mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-10 22:54:11 +08:00
d19e789f06
Linus pointed out that compiler.h - which is a key header that gets included in every
single one of the 28,000+ kernel files during a kernel build - was bloated in:
6553896666
: ("vmlinux.lds.h: Create section for protection against instrumentation")
Linus noted:
> I have pulled this, but do we really want to add this to a header file
> that is _so_ core that it gets included for basically every single
> file built?
>
> I don't even see those instrumentation_begin/end() things used
> anywhere right now.
>
> It seems excessive. That 53 lines is maybe not a lot, but it pushed
> that header file to over 12kB, and while it's mostly comments, it's
> extra IO and parsing basically for _every_ single file compiled in the
> kernel.
>
> For what appears to be absolutely zero upside right now, and I really
> don't see why this should be in such a core header file!
Move these primitives into a new header: <linux/instrumentation.h>, and include that
header in the headers that make use of it.
Unfortunately one of these headers is asm-generic/bug.h, which does get included
in a lot of places, similarly to compiler.h. So the de-bloating effect isn't as
good as we'd like it to be - but at least the interfaces are defined separately.
No change to functionality intended.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200604071921.GA1361070@gmail.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
58 lines
1.7 KiB
C
58 lines
1.7 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef __LINUX_INSTRUMENTATION_H
|
|
#define __LINUX_INSTRUMENTATION_H
|
|
|
|
#if defined(CONFIG_DEBUG_ENTRY) && defined(CONFIG_STACK_VALIDATION)
|
|
|
|
/* Begin/end of an instrumentation safe region */
|
|
#define instrumentation_begin() ({ \
|
|
asm volatile("%c0: nop\n\t" \
|
|
".pushsection .discard.instr_begin\n\t" \
|
|
".long %c0b - .\n\t" \
|
|
".popsection\n\t" : : "i" (__COUNTER__)); \
|
|
})
|
|
|
|
/*
|
|
* Because instrumentation_{begin,end}() can nest, objtool validation considers
|
|
* _begin() a +1 and _end() a -1 and computes a sum over the instructions.
|
|
* When the value is greater than 0, we consider instrumentation allowed.
|
|
*
|
|
* There is a problem with code like:
|
|
*
|
|
* noinstr void foo()
|
|
* {
|
|
* instrumentation_begin();
|
|
* ...
|
|
* if (cond) {
|
|
* instrumentation_begin();
|
|
* ...
|
|
* instrumentation_end();
|
|
* }
|
|
* bar();
|
|
* instrumentation_end();
|
|
* }
|
|
*
|
|
* If instrumentation_end() would be an empty label, like all the other
|
|
* annotations, the inner _end(), which is at the end of a conditional block,
|
|
* would land on the instruction after the block.
|
|
*
|
|
* If we then consider the sum of the !cond path, we'll see that the call to
|
|
* bar() is with a 0-value, even though, we meant it to happen with a positive
|
|
* value.
|
|
*
|
|
* To avoid this, have _end() be a NOP instruction, this ensures it will be
|
|
* part of the condition block and does not escape.
|
|
*/
|
|
#define instrumentation_end() ({ \
|
|
asm volatile("%c0: nop\n\t" \
|
|
".pushsection .discard.instr_end\n\t" \
|
|
".long %c0b - .\n\t" \
|
|
".popsection\n\t" : : "i" (__COUNTER__)); \
|
|
})
|
|
#else
|
|
# define instrumentation_begin() do { } while(0)
|
|
# define instrumentation_end() do { } while(0)
|
|
#endif
|
|
|
|
#endif /* __LINUX_INSTRUMENTATION_H */
|