2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-30 08:04:13 +08:00
linux-next/lib/stackdepot.c
Joonsoo Kim 7c31190bcf lib/stackdepot: avoid to return 0 handle
Recently, we allow to save the stacktrace whose hashed value is 0.  It
causes the problem that stackdepot could return 0 even if in success.
User of stackdepot cannot distinguish whether it is success or not so we
need to solve this problem.  In this patch, 1 bit are added to handle
and make valid handle none 0 by setting this bit.  After that, valid
handle will not be 0 and 0 handle will represent failure correctly.

Fixes: 33334e2576 ("lib/stackdepot.c: allow the stack trace hash to be zero")
Link: http://lkml.kernel.org/r/1462252403-1106-1-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-05 17:38:53 -07:00

285 lines
8.4 KiB
C

/*
* Generic stack depot for storing stack traces.
*
* Some debugging tools need to save stack traces of certain events which can
* be later presented to the user. For example, KASAN needs to safe alloc and
* free stacks for each object, but storing two stack traces per object
* requires too much memory (e.g. SLUB_DEBUG needs 256 bytes per object for
* that).
*
* Instead, stack depot maintains a hashtable of unique stacktraces. Since alloc
* and free stacks repeat a lot, we save about 100x space.
* Stacks are never removed from depot, so we store them contiguously one after
* another in a contiguos memory allocation.
*
* Author: Alexander Potapenko <glider@google.com>
* Copyright (C) 2016 Google, Inc.
*
* Based on code by Dmitry Chernenkov.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
*/
#include <linux/gfp.h>
#include <linux/jhash.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/percpu.h>
#include <linux/printk.h>
#include <linux/slab.h>
#include <linux/stacktrace.h>
#include <linux/stackdepot.h>
#include <linux/string.h>
#include <linux/types.h>
#define DEPOT_STACK_BITS (sizeof(depot_stack_handle_t) * 8)
#define STACK_ALLOC_NULL_PROTECTION_BITS 1
#define STACK_ALLOC_ORDER 2 /* 'Slab' size order for stack depot, 4 pages */
#define STACK_ALLOC_SIZE (1LL << (PAGE_SHIFT + STACK_ALLOC_ORDER))
#define STACK_ALLOC_ALIGN 4
#define STACK_ALLOC_OFFSET_BITS (STACK_ALLOC_ORDER + PAGE_SHIFT - \
STACK_ALLOC_ALIGN)
#define STACK_ALLOC_INDEX_BITS (DEPOT_STACK_BITS - \
STACK_ALLOC_NULL_PROTECTION_BITS - STACK_ALLOC_OFFSET_BITS)
#define STACK_ALLOC_SLABS_CAP 1024
#define STACK_ALLOC_MAX_SLABS \
(((1LL << (STACK_ALLOC_INDEX_BITS)) < STACK_ALLOC_SLABS_CAP) ? \
(1LL << (STACK_ALLOC_INDEX_BITS)) : STACK_ALLOC_SLABS_CAP)
/* The compact structure to store the reference to stacks. */
union handle_parts {
depot_stack_handle_t handle;
struct {
u32 slabindex : STACK_ALLOC_INDEX_BITS;
u32 offset : STACK_ALLOC_OFFSET_BITS;
u32 valid : STACK_ALLOC_NULL_PROTECTION_BITS;
};
};
struct stack_record {
struct stack_record *next; /* Link in the hashtable */
u32 hash; /* Hash in the hastable */
u32 size; /* Number of frames in the stack */
union handle_parts handle;
unsigned long entries[1]; /* Variable-sized array of entries. */
};
static void *stack_slabs[STACK_ALLOC_MAX_SLABS];
static int depot_index;
static int next_slab_inited;
static size_t depot_offset;
static DEFINE_SPINLOCK(depot_lock);
static bool init_stack_slab(void **prealloc)
{
if (!*prealloc)
return false;
/*
* This smp_load_acquire() pairs with smp_store_release() to
* |next_slab_inited| below and in depot_alloc_stack().
*/
if (smp_load_acquire(&next_slab_inited))
return true;
if (stack_slabs[depot_index] == NULL) {
stack_slabs[depot_index] = *prealloc;
} else {
stack_slabs[depot_index + 1] = *prealloc;
/*
* This smp_store_release pairs with smp_load_acquire() from
* |next_slab_inited| above and in depot_save_stack().
*/
smp_store_release(&next_slab_inited, 1);
}
*prealloc = NULL;
return true;
}
/* Allocation of a new stack in raw storage */
static struct stack_record *depot_alloc_stack(unsigned long *entries, int size,
u32 hash, void **prealloc, gfp_t alloc_flags)
{
int required_size = offsetof(struct stack_record, entries) +
sizeof(unsigned long) * size;
struct stack_record *stack;
required_size = ALIGN(required_size, 1 << STACK_ALLOC_ALIGN);
if (unlikely(depot_offset + required_size > STACK_ALLOC_SIZE)) {
if (unlikely(depot_index + 1 >= STACK_ALLOC_MAX_SLABS)) {
WARN_ONCE(1, "Stack depot reached limit capacity");
return NULL;
}
depot_index++;
depot_offset = 0;
/*
* smp_store_release() here pairs with smp_load_acquire() from
* |next_slab_inited| in depot_save_stack() and
* init_stack_slab().
*/
if (depot_index + 1 < STACK_ALLOC_MAX_SLABS)
smp_store_release(&next_slab_inited, 0);
}
init_stack_slab(prealloc);
if (stack_slabs[depot_index] == NULL)
return NULL;
stack = stack_slabs[depot_index] + depot_offset;
stack->hash = hash;
stack->size = size;
stack->handle.slabindex = depot_index;
stack->handle.offset = depot_offset >> STACK_ALLOC_ALIGN;
stack->handle.valid = 1;
memcpy(stack->entries, entries, size * sizeof(unsigned long));
depot_offset += required_size;
return stack;
}
#define STACK_HASH_ORDER 20
#define STACK_HASH_SIZE (1L << STACK_HASH_ORDER)
#define STACK_HASH_MASK (STACK_HASH_SIZE - 1)
#define STACK_HASH_SEED 0x9747b28c
static struct stack_record *stack_table[STACK_HASH_SIZE] = {
[0 ... STACK_HASH_SIZE - 1] = NULL
};
/* Calculate hash for a stack */
static inline u32 hash_stack(unsigned long *entries, unsigned int size)
{
return jhash2((u32 *)entries,
size * sizeof(unsigned long) / sizeof(u32),
STACK_HASH_SEED);
}
/* Find a stack that is equal to the one stored in entries in the hash */
static inline struct stack_record *find_stack(struct stack_record *bucket,
unsigned long *entries, int size,
u32 hash)
{
struct stack_record *found;
for (found = bucket; found; found = found->next) {
if (found->hash == hash &&
found->size == size &&
!memcmp(entries, found->entries,
size * sizeof(unsigned long))) {
return found;
}
}
return NULL;
}
void depot_fetch_stack(depot_stack_handle_t handle, struct stack_trace *trace)
{
union handle_parts parts = { .handle = handle };
void *slab = stack_slabs[parts.slabindex];
size_t offset = parts.offset << STACK_ALLOC_ALIGN;
struct stack_record *stack = slab + offset;
trace->nr_entries = trace->max_entries = stack->size;
trace->entries = stack->entries;
trace->skip = 0;
}
/**
* depot_save_stack - save stack in a stack depot.
* @trace - the stacktrace to save.
* @alloc_flags - flags for allocating additional memory if required.
*
* Returns the handle of the stack struct stored in depot.
*/
depot_stack_handle_t depot_save_stack(struct stack_trace *trace,
gfp_t alloc_flags)
{
u32 hash;
depot_stack_handle_t retval = 0;
struct stack_record *found = NULL, **bucket;
unsigned long flags;
struct page *page = NULL;
void *prealloc = NULL;
if (unlikely(trace->nr_entries == 0))
goto fast_exit;
hash = hash_stack(trace->entries, trace->nr_entries);
bucket = &stack_table[hash & STACK_HASH_MASK];
/*
* Fast path: look the stack trace up without locking.
* The smp_load_acquire() here pairs with smp_store_release() to
* |bucket| below.
*/
found = find_stack(smp_load_acquire(bucket), trace->entries,
trace->nr_entries, hash);
if (found)
goto exit;
/*
* Check if the current or the next stack slab need to be initialized.
* If so, allocate the memory - we won't be able to do that under the
* lock.
*
* The smp_load_acquire() here pairs with smp_store_release() to
* |next_slab_inited| in depot_alloc_stack() and init_stack_slab().
*/
if (unlikely(!smp_load_acquire(&next_slab_inited))) {
/*
* Zero out zone modifiers, as we don't have specific zone
* requirements. Keep the flags related to allocation in atomic
* contexts and I/O.
*/
alloc_flags &= ~GFP_ZONEMASK;
alloc_flags &= (GFP_ATOMIC | GFP_KERNEL);
page = alloc_pages(alloc_flags, STACK_ALLOC_ORDER);
if (page)
prealloc = page_address(page);
}
spin_lock_irqsave(&depot_lock, flags);
found = find_stack(*bucket, trace->entries, trace->nr_entries, hash);
if (!found) {
struct stack_record *new =
depot_alloc_stack(trace->entries, trace->nr_entries,
hash, &prealloc, alloc_flags);
if (new) {
new->next = *bucket;
/*
* This smp_store_release() pairs with
* smp_load_acquire() from |bucket| above.
*/
smp_store_release(bucket, new);
found = new;
}
} else if (prealloc) {
/*
* We didn't need to store this stack trace, but let's keep
* the preallocated memory for the future.
*/
WARN_ON(!init_stack_slab(&prealloc));
}
spin_unlock_irqrestore(&depot_lock, flags);
exit:
if (prealloc) {
/* Nobody used this memory, ok to free it. */
free_pages((unsigned long)prealloc, STACK_ALLOC_ORDER);
}
if (found)
retval = found->handle.handle;
fast_exit:
return retval;
}