2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-25 23:26:03 +08:00
linux-next/include/linux/ksm.h
Kirill A. Shutemov e8c6158fef mm: consolidate all page-flags helpers in <linux/page-flags.h>
Currently we take a naive approach to page flags on compound pages - we
set the flag on the page without consideration if the flag makes sense
for tail page or for compound page in general.  This patchset try to
sort this out by defining per-flag policy on what need to be done if
page-flag helper operate on compound page.

The last patch in the patchset also sanitizes usege of page->mapping for
tail pages.  We don't define the meaning of page->mapping for tail
pages.  Currently it's always NULL, which can be inconsistent with head
page and potentially lead to problems.

For now I caught one case of illegal usage of page flags or ->mapping:
sound subsystem allocates pages with __GFP_COMP and maps them with PTEs.
It leads to setting dirty bit on tail pages and access to tail_page's
->mapping.  I don't see any bad behaviour caused by this, but worth
fixing anyway.

This patchset makes more sense if you take my THP refcounting into
account: we will see more compound pages mapped with PTEs and we need to
define behaviour of flags on compound pages to avoid bugs.

This patch (of 16):

We have page-flags helper function declarations/definitions spread over
several header files.  Let's consolidate them in <linux/page-flags.h>.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:17 -07:00

110 lines
2.8 KiB
C

#ifndef __LINUX_KSM_H
#define __LINUX_KSM_H
/*
* Memory merging support.
*
* This code enables dynamic sharing of identical pages found in different
* memory areas, even if they are not shared by fork().
*/
#include <linux/bitops.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/sched.h>
struct stable_node;
struct mem_cgroup;
#ifdef CONFIG_KSM
int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
unsigned long end, int advice, unsigned long *vm_flags);
int __ksm_enter(struct mm_struct *mm);
void __ksm_exit(struct mm_struct *mm);
static inline int ksm_fork(struct mm_struct *mm, struct mm_struct *oldmm)
{
if (test_bit(MMF_VM_MERGEABLE, &oldmm->flags))
return __ksm_enter(mm);
return 0;
}
static inline void ksm_exit(struct mm_struct *mm)
{
if (test_bit(MMF_VM_MERGEABLE, &mm->flags))
__ksm_exit(mm);
}
static inline struct stable_node *page_stable_node(struct page *page)
{
return PageKsm(page) ? page_rmapping(page) : NULL;
}
static inline void set_page_stable_node(struct page *page,
struct stable_node *stable_node)
{
page->mapping = (void *)stable_node +
(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
}
/*
* When do_swap_page() first faults in from swap what used to be a KSM page,
* no problem, it will be assigned to this vma's anon_vma; but thereafter,
* it might be faulted into a different anon_vma (or perhaps to a different
* offset in the same anon_vma). do_swap_page() cannot do all the locking
* needed to reconstitute a cross-anon_vma KSM page: for now it has to make
* a copy, and leave remerging the pages to a later pass of ksmd.
*
* We'd like to make this conditional on vma->vm_flags & VM_MERGEABLE,
* but what if the vma was unmerged while the page was swapped out?
*/
struct page *ksm_might_need_to_copy(struct page *page,
struct vm_area_struct *vma, unsigned long address);
int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc);
void ksm_migrate_page(struct page *newpage, struct page *oldpage);
#else /* !CONFIG_KSM */
static inline int ksm_fork(struct mm_struct *mm, struct mm_struct *oldmm)
{
return 0;
}
static inline void ksm_exit(struct mm_struct *mm)
{
}
#ifdef CONFIG_MMU
static inline int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
unsigned long end, int advice, unsigned long *vm_flags)
{
return 0;
}
static inline struct page *ksm_might_need_to_copy(struct page *page,
struct vm_area_struct *vma, unsigned long address)
{
return page;
}
static inline int page_referenced_ksm(struct page *page,
struct mem_cgroup *memcg, unsigned long *vm_flags)
{
return 0;
}
static inline int rmap_walk_ksm(struct page *page,
struct rmap_walk_control *rwc)
{
return 0;
}
static inline void ksm_migrate_page(struct page *newpage, struct page *oldpage)
{
}
#endif /* CONFIG_MMU */
#endif /* !CONFIG_KSM */
#endif /* __LINUX_KSM_H */