
|
|
unsigned long req_count);
|
|
void page_cache_readahead_unbounded(struct address_space *, struct file *,
|
|
pgoff_t index, unsigned long nr_to_read,
|
|
unsigned long lookahead_count);
|
|
|
|
/*
|
|
* Like add_to_page_cache_locked, but used to add newly allocated pages:
|
|
* the page is new, so we can just run __SetPageLocked() against it.
|
|
*/
|
|
static inline int add_to_page_cache(struct page *page,
|
|
struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
|
|
{
|
|
int error;
|
|
|
|
__SetPageLocked(page);
|
|
error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
|
|
if (unlikely(error))
|
|
__ClearPageLocked(page);
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* struct readahead_control - Describes a readahead request.
|
|
*
|
|
* A readahead request is for consecutive pages. Filesystems which
|
|
* implement the ->readahead method should call readahead_page() or
|
|
* readahead_page_batch() in a loop and attempt to start I/O against
|
|
* each page in the request.
|
|
*
|
|
* Most of the fields in this struct are private and should be accessed
|
|
* by the functions below.
|
|
*
|
|
* @file: The file, used primarily by network filesystems for authentication.
|
|
* May be NULL if invoked internally by the filesystem.
|
|
* @mapping: Readahead this filesystem object.
|
|
*/
|
|
struct readahead_control {
|
|
struct file *file;
|
|
struct address_space *mapping;
|
|
/* private: use the readahead_* accessors instead */
|
|
pgoff_t _index;
|
|
unsigned int _nr_pages;
|
|
unsigned int _batch_count;
|
|
};
|
|
|
|
/**
|
|
* readahead_page - Get the next page to read.
|
|
* @rac: The current readahead request.
|
|
*
|
|
* Context: The page is locked and has an elevated refcount. The caller
|
|
* should decreases the refcount once the page has been submitted for I/O
|
|
* and unlock the page once all I/O to that page has completed.
|
|
* Return: A pointer to the next page, or %NULL if we are done.
|
|
*/
|
|
static inline struct page *readahead_page(struct readahead_control *rac)
|
|
{
|
|
struct page *page;
|
|
|
|
BUG_ON(rac->_batch_count > rac->_nr_pages);
|
|
rac->_nr_pages -= rac->_batch_count;
|
|
rac->_index += rac->_batch_count;
|
|
|
|
if (!rac->_nr_pages) {
|
|
rac->_batch_count = 0;
|
|
return NULL;
|
|
}
|
|
|
|
page = xa_load(&rac->mapping->i_pages, rac->_index);
|
|
VM_BUG_ON_PAGE(!PageLocked(page), page);
|
|
rac->_batch_count = thp_nr_pages(page);
|
|
|
|
return page;
|
|
}
|
|
|
|
static inline unsigned int __readahead_batch(struct readahead_control *rac,
|
|
struct page **array, unsigned int array_sz)
|
|
{
|
|
unsigned int i = 0;
|
|
XA_STATE(xas, &rac->mapping->i_pages, 0);
|
|
struct page *page;
|
|
|
|
BUG_ON(rac->_batch_count > rac->_nr_pages);
|
|
rac->_nr_pages -= rac->_batch_count;
|
|
rac->_index += rac->_batch_count;
|
|
rac->_batch_count = 0;
|
|
|
|
xas_set(&xas, rac->_index);
|
|
rcu_read_lock();
|
|
xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
|
|
VM_BUG_ON_PAGE(!PageLocked(page), page);
|
|
VM_BUG_ON_PAGE(PageTail(page), page);
|
|
array[i++] = page;
|
|
rac->_batch_count += thp_nr_pages(page);
|
|
|
|
/*
|
|
* The page cache isn't using multi-index entries yet,
|
|
* so the xas cursor needs to be manually moved to the
|
|
* next index. This can be removed once the page cache
|
|
* is converted.
|
|
*/
|
|
if (PageHead(page))
|
|
xas_set(&xas, rac->_index + rac->_batch_count);
|
|
|
|
if (i == array_sz)
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* readahead_page_batch - Get a batch of pages to read.
|
|
* @rac: The current readahead request.
|
|
* @array: An array of pointers to struct page.
|
|
*
|
|
* Context: The pages are locked and have an elevated refcount. The caller
|
|
* should decreases the refcount once the page has been submitted for I/O
|
|
* and unlock the page once all I/O to that page has completed.
|
|
* Return: The number of pages placed in the array. 0 indicates the request
|
|
* is complete.
|
|
*/
|
|
#define readahead_page_batch(rac, array) \
|
|
__readahead_batch(rac, array, ARRAY_SIZE(array))
|
|
|
|
/**
|
|
* readahead_pos - The byte offset into the file of this readahead request.
|
|
* @rac: The readahead request.
|
|
*/
|
|
static inline loff_t readahead_pos(struct readahead_control *rac)
|
|
{
|
|
return (loff_t)rac->_index * PAGE_SIZE;
|
|
}
|
|
|
|
/**
|
|
* readahead_length - The number of bytes in this readahead request.
|
|
* @rac: The readahead request.
|
|
*/
|
|
static inline loff_t readahead_length(struct readahead_control *rac)
|
|
{
|
|
return (loff_t)rac->_nr_pages * PAGE_SIZE;
|
|
}
|
|
|
|
/**
|
|
* readahead_index - The index of the first page in this readahead request.
|
|
* @rac: The readahead request.
|
|
*/
|
|
static inline pgoff_t readahead_index(struct readahead_control *rac)
|
|
{
|
|
return rac->_index;
|
|
}
|
|
|
|
/**
|
|
* readahead_count - The number of pages in this readahead request.
|
|
* @rac: The readahead request.
|
|
*/
|
|
static inline unsigned int readahead_count(struct readahead_control *rac)
|
|
{
|
|
return rac->_nr_pages;
|
|
}
|
|
|
|
static inline unsigned long dir_pages(struct inode *inode)
|
|
{
|
|
return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
|
|
PAGE_SHIFT;
|
|
}
|
|
|
|
/**
|
|
* page_mkwrite_check_truncate - check if page was truncated
|
|
* @page: the page to check
|
|
* @inode: the inode to check the page against
|
|
*
|
|
* Returns the number of bytes in the page up to EOF,
|
|
* or -EFAULT if the page was truncated.
|
|
*/
|
|
static inline int page_mkwrite_check_truncate(struct page *page,
|
|
struct inode *inode)
|
|
{
|
|
loff_t size = i_size_read(inode);
|
|
pgoff_t index = size >> PAGE_SHIFT;
|
|
int offset = offset_in_page(size);
|
|
|
|
if (page->mapping != inode->i_mapping)
|
|
return -EFAULT;
|
|
|
|
/* page is wholly inside EOF */
|
|
if (page->index < index)
|
|
return PAGE_SIZE;
|
|
/* page is wholly past EOF */
|
|
if (page->index > index || !offset)
|
|
return -EFAULT;
|
|
/* page is partially inside EOF */
|
|
return offset;
|
|
}
|
|
|
|
/**
|
|
* i_blocks_per_page - How many blocks fit in this page.
|
|
* @inode: The inode which contains the blocks.
|
|
* @page: The page (head page if the page is a THP).
|
|
*
|
|
* If the block size is larger than the size of this page, return zero.
|
|
*
|
|
* Context: The caller should hold a refcount on the page to prevent it
|
|
* from being split.
|
|
* Return: The number of filesystem blocks covered by this page.
|
|
*/
|
|
static inline
|
|
unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
|
|
{
|
|
return thp_size(page) >> inode->i_blkbits;
|
|
}
|
|
#endif /* _LINUX_PAGEMAP_H */
|