2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 20:23:57 +08:00
linux-next/arch/mips/cavium-octeon/csrc-octeon.c
David Daney 9bc2223995 MIPS: OCTEON: Don't attempt to use nonexistent registers on OCTEON III models.
Attempts to read the nonexistent registers results in bus errors.
Either use registers that exist, or don't do the access as appropriate.

Signed-off-by: David Daney <david.daney@cavium.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/12502/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2016-05-13 14:01:40 +02:00

214 lines
4.8 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2007 by Ralf Baechle
* Copyright (C) 2009, 2012 Cavium, Inc.
*/
#include <linux/clocksource.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <asm/cpu-info.h>
#include <asm/cpu-type.h>
#include <asm/time.h>
#include <asm/octeon/octeon.h>
#include <asm/octeon/cvmx-ipd-defs.h>
#include <asm/octeon/cvmx-mio-defs.h>
#include <asm/octeon/cvmx-rst-defs.h>
#include <asm/octeon/cvmx-fpa-defs.h>
static u64 f;
static u64 rdiv;
static u64 sdiv;
static u64 octeon_udelay_factor;
static u64 octeon_ndelay_factor;
void __init octeon_setup_delays(void)
{
octeon_udelay_factor = octeon_get_clock_rate() / 1000000;
/*
* For __ndelay we divide by 2^16, so the factor is multiplied
* by the same amount.
*/
octeon_ndelay_factor = (octeon_udelay_factor * 0x10000ull) / 1000ull;
preset_lpj = octeon_get_clock_rate() / HZ;
if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
union cvmx_mio_rst_boot rst_boot;
rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
rdiv = rst_boot.s.c_mul; /* CPU clock */
sdiv = rst_boot.s.pnr_mul; /* I/O clock */
f = (0x8000000000000000ull / sdiv) * 2;
} else if (current_cpu_type() == CPU_CAVIUM_OCTEON3) {
union cvmx_rst_boot rst_boot;
rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
rdiv = rst_boot.s.c_mul; /* CPU clock */
sdiv = rst_boot.s.pnr_mul; /* I/O clock */
f = (0x8000000000000000ull / sdiv) * 2;
}
}
/*
* Set the current core's cvmcount counter to the value of the
* IPD_CLK_COUNT. We do this on all cores as they are brought
* on-line. This allows for a read from a local cpu register to
* access a synchronized counter.
*
* On CPU_CAVIUM_OCTEON2 the IPD_CLK_COUNT is scaled by rdiv/sdiv.
*/
void octeon_init_cvmcount(void)
{
u64 clk_reg;
unsigned long flags;
unsigned loops = 2;
clk_reg = octeon_has_feature(OCTEON_FEATURE_FPA3) ?
CVMX_FPA_CLK_COUNT : CVMX_IPD_CLK_COUNT;
/* Clobber loops so GCC will not unroll the following while loop. */
asm("" : "+r" (loops));
local_irq_save(flags);
/*
* Loop several times so we are executing from the cache,
* which should give more deterministic timing.
*/
while (loops--) {
u64 clk_count = cvmx_read_csr(clk_reg);
if (rdiv != 0) {
clk_count *= rdiv;
if (f != 0) {
asm("dmultu\t%[cnt],%[f]\n\t"
"mfhi\t%[cnt]"
: [cnt] "+r" (clk_count)
: [f] "r" (f)
: "hi", "lo");
}
}
write_c0_cvmcount(clk_count);
}
local_irq_restore(flags);
}
static cycle_t octeon_cvmcount_read(struct clocksource *cs)
{
return read_c0_cvmcount();
}
static struct clocksource clocksource_mips = {
.name = "OCTEON_CVMCOUNT",
.read = octeon_cvmcount_read,
.mask = CLOCKSOURCE_MASK(64),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
unsigned long long notrace sched_clock(void)
{
/* 64-bit arithmatic can overflow, so use 128-bit. */
u64 t1, t2, t3;
unsigned long long rv;
u64 mult = clocksource_mips.mult;
u64 shift = clocksource_mips.shift;
u64 cnt = read_c0_cvmcount();
asm (
"dmultu\t%[cnt],%[mult]\n\t"
"nor\t%[t1],$0,%[shift]\n\t"
"mfhi\t%[t2]\n\t"
"mflo\t%[t3]\n\t"
"dsll\t%[t2],%[t2],1\n\t"
"dsrlv\t%[rv],%[t3],%[shift]\n\t"
"dsllv\t%[t1],%[t2],%[t1]\n\t"
"or\t%[rv],%[t1],%[rv]\n\t"
: [rv] "=&r" (rv), [t1] "=&r" (t1), [t2] "=&r" (t2), [t3] "=&r" (t3)
: [cnt] "r" (cnt), [mult] "r" (mult), [shift] "r" (shift)
: "hi", "lo");
return rv;
}
void __init plat_time_init(void)
{
clocksource_mips.rating = 300;
clocksource_register_hz(&clocksource_mips, octeon_get_clock_rate());
}
void __udelay(unsigned long us)
{
u64 cur, end, inc;
cur = read_c0_cvmcount();
inc = us * octeon_udelay_factor;
end = cur + inc;
while (end > cur)
cur = read_c0_cvmcount();
}
EXPORT_SYMBOL(__udelay);
void __ndelay(unsigned long ns)
{
u64 cur, end, inc;
cur = read_c0_cvmcount();
inc = ((ns * octeon_ndelay_factor) >> 16);
end = cur + inc;
while (end > cur)
cur = read_c0_cvmcount();
}
EXPORT_SYMBOL(__ndelay);
void __delay(unsigned long loops)
{
u64 cur, end;
cur = read_c0_cvmcount();
end = cur + loops;
while (end > cur)
cur = read_c0_cvmcount();
}
EXPORT_SYMBOL(__delay);
/**
* octeon_io_clk_delay - wait for a given number of io clock cycles to pass.
*
* We scale the wait by the clock ratio, and then wait for the
* corresponding number of core clocks.
*
* @count: The number of clocks to wait.
*/
void octeon_io_clk_delay(unsigned long count)
{
u64 cur, end;
cur = read_c0_cvmcount();
if (rdiv != 0) {
end = count * rdiv;
if (f != 0) {
asm("dmultu\t%[cnt],%[f]\n\t"
"mfhi\t%[cnt]"
: [cnt] "+r" (end)
: [f] "r" (f)
: "hi", "lo");
}
end = cur + end;
} else {
end = cur + count;
}
while (end > cur)
cur = read_c0_cvmcount();
}
EXPORT_SYMBOL(octeon_io_clk_delay);