2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 15:44:01 +08:00
linux-next/drivers/net/sb1250-mac.c
Linus Torvalds 229aebb873 Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
* 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (39 commits)
  Update broken web addresses in arch directory.
  Update broken web addresses in the kernel.
  Revert "drivers/usb: Remove unnecessary return's from void functions" for musb gadget
  Revert "Fix typo: configuation => configuration" partially
  ida: document IDA_BITMAP_LONGS calculation
  ext2: fix a typo on comment in ext2/inode.c
  drivers/scsi: Remove unnecessary casts of private_data
  drivers/s390: Remove unnecessary casts of private_data
  net/sunrpc/rpc_pipe.c: Remove unnecessary casts of private_data
  drivers/infiniband: Remove unnecessary casts of private_data
  drivers/gpu/drm: Remove unnecessary casts of private_data
  kernel/pm_qos_params.c: Remove unnecessary casts of private_data
  fs/ecryptfs: Remove unnecessary casts of private_data
  fs/seq_file.c: Remove unnecessary casts of private_data
  arm: uengine.c: remove C99 comments
  arm: scoop.c: remove C99 comments
  Fix typo configue => configure in comments
  Fix typo: configuation => configuration
  Fix typo interrest[ing|ed] => interest[ing|ed]
  Fix various typos of valid in comments
  ...

Fix up trivial conflicts in:
	drivers/char/ipmi/ipmi_si_intf.c
	drivers/usb/gadget/rndis.c
	net/irda/irnet/irnet_ppp.c
2010-10-24 13:41:39 -07:00

2690 lines
65 KiB
C

/*
* Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
* Copyright (c) 2006, 2007 Maciej W. Rozycki
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
*
* This driver is designed for the Broadcom SiByte SOC built-in
* Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
*
* Updated to the driver model and the PHY abstraction layer
* by Maciej W. Rozycki.
*/
#include <linux/bug.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/platform_device.h>
#include <asm/cache.h>
#include <asm/io.h>
#include <asm/processor.h> /* Processor type for cache alignment. */
/* Operational parameters that usually are not changed. */
#define CONFIG_SBMAC_COALESCE
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT (2*HZ)
MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
/* A few user-configurable values which may be modified when a driver
module is loaded. */
/* 1 normal messages, 0 quiet .. 7 verbose. */
static int debug = 1;
module_param(debug, int, S_IRUGO);
MODULE_PARM_DESC(debug, "Debug messages");
#ifdef CONFIG_SBMAC_COALESCE
static int int_pktcnt_tx = 255;
module_param(int_pktcnt_tx, int, S_IRUGO);
MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
static int int_timeout_tx = 255;
module_param(int_timeout_tx, int, S_IRUGO);
MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
static int int_pktcnt_rx = 64;
module_param(int_pktcnt_rx, int, S_IRUGO);
MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
static int int_timeout_rx = 64;
module_param(int_timeout_rx, int, S_IRUGO);
MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
#endif
#include <asm/sibyte/board.h>
#include <asm/sibyte/sb1250.h>
#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
#include <asm/sibyte/bcm1480_regs.h>
#include <asm/sibyte/bcm1480_int.h>
#define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
#include <asm/sibyte/sb1250_regs.h>
#include <asm/sibyte/sb1250_int.h>
#else
#error invalid SiByte MAC configuration
#endif
#include <asm/sibyte/sb1250_scd.h>
#include <asm/sibyte/sb1250_mac.h>
#include <asm/sibyte/sb1250_dma.h>
#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
#define UNIT_INT(n) (K_BCM1480_INT_MAC_0 + ((n) * 2))
#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
#define UNIT_INT(n) (K_INT_MAC_0 + (n))
#else
#error invalid SiByte MAC configuration
#endif
#ifdef K_INT_PHY
#define SBMAC_PHY_INT K_INT_PHY
#else
#define SBMAC_PHY_INT PHY_POLL
#endif
/**********************************************************************
* Simple types
********************************************************************* */
enum sbmac_speed {
sbmac_speed_none = 0,
sbmac_speed_10 = SPEED_10,
sbmac_speed_100 = SPEED_100,
sbmac_speed_1000 = SPEED_1000,
};
enum sbmac_duplex {
sbmac_duplex_none = -1,
sbmac_duplex_half = DUPLEX_HALF,
sbmac_duplex_full = DUPLEX_FULL,
};
enum sbmac_fc {
sbmac_fc_none,
sbmac_fc_disabled,
sbmac_fc_frame,
sbmac_fc_collision,
sbmac_fc_carrier,
};
enum sbmac_state {
sbmac_state_uninit,
sbmac_state_off,
sbmac_state_on,
sbmac_state_broken,
};
/**********************************************************************
* Macros
********************************************************************* */
#define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
(d)->sbdma_dscrtable : (d)->f+1)
#define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
#define SBMAC_MAX_TXDESCR 256
#define SBMAC_MAX_RXDESCR 256
#define ETHER_ADDR_LEN 6
#define ENET_PACKET_SIZE 1518
/*#define ENET_PACKET_SIZE 9216 */
/**********************************************************************
* DMA Descriptor structure
********************************************************************* */
struct sbdmadscr {
uint64_t dscr_a;
uint64_t dscr_b;
};
/**********************************************************************
* DMA Controller structure
********************************************************************* */
struct sbmacdma {
/*
* This stuff is used to identify the channel and the registers
* associated with it.
*/
struct sbmac_softc *sbdma_eth; /* back pointer to associated
MAC */
int sbdma_channel; /* channel number */
int sbdma_txdir; /* direction (1=transmit) */
int sbdma_maxdescr; /* total # of descriptors
in ring */
#ifdef CONFIG_SBMAC_COALESCE
int sbdma_int_pktcnt;
/* # descriptors rx/tx
before interrupt */
int sbdma_int_timeout;
/* # usec rx/tx interrupt */
#endif
void __iomem *sbdma_config0; /* DMA config register 0 */
void __iomem *sbdma_config1; /* DMA config register 1 */
void __iomem *sbdma_dscrbase;
/* descriptor base address */
void __iomem *sbdma_dscrcnt; /* descriptor count register */
void __iomem *sbdma_curdscr; /* current descriptor
address */
void __iomem *sbdma_oodpktlost;
/* pkt drop (rx only) */
/*
* This stuff is for maintenance of the ring
*/
void *sbdma_dscrtable_unaligned;
struct sbdmadscr *sbdma_dscrtable;
/* base of descriptor table */
struct sbdmadscr *sbdma_dscrtable_end;
/* end of descriptor table */
struct sk_buff **sbdma_ctxtable;
/* context table, one
per descr */
dma_addr_t sbdma_dscrtable_phys;
/* and also the phys addr */
struct sbdmadscr *sbdma_addptr; /* next dscr for sw to add */
struct sbdmadscr *sbdma_remptr; /* next dscr for sw
to remove */
};
/**********************************************************************
* Ethernet softc structure
********************************************************************* */
struct sbmac_softc {
/*
* Linux-specific things
*/
struct net_device *sbm_dev; /* pointer to linux device */
struct napi_struct napi;
struct phy_device *phy_dev; /* the associated PHY device */
struct mii_bus *mii_bus; /* the MII bus */
int phy_irq[PHY_MAX_ADDR];
spinlock_t sbm_lock; /* spin lock */
int sbm_devflags; /* current device flags */
/*
* Controller-specific things
*/
void __iomem *sbm_base; /* MAC's base address */
enum sbmac_state sbm_state; /* current state */
void __iomem *sbm_macenable; /* MAC Enable Register */
void __iomem *sbm_maccfg; /* MAC Config Register */
void __iomem *sbm_fifocfg; /* FIFO Config Register */
void __iomem *sbm_framecfg; /* Frame Config Register */
void __iomem *sbm_rxfilter; /* Receive Filter Register */
void __iomem *sbm_isr; /* Interrupt Status Register */
void __iomem *sbm_imr; /* Interrupt Mask Register */
void __iomem *sbm_mdio; /* MDIO Register */
enum sbmac_speed sbm_speed; /* current speed */
enum sbmac_duplex sbm_duplex; /* current duplex */
enum sbmac_fc sbm_fc; /* cur. flow control setting */
int sbm_pause; /* current pause setting */
int sbm_link; /* current link state */
unsigned char sbm_hwaddr[ETHER_ADDR_LEN];
struct sbmacdma sbm_txdma; /* only channel 0 for now */
struct sbmacdma sbm_rxdma;
int rx_hw_checksum;
int sbe_idx;
};
/**********************************************************************
* Externs
********************************************************************* */
/**********************************************************************
* Prototypes
********************************************************************* */
static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
int txrx, int maxdescr);
static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
struct sk_buff *m);
static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
static void sbdma_emptyring(struct sbmacdma *d);
static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
int work_to_do, int poll);
static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
int poll);
static int sbmac_initctx(struct sbmac_softc *s);
static void sbmac_channel_start(struct sbmac_softc *s);
static void sbmac_channel_stop(struct sbmac_softc *s);
static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
enum sbmac_state);
static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
static uint64_t sbmac_addr2reg(unsigned char *ptr);
static irqreturn_t sbmac_intr(int irq, void *dev_instance);
static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
static void sbmac_setmulti(struct sbmac_softc *sc);
static int sbmac_init(struct platform_device *pldev, long long base);
static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
enum sbmac_fc fc);
static int sbmac_open(struct net_device *dev);
static void sbmac_tx_timeout (struct net_device *dev);
static void sbmac_set_rx_mode(struct net_device *dev);
static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static int sbmac_close(struct net_device *dev);
static int sbmac_poll(struct napi_struct *napi, int budget);
static void sbmac_mii_poll(struct net_device *dev);
static int sbmac_mii_probe(struct net_device *dev);
static void sbmac_mii_sync(void __iomem *sbm_mdio);
static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
int bitcnt);
static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
u16 val);
/**********************************************************************
* Globals
********************************************************************* */
static char sbmac_string[] = "sb1250-mac";
static char sbmac_mdio_string[] = "sb1250-mac-mdio";
/**********************************************************************
* MDIO constants
********************************************************************* */
#define MII_COMMAND_START 0x01
#define MII_COMMAND_READ 0x02
#define MII_COMMAND_WRITE 0x01
#define MII_COMMAND_ACK 0x02
#define M_MAC_MDIO_DIR_OUTPUT 0 /* for clarity */
#define ENABLE 1
#define DISABLE 0
/**********************************************************************
* SBMAC_MII_SYNC(sbm_mdio)
*
* Synchronize with the MII - send a pattern of bits to the MII
* that will guarantee that it is ready to accept a command.
*
* Input parameters:
* sbm_mdio - address of the MAC's MDIO register
*
* Return value:
* nothing
********************************************************************* */
static void sbmac_mii_sync(void __iomem *sbm_mdio)
{
int cnt;
uint64_t bits;
int mac_mdio_genc;
mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
for (cnt = 0; cnt < 32; cnt++) {
__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
}
}
/**********************************************************************
* SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
*
* Send some bits to the MII. The bits to be sent are right-
* justified in the 'data' parameter.
*
* Input parameters:
* sbm_mdio - address of the MAC's MDIO register
* data - data to send
* bitcnt - number of bits to send
********************************************************************* */
static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
int bitcnt)
{
int i;
uint64_t bits;
unsigned int curmask;
int mac_mdio_genc;
mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
bits = M_MAC_MDIO_DIR_OUTPUT;
__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
curmask = 1 << (bitcnt - 1);
for (i = 0; i < bitcnt; i++) {
if (data & curmask)
bits |= M_MAC_MDIO_OUT;
else bits &= ~M_MAC_MDIO_OUT;
__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
__raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
__raw_writeq(bits | mac_mdio_genc, sbm_mdio);
curmask >>= 1;
}
}
/**********************************************************************
* SBMAC_MII_READ(bus, phyaddr, regidx)
* Read a PHY register.
*
* Input parameters:
* bus - MDIO bus handle
* phyaddr - PHY's address
* regnum - index of register to read
*
* Return value:
* value read, or 0xffff if an error occurred.
********************************************************************* */
static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
{
struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
void __iomem *sbm_mdio = sc->sbm_mdio;
int idx;
int error;
int regval;
int mac_mdio_genc;
/*
* Synchronize ourselves so that the PHY knows the next
* thing coming down is a command
*/
sbmac_mii_sync(sbm_mdio);
/*
* Send the data to the PHY. The sequence is
* a "start" command (2 bits)
* a "read" command (2 bits)
* the PHY addr (5 bits)
* the register index (5 bits)
*/
sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
sbmac_mii_senddata(sbm_mdio, regidx, 5);
mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
/*
* Switch the port around without a clock transition.
*/
__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
/*
* Send out a clock pulse to signal we want the status
*/
__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
sbm_mdio);
__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
/*
* If an error occurred, the PHY will signal '1' back
*/
error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
/*
* Issue an 'idle' clock pulse, but keep the direction
* the same.
*/
__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
sbm_mdio);
__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
regval = 0;
for (idx = 0; idx < 16; idx++) {
regval <<= 1;
if (error == 0) {
if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
regval |= 1;
}
__raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
sbm_mdio);
__raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
}
/* Switch back to output */
__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
if (error == 0)
return regval;
return 0xffff;
}
/**********************************************************************
* SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
*
* Write a value to a PHY register.
*
* Input parameters:
* bus - MDIO bus handle
* phyaddr - PHY to use
* regidx - register within the PHY
* regval - data to write to register
*
* Return value:
* 0 for success
********************************************************************* */
static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
u16 regval)
{
struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
void __iomem *sbm_mdio = sc->sbm_mdio;
int mac_mdio_genc;
sbmac_mii_sync(sbm_mdio);
sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
sbmac_mii_senddata(sbm_mdio, regidx, 5);
sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
sbmac_mii_senddata(sbm_mdio, regval, 16);
mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
__raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
return 0;
}
/**********************************************************************
* SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
*
* Initialize a DMA channel context. Since there are potentially
* eight DMA channels per MAC, it's nice to do this in a standard
* way.
*
* Input parameters:
* d - struct sbmacdma (DMA channel context)
* s - struct sbmac_softc (pointer to a MAC)
* chan - channel number (0..1 right now)
* txrx - Identifies DMA_TX or DMA_RX for channel direction
* maxdescr - number of descriptors
*
* Return value:
* nothing
********************************************************************* */
static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
int txrx, int maxdescr)
{
#ifdef CONFIG_SBMAC_COALESCE
int int_pktcnt, int_timeout;
#endif
/*
* Save away interesting stuff in the structure
*/
d->sbdma_eth = s;
d->sbdma_channel = chan;
d->sbdma_txdir = txrx;
#if 0
/* RMON clearing */
s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
#endif
__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
__raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
__raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
__raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
__raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
__raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
__raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
/*
* initialize register pointers
*/
d->sbdma_config0 =
s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
d->sbdma_config1 =
s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
d->sbdma_dscrbase =
s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
d->sbdma_dscrcnt =
s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
d->sbdma_curdscr =
s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
if (d->sbdma_txdir)
d->sbdma_oodpktlost = NULL;
else
d->sbdma_oodpktlost =
s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
/*
* Allocate memory for the ring
*/
d->sbdma_maxdescr = maxdescr;
d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
sizeof(*d->sbdma_dscrtable),
GFP_KERNEL);
/*
* The descriptor table must be aligned to at least 16 bytes or the
* MAC will corrupt it.
*/
d->sbdma_dscrtable = (struct sbdmadscr *)
ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
sizeof(*d->sbdma_dscrtable));
d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
/*
* And context table
*/
d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
#ifdef CONFIG_SBMAC_COALESCE
/*
* Setup Rx/Tx DMA coalescing defaults
*/
int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
if ( int_pktcnt ) {
d->sbdma_int_pktcnt = int_pktcnt;
} else {
d->sbdma_int_pktcnt = 1;
}
int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
if ( int_timeout ) {
d->sbdma_int_timeout = int_timeout;
} else {
d->sbdma_int_timeout = 0;
}
#endif
}
/**********************************************************************
* SBDMA_CHANNEL_START(d)
*
* Initialize the hardware registers for a DMA channel.
*
* Input parameters:
* d - DMA channel to init (context must be previously init'd
* rxtx - DMA_RX or DMA_TX depending on what type of channel
*
* Return value:
* nothing
********************************************************************* */
static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
{
/*
* Turn on the DMA channel
*/
#ifdef CONFIG_SBMAC_COALESCE
__raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
0, d->sbdma_config1);
__raw_writeq(M_DMA_EOP_INT_EN |
V_DMA_RINGSZ(d->sbdma_maxdescr) |
V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
0, d->sbdma_config0);
#else
__raw_writeq(0, d->sbdma_config1);
__raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
0, d->sbdma_config0);
#endif
__raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
/*
* Initialize ring pointers
*/
d->sbdma_addptr = d->sbdma_dscrtable;
d->sbdma_remptr = d->sbdma_dscrtable;
}
/**********************************************************************
* SBDMA_CHANNEL_STOP(d)
*
* Initialize the hardware registers for a DMA channel.
*
* Input parameters:
* d - DMA channel to init (context must be previously init'd
*
* Return value:
* nothing
********************************************************************* */
static void sbdma_channel_stop(struct sbmacdma *d)
{
/*
* Turn off the DMA channel
*/
__raw_writeq(0, d->sbdma_config1);
__raw_writeq(0, d->sbdma_dscrbase);
__raw_writeq(0, d->sbdma_config0);
/*
* Zero ring pointers
*/
d->sbdma_addptr = NULL;
d->sbdma_remptr = NULL;
}
static inline void sbdma_align_skb(struct sk_buff *skb,
unsigned int power2, unsigned int offset)
{
unsigned char *addr = skb->data;
unsigned char *newaddr = PTR_ALIGN(addr, power2);
skb_reserve(skb, newaddr - addr + offset);
}
/**********************************************************************
* SBDMA_ADD_RCVBUFFER(d,sb)
*
* Add a buffer to the specified DMA channel. For receive channels,
* this queues a buffer for inbound packets.
*
* Input parameters:
* sc - softc structure
* d - DMA channel descriptor
* sb - sk_buff to add, or NULL if we should allocate one
*
* Return value:
* 0 if buffer could not be added (ring is full)
* 1 if buffer added successfully
********************************************************************* */
static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
struct sk_buff *sb)
{
struct net_device *dev = sc->sbm_dev;
struct sbdmadscr *dsc;
struct sbdmadscr *nextdsc;
struct sk_buff *sb_new = NULL;
int pktsize = ENET_PACKET_SIZE;
/* get pointer to our current place in the ring */
dsc = d->sbdma_addptr;
nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
/*
* figure out if the ring is full - if the next descriptor
* is the same as the one that we're going to remove from
* the ring, the ring is full
*/
if (nextdsc == d->sbdma_remptr) {
return -ENOSPC;
}
/*
* Allocate a sk_buff if we don't already have one.
* If we do have an sk_buff, reset it so that it's empty.
*
* Note: sk_buffs don't seem to be guaranteed to have any sort
* of alignment when they are allocated. Therefore, allocate enough
* extra space to make sure that:
*
* 1. the data does not start in the middle of a cache line.
* 2. The data does not end in the middle of a cache line
* 3. The buffer can be aligned such that the IP addresses are
* naturally aligned.
*
* Remember, the SOCs MAC writes whole cache lines at a time,
* without reading the old contents first. So, if the sk_buff's
* data portion starts in the middle of a cache line, the SOC
* DMA will trash the beginning (and ending) portions.
*/
if (sb == NULL) {
sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
SMP_CACHE_BYTES * 2 +
NET_IP_ALIGN);
if (sb_new == NULL) {
pr_info("%s: sk_buff allocation failed\n",
d->sbdma_eth->sbm_dev->name);
return -ENOBUFS;
}
sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
}
else {
sb_new = sb;
/*
* nothing special to reinit buffer, it's already aligned
* and sb->data already points to a good place.
*/
}
/*
* fill in the descriptor
*/
#ifdef CONFIG_SBMAC_COALESCE
/*
* Do not interrupt per DMA transfer.
*/
dsc->dscr_a = virt_to_phys(sb_new->data) |
V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
#else
dsc->dscr_a = virt_to_phys(sb_new->data) |
V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
M_DMA_DSCRA_INTERRUPT;
#endif
/* receiving: no options */
dsc->dscr_b = 0;
/*
* fill in the context
*/
d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
/*
* point at next packet
*/
d->sbdma_addptr = nextdsc;
/*
* Give the buffer to the DMA engine.
*/
__raw_writeq(1, d->sbdma_dscrcnt);
return 0; /* we did it */
}
/**********************************************************************
* SBDMA_ADD_TXBUFFER(d,sb)
*
* Add a transmit buffer to the specified DMA channel, causing a
* transmit to start.
*
* Input parameters:
* d - DMA channel descriptor
* sb - sk_buff to add
*
* Return value:
* 0 transmit queued successfully
* otherwise error code
********************************************************************* */
static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
{
struct sbdmadscr *dsc;
struct sbdmadscr *nextdsc;
uint64_t phys;
uint64_t ncb;
int length;
/* get pointer to our current place in the ring */
dsc = d->sbdma_addptr;
nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
/*
* figure out if the ring is full - if the next descriptor
* is the same as the one that we're going to remove from
* the ring, the ring is full
*/
if (nextdsc == d->sbdma_remptr) {
return -ENOSPC;
}
/*
* Under Linux, it's not necessary to copy/coalesce buffers
* like it is on NetBSD. We think they're all contiguous,
* but that may not be true for GBE.
*/
length = sb->len;
/*
* fill in the descriptor. Note that the number of cache
* blocks in the descriptor is the number of blocks
* *spanned*, so we need to add in the offset (if any)
* while doing the calculation.
*/
phys = virt_to_phys(sb->data);
ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
dsc->dscr_a = phys |
V_DMA_DSCRA_A_SIZE(ncb) |
#ifndef CONFIG_SBMAC_COALESCE
M_DMA_DSCRA_INTERRUPT |
#endif
M_DMA_ETHTX_SOP;
/* transmitting: set outbound options and length */
dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
V_DMA_DSCRB_PKT_SIZE(length);
/*
* fill in the context
*/
d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
/*
* point at next packet
*/
d->sbdma_addptr = nextdsc;
/*
* Give the buffer to the DMA engine.
*/
__raw_writeq(1, d->sbdma_dscrcnt);
return 0; /* we did it */
}
/**********************************************************************
* SBDMA_EMPTYRING(d)
*
* Free all allocated sk_buffs on the specified DMA channel;
*
* Input parameters:
* d - DMA channel
*
* Return value:
* nothing
********************************************************************* */
static void sbdma_emptyring(struct sbmacdma *d)
{
int idx;
struct sk_buff *sb;
for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
sb = d->sbdma_ctxtable[idx];
if (sb) {
dev_kfree_skb(sb);
d->sbdma_ctxtable[idx] = NULL;
}
}
}
/**********************************************************************
* SBDMA_FILLRING(d)
*
* Fill the specified DMA channel (must be receive channel)
* with sk_buffs
*
* Input parameters:
* sc - softc structure
* d - DMA channel
*
* Return value:
* nothing
********************************************************************* */
static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
{
int idx;
for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
break;
}
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void sbmac_netpoll(struct net_device *netdev)
{
struct sbmac_softc *sc = netdev_priv(netdev);
int irq = sc->sbm_dev->irq;
__raw_writeq(0, sc->sbm_imr);
sbmac_intr(irq, netdev);
#ifdef CONFIG_SBMAC_COALESCE
__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
sc->sbm_imr);
#else
__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
(M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
#endif
}
#endif
/**********************************************************************
* SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
*
* Process "completed" receive buffers on the specified DMA channel.
*
* Input parameters:
* sc - softc structure
* d - DMA channel context
* work_to_do - no. of packets to process before enabling interrupt
* again (for NAPI)
* poll - 1: using polling (for NAPI)
*
* Return value:
* nothing
********************************************************************* */
static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
int work_to_do, int poll)
{
struct net_device *dev = sc->sbm_dev;
int curidx;
int hwidx;
struct sbdmadscr *dsc;
struct sk_buff *sb;
int len;
int work_done = 0;
int dropped = 0;
prefetch(d);
again:
/* Check if the HW dropped any frames */
dev->stats.rx_fifo_errors
+= __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
__raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
while (work_to_do-- > 0) {
/*
* figure out where we are (as an index) and where
* the hardware is (also as an index)
*
* This could be done faster if (for example) the
* descriptor table was page-aligned and contiguous in
* both virtual and physical memory -- you could then
* just compare the low-order bits of the virtual address
* (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
*/
dsc = d->sbdma_remptr;
curidx = dsc - d->sbdma_dscrtable;
prefetch(dsc);
prefetch(&d->sbdma_ctxtable[curidx]);
hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
d->sbdma_dscrtable_phys) /
sizeof(*d->sbdma_dscrtable);
/*
* If they're the same, that means we've processed all
* of the descriptors up to (but not including) the one that
* the hardware is working on right now.
*/
if (curidx == hwidx)
goto done;
/*
* Otherwise, get the packet's sk_buff ptr back
*/
sb = d->sbdma_ctxtable[curidx];
d->sbdma_ctxtable[curidx] = NULL;
len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
/*
* Check packet status. If good, process it.
* If not, silently drop it and put it back on the
* receive ring.
*/
if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
/*
* Add a new buffer to replace the old one. If we fail
* to allocate a buffer, we're going to drop this
* packet and put it right back on the receive ring.
*/
if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
-ENOBUFS)) {
dev->stats.rx_dropped++;
/* Re-add old buffer */
sbdma_add_rcvbuffer(sc, d, sb);
/* No point in continuing at the moment */
printk(KERN_ERR "dropped packet (1)\n");
d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
goto done;
} else {
/*
* Set length into the packet
*/
skb_put(sb,len);
/*
* Buffer has been replaced on the
* receive ring. Pass the buffer to
* the kernel
*/
sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
/* Check hw IPv4/TCP checksum if supported */
if (sc->rx_hw_checksum == ENABLE) {
if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
!((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
sb->ip_summed = CHECKSUM_UNNECESSARY;
/* don't need to set sb->csum */
} else {
skb_checksum_none_assert(sb);
}
}
prefetch(sb->data);
prefetch((const void *)(((char *)sb->data)+32));
if (poll)
dropped = netif_receive_skb(sb);
else
dropped = netif_rx(sb);
if (dropped == NET_RX_DROP) {
dev->stats.rx_dropped++;
d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
goto done;
}
else {
dev->stats.rx_bytes += len;
dev->stats.rx_packets++;
}
}
} else {
/*
* Packet was mangled somehow. Just drop it and
* put it back on the receive ring.
*/
dev->stats.rx_errors++;
sbdma_add_rcvbuffer(sc, d, sb);
}
/*
* .. and advance to the next buffer.
*/
d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
work_done++;
}
if (!poll) {
work_to_do = 32;
goto again; /* collect fifo drop statistics again */
}
done:
return work_done;
}
/**********************************************************************
* SBDMA_TX_PROCESS(sc,d)
*
* Process "completed" transmit buffers on the specified DMA channel.
* This is normally called within the interrupt service routine.
* Note that this isn't really ideal for priority channels, since
* it processes all of the packets on a given channel before
* returning.
*
* Input parameters:
* sc - softc structure
* d - DMA channel context
* poll - 1: using polling (for NAPI)
*
* Return value:
* nothing
********************************************************************* */
static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
int poll)
{
struct net_device *dev = sc->sbm_dev;
int curidx;
int hwidx;
struct sbdmadscr *dsc;
struct sk_buff *sb;
unsigned long flags;
int packets_handled = 0;
spin_lock_irqsave(&(sc->sbm_lock), flags);
if (d->sbdma_remptr == d->sbdma_addptr)
goto end_unlock;
hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
for (;;) {
/*
* figure out where we are (as an index) and where
* the hardware is (also as an index)
*
* This could be done faster if (for example) the
* descriptor table was page-aligned and contiguous in
* both virtual and physical memory -- you could then
* just compare the low-order bits of the virtual address
* (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
*/
curidx = d->sbdma_remptr - d->sbdma_dscrtable;
/*
* If they're the same, that means we've processed all
* of the descriptors up to (but not including) the one that
* the hardware is working on right now.
*/
if (curidx == hwidx)
break;
/*
* Otherwise, get the packet's sk_buff ptr back
*/
dsc = &(d->sbdma_dscrtable[curidx]);
sb = d->sbdma_ctxtable[curidx];
d->sbdma_ctxtable[curidx] = NULL;
/*
* Stats
*/
dev->stats.tx_bytes += sb->len;
dev->stats.tx_packets++;
/*
* for transmits, we just free buffers.
*/
dev_kfree_skb_irq(sb);
/*
* .. and advance to the next buffer.
*/
d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
packets_handled++;
}
/*
* Decide if we should wake up the protocol or not.
* Other drivers seem to do this when we reach a low
* watermark on the transmit queue.
*/
if (packets_handled)
netif_wake_queue(d->sbdma_eth->sbm_dev);
end_unlock:
spin_unlock_irqrestore(&(sc->sbm_lock), flags);
}
/**********************************************************************
* SBMAC_INITCTX(s)
*
* Initialize an Ethernet context structure - this is called
* once per MAC on the 1250. Memory is allocated here, so don't
* call it again from inside the ioctl routines that bring the
* interface up/down
*
* Input parameters:
* s - sbmac context structure
*
* Return value:
* 0
********************************************************************* */
static int sbmac_initctx(struct sbmac_softc *s)
{
/*
* figure out the addresses of some ports
*/
s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
s->sbm_maccfg = s->sbm_base + R_MAC_CFG;
s->sbm_fifocfg = s->sbm_base + R_MAC_THRSH_CFG;
s->sbm_framecfg = s->sbm_base + R_MAC_FRAMECFG;
s->sbm_rxfilter = s->sbm_base + R_MAC_ADFILTER_CFG;
s->sbm_isr = s->sbm_base + R_MAC_STATUS;
s->sbm_imr = s->sbm_base + R_MAC_INT_MASK;
s->sbm_mdio = s->sbm_base + R_MAC_MDIO;
/*
* Initialize the DMA channels. Right now, only one per MAC is used
* Note: Only do this _once_, as it allocates memory from the kernel!
*/
sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
/*
* initial state is OFF
*/
s->sbm_state = sbmac_state_off;
return 0;
}
static void sbdma_uninitctx(struct sbmacdma *d)
{
if (d->sbdma_dscrtable_unaligned) {
kfree(d->sbdma_dscrtable_unaligned);
d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
}
if (d->sbdma_ctxtable) {
kfree(d->sbdma_ctxtable);
d->sbdma_ctxtable = NULL;
}
}
static void sbmac_uninitctx(struct sbmac_softc *sc)
{
sbdma_uninitctx(&(sc->sbm_txdma));
sbdma_uninitctx(&(sc->sbm_rxdma));
}
/**********************************************************************
* SBMAC_CHANNEL_START(s)
*
* Start packet processing on this MAC.
*
* Input parameters:
* s - sbmac structure
*
* Return value:
* nothing
********************************************************************* */
static void sbmac_channel_start(struct sbmac_softc *s)
{
uint64_t reg;
void __iomem *port;
uint64_t cfg,fifo,framecfg;
int idx, th_value;
/*
* Don't do this if running
*/
if (s->sbm_state == sbmac_state_on)
return;
/*
* Bring the controller out of reset, but leave it off.
*/
__raw_writeq(0, s->sbm_macenable);
/*
* Ignore all received packets
*/
__raw_writeq(0, s->sbm_rxfilter);
/*
* Calculate values for various control registers.
*/
cfg = M_MAC_RETRY_EN |
M_MAC_TX_HOLD_SOP_EN |
V_MAC_TX_PAUSE_CNT_16K |
M_MAC_AP_STAT_EN |
M_MAC_FAST_SYNC |
M_MAC_SS_EN |
0;
/*
* Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
* and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
* Use a larger RD_THRSH for gigabit
*/
if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
th_value = 28;
else
th_value = 64;
fifo = V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
((s->sbm_speed == sbmac_speed_1000)
? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
V_MAC_TX_RL_THRSH(4) |
V_MAC_RX_PL_THRSH(4) |
V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
V_MAC_RX_RL_THRSH(8) |
0;
framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
V_MAC_MAX_FRAMESZ_DEFAULT |
V_MAC_BACKOFF_SEL(1);
/*
* Clear out the hash address map
*/
port = s->sbm_base + R_MAC_HASH_BASE;
for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
__raw_writeq(0, port);
port += sizeof(uint64_t);
}
/*
* Clear out the exact-match table
*/
port = s->sbm_base + R_MAC_ADDR_BASE;
for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
__raw_writeq(0, port);
port += sizeof(uint64_t);
}
/*
* Clear out the DMA Channel mapping table registers
*/
port = s->sbm_base + R_MAC_CHUP0_BASE;
for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
__raw_writeq(0, port);
port += sizeof(uint64_t);
}
port = s->sbm_base + R_MAC_CHLO0_BASE;
for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
__raw_writeq(0, port);
port += sizeof(uint64_t);
}
/*
* Program the hardware address. It goes into the hardware-address
* register as well as the first filter register.
*/
reg = sbmac_addr2reg(s->sbm_hwaddr);
port = s->sbm_base + R_MAC_ADDR_BASE;
__raw_writeq(reg, port);
port = s->sbm_base + R_MAC_ETHERNET_ADDR;
#ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
/*
* Pass1 SOCs do not receive packets addressed to the
* destination address in the R_MAC_ETHERNET_ADDR register.
* Set the value to zero.
*/
__raw_writeq(0, port);
#else
__raw_writeq(reg, port);
#endif
/*
* Set the receive filter for no packets, and write values
* to the various config registers
*/
__raw_writeq(0, s->sbm_rxfilter);
__raw_writeq(0, s->sbm_imr);
__raw_writeq(framecfg, s->sbm_framecfg);
__raw_writeq(fifo, s->sbm_fifocfg);
__raw_writeq(cfg, s->sbm_maccfg);
/*
* Initialize DMA channels (rings should be ok now)
*/
sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
/*
* Configure the speed, duplex, and flow control
*/
sbmac_set_speed(s,s->sbm_speed);
sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
/*
* Fill the receive ring
*/
sbdma_fillring(s, &(s->sbm_rxdma));
/*
* Turn on the rest of the bits in the enable register
*/
#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
__raw_writeq(M_MAC_RXDMA_EN0 |
M_MAC_TXDMA_EN0, s->sbm_macenable);
#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
__raw_writeq(M_MAC_RXDMA_EN0 |
M_MAC_TXDMA_EN0 |
M_MAC_RX_ENABLE |
M_MAC_TX_ENABLE, s->sbm_macenable);
#else
#error invalid SiByte MAC configuration
#endif
#ifdef CONFIG_SBMAC_COALESCE
__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
#else
__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
(M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
#endif
/*
* Enable receiving unicasts and broadcasts
*/
__raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
/*
* we're running now.
*/
s->sbm_state = sbmac_state_on;
/*
* Program multicast addresses
*/
sbmac_setmulti(s);
/*
* If channel was in promiscuous mode before, turn that on
*/
if (s->sbm_devflags & IFF_PROMISC) {
sbmac_promiscuous_mode(s,1);
}
}
/**********************************************************************
* SBMAC_CHANNEL_STOP(s)
*
* Stop packet processing on this MAC.
*
* Input parameters:
* s - sbmac structure
*
* Return value:
* nothing
********************************************************************* */
static void sbmac_channel_stop(struct sbmac_softc *s)
{
/* don't do this if already stopped */
if (s->sbm_state == sbmac_state_off)
return;
/* don't accept any packets, disable all interrupts */
__raw_writeq(0, s->sbm_rxfilter);
__raw_writeq(0, s->sbm_imr);
/* Turn off ticker */
/* XXX */
/* turn off receiver and transmitter */
__raw_writeq(0, s->sbm_macenable);
/* We're stopped now. */
s->sbm_state = sbmac_state_off;
/*
* Stop DMA channels (rings should be ok now)
*/
sbdma_channel_stop(&(s->sbm_rxdma));
sbdma_channel_stop(&(s->sbm_txdma));
/* Empty the receive and transmit rings */
sbdma_emptyring(&(s->sbm_rxdma));
sbdma_emptyring(&(s->sbm_txdma));
}
/**********************************************************************
* SBMAC_SET_CHANNEL_STATE(state)
*
* Set the channel's state ON or OFF
*
* Input parameters:
* state - new state
*
* Return value:
* old state
********************************************************************* */
static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
enum sbmac_state state)
{
enum sbmac_state oldstate = sc->sbm_state;
/*
* If same as previous state, return
*/
if (state == oldstate) {
return oldstate;
}
/*
* If new state is ON, turn channel on
*/
if (state == sbmac_state_on) {
sbmac_channel_start(sc);
}
else {
sbmac_channel_stop(sc);
}
/*
* Return previous state
*/
return oldstate;
}
/**********************************************************************
* SBMAC_PROMISCUOUS_MODE(sc,onoff)
*
* Turn on or off promiscuous mode
*
* Input parameters:
* sc - softc
* onoff - 1 to turn on, 0 to turn off
*
* Return value:
* nothing
********************************************************************* */
static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
{
uint64_t reg;
if (sc->sbm_state != sbmac_state_on)
return;
if (onoff) {
reg = __raw_readq(sc->sbm_rxfilter);
reg |= M_MAC_ALLPKT_EN;
__raw_writeq(reg, sc->sbm_rxfilter);
}
else {
reg = __raw_readq(sc->sbm_rxfilter);
reg &= ~M_MAC_ALLPKT_EN;
__raw_writeq(reg, sc->sbm_rxfilter);
}
}
/**********************************************************************
* SBMAC_SETIPHDR_OFFSET(sc,onoff)
*
* Set the iphdr offset as 15 assuming ethernet encapsulation
*
* Input parameters:
* sc - softc
*
* Return value:
* nothing
********************************************************************* */
static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
{
uint64_t reg;
/* Hard code the off set to 15 for now */
reg = __raw_readq(sc->sbm_rxfilter);
reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
__raw_writeq(reg, sc->sbm_rxfilter);
/* BCM1250 pass1 didn't have hardware checksum. Everything
later does. */
if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
sc->rx_hw_checksum = DISABLE;
} else {
sc->rx_hw_checksum = ENABLE;
}
}
/**********************************************************************
* SBMAC_ADDR2REG(ptr)
*
* Convert six bytes into the 64-bit register value that
* we typically write into the SBMAC's address/mcast registers
*
* Input parameters:
* ptr - pointer to 6 bytes
*
* Return value:
* register value
********************************************************************* */
static uint64_t sbmac_addr2reg(unsigned char *ptr)
{
uint64_t reg = 0;
ptr += 6;
reg |= (uint64_t) *(--ptr);
reg <<= 8;
reg |= (uint64_t) *(--ptr);
reg <<= 8;
reg |= (uint64_t) *(--ptr);
reg <<= 8;
reg |= (uint64_t) *(--ptr);
reg <<= 8;
reg |= (uint64_t) *(--ptr);
reg <<= 8;
reg |= (uint64_t) *(--ptr);
return reg;
}
/**********************************************************************
* SBMAC_SET_SPEED(s,speed)
*
* Configure LAN speed for the specified MAC.
* Warning: must be called when MAC is off!
*
* Input parameters:
* s - sbmac structure
* speed - speed to set MAC to (see enum sbmac_speed)
*
* Return value:
* 1 if successful
* 0 indicates invalid parameters
********************************************************************* */
static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
{
uint64_t cfg;
uint64_t framecfg;
/*
* Save new current values
*/
s->sbm_speed = speed;
if (s->sbm_state == sbmac_state_on)
return 0; /* save for next restart */
/*
* Read current register values
*/
cfg = __raw_readq(s->sbm_maccfg);
framecfg = __raw_readq(s->sbm_framecfg);
/*
* Mask out the stuff we want to change
*/
cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
M_MAC_SLOT_SIZE);
/*
* Now add in the new bits
*/
switch (speed) {
case sbmac_speed_10:
framecfg |= V_MAC_IFG_RX_10 |
V_MAC_IFG_TX_10 |
K_MAC_IFG_THRSH_10 |
V_MAC_SLOT_SIZE_10;
cfg |= V_MAC_SPEED_SEL_10MBPS;
break;
case sbmac_speed_100:
framecfg |= V_MAC_IFG_RX_100 |
V_MAC_IFG_TX_100 |
V_MAC_IFG_THRSH_100 |
V_MAC_SLOT_SIZE_100;
cfg |= V_MAC_SPEED_SEL_100MBPS ;
break;
case sbmac_speed_1000:
framecfg |= V_MAC_IFG_RX_1000 |
V_MAC_IFG_TX_1000 |
V_MAC_IFG_THRSH_1000 |
V_MAC_SLOT_SIZE_1000;
cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
break;
default:
return 0;
}
/*
* Send the bits back to the hardware
*/
__raw_writeq(framecfg, s->sbm_framecfg);
__raw_writeq(cfg, s->sbm_maccfg);
return 1;
}
/**********************************************************************
* SBMAC_SET_DUPLEX(s,duplex,fc)
*
* Set Ethernet duplex and flow control options for this MAC
* Warning: must be called when MAC is off!
*
* Input parameters:
* s - sbmac structure
* duplex - duplex setting (see enum sbmac_duplex)
* fc - flow control setting (see enum sbmac_fc)
*
* Return value:
* 1 if ok
* 0 if an invalid parameter combination was specified
********************************************************************* */
static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
enum sbmac_fc fc)
{
uint64_t cfg;
/*
* Save new current values
*/
s->sbm_duplex = duplex;
s->sbm_fc = fc;
if (s->sbm_state == sbmac_state_on)
return 0; /* save for next restart */
/*
* Read current register values
*/
cfg = __raw_readq(s->sbm_maccfg);
/*
* Mask off the stuff we're about to change
*/
cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
switch (duplex) {
case sbmac_duplex_half:
switch (fc) {
case sbmac_fc_disabled:
cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
break;
case sbmac_fc_collision:
cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
break;
case sbmac_fc_carrier:
cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
break;
case sbmac_fc_frame: /* not valid in half duplex */
default: /* invalid selection */
return 0;
}
break;
case sbmac_duplex_full:
switch (fc) {
case sbmac_fc_disabled:
cfg |= V_MAC_FC_CMD_DISABLED;
break;
case sbmac_fc_frame:
cfg |= V_MAC_FC_CMD_ENABLED;
break;
case sbmac_fc_collision: /* not valid in full duplex */
case sbmac_fc_carrier: /* not valid in full duplex */
default:
return 0;
}
break;
default:
return 0;
}
/*
* Send the bits back to the hardware
*/
__raw_writeq(cfg, s->sbm_maccfg);
return 1;
}
/**********************************************************************
* SBMAC_INTR()
*
* Interrupt handler for MAC interrupts
*
* Input parameters:
* MAC structure
*
* Return value:
* nothing
********************************************************************* */
static irqreturn_t sbmac_intr(int irq,void *dev_instance)
{
struct net_device *dev = (struct net_device *) dev_instance;
struct sbmac_softc *sc = netdev_priv(dev);
uint64_t isr;
int handled = 0;
/*
* Read the ISR (this clears the bits in the real
* register, except for counter addr)
*/
isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
if (isr == 0)
return IRQ_RETVAL(0);
handled = 1;
/*
* Transmits on channel 0
*/
if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
if (napi_schedule_prep(&sc->napi)) {
__raw_writeq(0, sc->sbm_imr);
__napi_schedule(&sc->napi);
/* Depend on the exit from poll to reenable intr */
}
else {
/* may leave some packets behind */
sbdma_rx_process(sc,&(sc->sbm_rxdma),
SBMAC_MAX_RXDESCR * 2, 0);
}
}
return IRQ_RETVAL(handled);
}
/**********************************************************************
* SBMAC_START_TX(skb,dev)
*
* Start output on the specified interface. Basically, we
* queue as many buffers as we can until the ring fills up, or
* we run off the end of the queue, whichever comes first.
*
* Input parameters:
*
*
* Return value:
* nothing
********************************************************************* */
static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
{
struct sbmac_softc *sc = netdev_priv(dev);
unsigned long flags;
/* lock eth irq */
spin_lock_irqsave(&sc->sbm_lock, flags);
/*
* Put the buffer on the transmit ring. If we
* don't have room, stop the queue.
*/
if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
/* XXX save skb that we could not send */
netif_stop_queue(dev);
spin_unlock_irqrestore(&sc->sbm_lock, flags);
return NETDEV_TX_BUSY;
}
spin_unlock_irqrestore(&sc->sbm_lock, flags);
return NETDEV_TX_OK;
}
/**********************************************************************
* SBMAC_SETMULTI(sc)
*
* Reprogram the multicast table into the hardware, given
* the list of multicasts associated with the interface
* structure.
*
* Input parameters:
* sc - softc
*
* Return value:
* nothing
********************************************************************* */
static void sbmac_setmulti(struct sbmac_softc *sc)
{
uint64_t reg;
void __iomem *port;
int idx;
struct netdev_hw_addr *ha;
struct net_device *dev = sc->sbm_dev;
/*
* Clear out entire multicast table. We do this by nuking
* the entire hash table and all the direct matches except
* the first one, which is used for our station address
*/
for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
__raw_writeq(0, port);
}
for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
__raw_writeq(0, port);
}
/*
* Clear the filter to say we don't want any multicasts.
*/
reg = __raw_readq(sc->sbm_rxfilter);
reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
__raw_writeq(reg, sc->sbm_rxfilter);
if (dev->flags & IFF_ALLMULTI) {
/*
* Enable ALL multicasts. Do this by inverting the
* multicast enable bit.
*/
reg = __raw_readq(sc->sbm_rxfilter);
reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
__raw_writeq(reg, sc->sbm_rxfilter);
return;
}
/*
* Progam new multicast entries. For now, only use the
* perfect filter. In the future we'll need to use the
* hash filter if the perfect filter overflows
*/
/* XXX only using perfect filter for now, need to use hash
* XXX if the table overflows */
idx = 1; /* skip station address */
netdev_for_each_mc_addr(ha, dev) {
if (idx == MAC_ADDR_COUNT)
break;
reg = sbmac_addr2reg(ha->addr);
port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
__raw_writeq(reg, port);
idx++;
}
/*
* Enable the "accept multicast bits" if we programmed at least one
* multicast.
*/
if (idx > 1) {
reg = __raw_readq(sc->sbm_rxfilter);
reg |= M_MAC_MCAST_EN;
__raw_writeq(reg, sc->sbm_rxfilter);
}
}
static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
{
if (new_mtu > ENET_PACKET_SIZE)
return -EINVAL;
_dev->mtu = new_mtu;
pr_info("changing the mtu to %d\n", new_mtu);
return 0;
}
static const struct net_device_ops sbmac_netdev_ops = {
.ndo_open = sbmac_open,
.ndo_stop = sbmac_close,
.ndo_start_xmit = sbmac_start_tx,
.ndo_set_multicast_list = sbmac_set_rx_mode,
.ndo_tx_timeout = sbmac_tx_timeout,
.ndo_do_ioctl = sbmac_mii_ioctl,
.ndo_change_mtu = sb1250_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = eth_mac_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = sbmac_netpoll,
#endif
};
/**********************************************************************
* SBMAC_INIT(dev)
*
* Attach routine - init hardware and hook ourselves into linux
*
* Input parameters:
* dev - net_device structure
*
* Return value:
* status
********************************************************************* */
static int sbmac_init(struct platform_device *pldev, long long base)
{
struct net_device *dev = dev_get_drvdata(&pldev->dev);
int idx = pldev->id;
struct sbmac_softc *sc = netdev_priv(dev);
unsigned char *eaddr;
uint64_t ea_reg;
int i;
int err;
sc->sbm_dev = dev;
sc->sbe_idx = idx;
eaddr = sc->sbm_hwaddr;
/*
* Read the ethernet address. The firmware left this programmed
* for us in the ethernet address register for each mac.
*/
ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
__raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
for (i = 0; i < 6; i++) {
eaddr[i] = (uint8_t) (ea_reg & 0xFF);
ea_reg >>= 8;
}
for (i = 0; i < 6; i++) {
dev->dev_addr[i] = eaddr[i];
}
/*
* Initialize context (get pointers to registers and stuff), then
* allocate the memory for the descriptor tables.
*/
sbmac_initctx(sc);
/*
* Set up Linux device callins
*/
spin_lock_init(&(sc->sbm_lock));
dev->netdev_ops = &sbmac_netdev_ops;
dev->watchdog_timeo = TX_TIMEOUT;
netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
dev->irq = UNIT_INT(idx);
/* This is needed for PASS2 for Rx H/W checksum feature */
sbmac_set_iphdr_offset(sc);
sc->mii_bus = mdiobus_alloc();
if (sc->mii_bus == NULL) {
err = -ENOMEM;
goto uninit_ctx;
}
sc->mii_bus->name = sbmac_mdio_string;
snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%x", idx);
sc->mii_bus->priv = sc;
sc->mii_bus->read = sbmac_mii_read;
sc->mii_bus->write = sbmac_mii_write;
sc->mii_bus->irq = sc->phy_irq;
for (i = 0; i < PHY_MAX_ADDR; ++i)
sc->mii_bus->irq[i] = SBMAC_PHY_INT;
sc->mii_bus->parent = &pldev->dev;
/*
* Probe PHY address
*/
err = mdiobus_register(sc->mii_bus);
if (err) {
printk(KERN_ERR "%s: unable to register MDIO bus\n",
dev->name);
goto free_mdio;
}
dev_set_drvdata(&pldev->dev, sc->mii_bus);
err = register_netdev(dev);
if (err) {
printk(KERN_ERR "%s.%d: unable to register netdev\n",
sbmac_string, idx);
goto unreg_mdio;
}
pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
if (sc->rx_hw_checksum == ENABLE)
pr_info("%s: enabling TCP rcv checksum\n", dev->name);
/*
* Display Ethernet address (this is called during the config
* process so we need to finish off the config message that
* was being displayed)
*/
pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
dev->name, base, eaddr);
return 0;
unreg_mdio:
mdiobus_unregister(sc->mii_bus);
dev_set_drvdata(&pldev->dev, NULL);
free_mdio:
mdiobus_free(sc->mii_bus);
uninit_ctx:
sbmac_uninitctx(sc);
return err;
}
static int sbmac_open(struct net_device *dev)
{
struct sbmac_softc *sc = netdev_priv(dev);
int err;
if (debug > 1)
pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
/*
* map/route interrupt (clear status first, in case something
* weird is pending; we haven't initialized the mac registers
* yet)
*/
__raw_readq(sc->sbm_isr);
err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
if (err) {
printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
dev->irq);
goto out_err;
}
sc->sbm_speed = sbmac_speed_none;
sc->sbm_duplex = sbmac_duplex_none;
sc->sbm_fc = sbmac_fc_none;
sc->sbm_pause = -1;
sc->sbm_link = 0;
/*
* Attach to the PHY
*/
err = sbmac_mii_probe(dev);
if (err)
goto out_unregister;
/*
* Turn on the channel
*/
sbmac_set_channel_state(sc,sbmac_state_on);
netif_start_queue(dev);
sbmac_set_rx_mode(dev);
phy_start(sc->phy_dev);
napi_enable(&sc->napi);
return 0;
out_unregister:
free_irq(dev->irq, dev);
out_err:
return err;
}
static int sbmac_mii_probe(struct net_device *dev)
{
struct sbmac_softc *sc = netdev_priv(dev);
struct phy_device *phy_dev;
int i;
for (i = 0; i < PHY_MAX_ADDR; i++) {
phy_dev = sc->mii_bus->phy_map[i];
if (phy_dev)
break;
}
if (!phy_dev) {
printk(KERN_ERR "%s: no PHY found\n", dev->name);
return -ENXIO;
}
phy_dev = phy_connect(dev, dev_name(&phy_dev->dev), &sbmac_mii_poll, 0,
PHY_INTERFACE_MODE_GMII);
if (IS_ERR(phy_dev)) {
printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
return PTR_ERR(phy_dev);
}
/* Remove any features not supported by the controller */
phy_dev->supported &= SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Half |
SUPPORTED_1000baseT_Full |
SUPPORTED_Autoneg |
SUPPORTED_MII |
SUPPORTED_Pause |
SUPPORTED_Asym_Pause;
phy_dev->advertising = phy_dev->supported;
pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
dev->name, phy_dev->drv->name,
dev_name(&phy_dev->dev), phy_dev->irq);
sc->phy_dev = phy_dev;
return 0;
}
static void sbmac_mii_poll(struct net_device *dev)
{
struct sbmac_softc *sc = netdev_priv(dev);
struct phy_device *phy_dev = sc->phy_dev;
unsigned long flags;
enum sbmac_fc fc;
int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
link_chg = (sc->sbm_link != phy_dev->link);
speed_chg = (sc->sbm_speed != phy_dev->speed);
duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
pause_chg = (sc->sbm_pause != phy_dev->pause);
if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
return; /* Hmmm... */
if (!phy_dev->link) {
if (link_chg) {
sc->sbm_link = phy_dev->link;
sc->sbm_speed = sbmac_speed_none;
sc->sbm_duplex = sbmac_duplex_none;
sc->sbm_fc = sbmac_fc_disabled;
sc->sbm_pause = -1;
pr_info("%s: link unavailable\n", dev->name);
}
return;
}
if (phy_dev->duplex == DUPLEX_FULL) {
if (phy_dev->pause)
fc = sbmac_fc_frame;
else
fc = sbmac_fc_disabled;
} else
fc = sbmac_fc_collision;
fc_chg = (sc->sbm_fc != fc);
pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
spin_lock_irqsave(&sc->sbm_lock, flags);
sc->sbm_speed = phy_dev->speed;
sc->sbm_duplex = phy_dev->duplex;
sc->sbm_fc = fc;
sc->sbm_pause = phy_dev->pause;
sc->sbm_link = phy_dev->link;
if ((speed_chg || duplex_chg || fc_chg) &&
sc->sbm_state != sbmac_state_off) {
/*
* something changed, restart the channel
*/
if (debug > 1)
pr_debug("%s: restarting channel "
"because PHY state changed\n", dev->name);
sbmac_channel_stop(sc);
sbmac_channel_start(sc);
}
spin_unlock_irqrestore(&sc->sbm_lock, flags);
}
static void sbmac_tx_timeout (struct net_device *dev)
{
struct sbmac_softc *sc = netdev_priv(dev);
unsigned long flags;
spin_lock_irqsave(&sc->sbm_lock, flags);
dev->trans_start = jiffies; /* prevent tx timeout */
dev->stats.tx_errors++;
spin_unlock_irqrestore(&sc->sbm_lock, flags);
printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
}
static void sbmac_set_rx_mode(struct net_device *dev)
{
unsigned long flags;
struct sbmac_softc *sc = netdev_priv(dev);
spin_lock_irqsave(&sc->sbm_lock, flags);
if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
/*
* Promiscuous changed.
*/
if (dev->flags & IFF_PROMISC) {
sbmac_promiscuous_mode(sc,1);
}
else {
sbmac_promiscuous_mode(sc,0);
}
}
spin_unlock_irqrestore(&sc->sbm_lock, flags);
/*
* Program the multicasts. Do this every time.
*/
sbmac_setmulti(sc);
}
static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct sbmac_softc *sc = netdev_priv(dev);
if (!netif_running(dev) || !sc->phy_dev)
return -EINVAL;
return phy_mii_ioctl(sc->phy_dev, rq, cmd);
}
static int sbmac_close(struct net_device *dev)
{
struct sbmac_softc *sc = netdev_priv(dev);
napi_disable(&sc->napi);
phy_stop(sc->phy_dev);
sbmac_set_channel_state(sc, sbmac_state_off);
netif_stop_queue(dev);
if (debug > 1)
pr_debug("%s: Shutting down ethercard\n", dev->name);
phy_disconnect(sc->phy_dev);
sc->phy_dev = NULL;
free_irq(dev->irq, dev);
sbdma_emptyring(&(sc->sbm_txdma));
sbdma_emptyring(&(sc->sbm_rxdma));
return 0;
}
static int sbmac_poll(struct napi_struct *napi, int budget)
{
struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
int work_done;
work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
if (work_done < budget) {
napi_complete(napi);
#ifdef CONFIG_SBMAC_COALESCE
__raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
sc->sbm_imr);
#else
__raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
(M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
#endif
}
return work_done;
}
static int __devinit sbmac_probe(struct platform_device *pldev)
{
struct net_device *dev;
struct sbmac_softc *sc;
void __iomem *sbm_base;
struct resource *res;
u64 sbmac_orig_hwaddr;
int err;
res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
BUG_ON(!res);
sbm_base = ioremap_nocache(res->start, res->end - res->start + 1);
if (!sbm_base) {
printk(KERN_ERR "%s: unable to map device registers\n",
dev_name(&pldev->dev));
err = -ENOMEM;
goto out_out;
}
/*
* The R_MAC_ETHERNET_ADDR register will be set to some nonzero
* value for us by the firmware if we're going to use this MAC.
* If we find a zero, skip this MAC.
*/
sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
if (sbmac_orig_hwaddr == 0) {
err = 0;
goto out_unmap;
}
/*
* Okay, cool. Initialize this MAC.
*/
dev = alloc_etherdev(sizeof(struct sbmac_softc));
if (!dev) {
printk(KERN_ERR "%s: unable to allocate etherdev\n",
dev_name(&pldev->dev));
err = -ENOMEM;
goto out_unmap;
}
dev_set_drvdata(&pldev->dev, dev);
SET_NETDEV_DEV(dev, &pldev->dev);
sc = netdev_priv(dev);
sc->sbm_base = sbm_base;
err = sbmac_init(pldev, res->start);
if (err)
goto out_kfree;
return 0;
out_kfree:
free_netdev(dev);
__raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
out_unmap:
iounmap(sbm_base);
out_out:
return err;
}
static int __exit sbmac_remove(struct platform_device *pldev)
{
struct net_device *dev = dev_get_drvdata(&pldev->dev);
struct sbmac_softc *sc = netdev_priv(dev);
unregister_netdev(dev);
sbmac_uninitctx(sc);
mdiobus_unregister(sc->mii_bus);
mdiobus_free(sc->mii_bus);
iounmap(sc->sbm_base);
free_netdev(dev);
return 0;
}
static struct platform_driver sbmac_driver = {
.probe = sbmac_probe,
.remove = __exit_p(sbmac_remove),
.driver = {
.name = sbmac_string,
.owner = THIS_MODULE,
},
};
static int __init sbmac_init_module(void)
{
return platform_driver_register(&sbmac_driver);
}
static void __exit sbmac_cleanup_module(void)
{
platform_driver_unregister(&sbmac_driver);
}
module_init(sbmac_init_module);
module_exit(sbmac_cleanup_module);