2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 14:43:54 +08:00
linux-next/arch/x86/kernel/kexec-bzimage64.c
Yannik Sembritzki ea93102f32 Fix kexec forbidding kernels signed with keys in the secondary keyring to boot
The split of .system_keyring into .builtin_trusted_keys and
.secondary_trusted_keys broke kexec, thereby preventing kernels signed by
keys which are now in the secondary keyring from being kexec'd.

Fix this by passing VERIFY_USE_SECONDARY_KEYRING to
verify_pefile_signature().

Fixes: d3bfe84129 ("certs: Add a secondary system keyring that can be added to dynamically")
Signed-off-by: Yannik Sembritzki <yannik@sembritzki.me>
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: kexec@lists.infradead.org
Cc: keyrings@vger.kernel.org
Cc: linux-security-module@vger.kernel.org
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-16 09:57:20 -07:00

548 lines
15 KiB
C

/*
* Kexec bzImage loader
*
* Copyright (C) 2014 Red Hat Inc.
* Authors:
* Vivek Goyal <vgoyal@redhat.com>
*
* This source code is licensed under the GNU General Public License,
* Version 2. See the file COPYING for more details.
*/
#define pr_fmt(fmt) "kexec-bzImage64: " fmt
#include <linux/string.h>
#include <linux/printk.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/kexec.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/efi.h>
#include <linux/verification.h>
#include <asm/bootparam.h>
#include <asm/setup.h>
#include <asm/crash.h>
#include <asm/efi.h>
#include <asm/e820/api.h>
#include <asm/kexec-bzimage64.h>
#define MAX_ELFCOREHDR_STR_LEN 30 /* elfcorehdr=0x<64bit-value> */
/*
* Defines lowest physical address for various segments. Not sure where
* exactly these limits came from. Current bzimage64 loader in kexec-tools
* uses these so I am retaining it. It can be changed over time as we gain
* more insight.
*/
#define MIN_PURGATORY_ADDR 0x3000
#define MIN_BOOTPARAM_ADDR 0x3000
#define MIN_KERNEL_LOAD_ADDR 0x100000
#define MIN_INITRD_LOAD_ADDR 0x1000000
/*
* This is a place holder for all boot loader specific data structure which
* gets allocated in one call but gets freed much later during cleanup
* time. Right now there is only one field but it can grow as need be.
*/
struct bzimage64_data {
/*
* Temporary buffer to hold bootparams buffer. This should be
* freed once the bootparam segment has been loaded.
*/
void *bootparams_buf;
};
static int setup_initrd(struct boot_params *params,
unsigned long initrd_load_addr, unsigned long initrd_len)
{
params->hdr.ramdisk_image = initrd_load_addr & 0xffffffffUL;
params->hdr.ramdisk_size = initrd_len & 0xffffffffUL;
params->ext_ramdisk_image = initrd_load_addr >> 32;
params->ext_ramdisk_size = initrd_len >> 32;
return 0;
}
static int setup_cmdline(struct kimage *image, struct boot_params *params,
unsigned long bootparams_load_addr,
unsigned long cmdline_offset, char *cmdline,
unsigned long cmdline_len)
{
char *cmdline_ptr = ((char *)params) + cmdline_offset;
unsigned long cmdline_ptr_phys, len = 0;
uint32_t cmdline_low_32, cmdline_ext_32;
if (image->type == KEXEC_TYPE_CRASH) {
len = sprintf(cmdline_ptr,
"elfcorehdr=0x%lx ", image->arch.elf_load_addr);
}
memcpy(cmdline_ptr + len, cmdline, cmdline_len);
cmdline_len += len;
cmdline_ptr[cmdline_len - 1] = '\0';
pr_debug("Final command line is: %s\n", cmdline_ptr);
cmdline_ptr_phys = bootparams_load_addr + cmdline_offset;
cmdline_low_32 = cmdline_ptr_phys & 0xffffffffUL;
cmdline_ext_32 = cmdline_ptr_phys >> 32;
params->hdr.cmd_line_ptr = cmdline_low_32;
if (cmdline_ext_32)
params->ext_cmd_line_ptr = cmdline_ext_32;
return 0;
}
static int setup_e820_entries(struct boot_params *params)
{
unsigned int nr_e820_entries;
nr_e820_entries = e820_table_kexec->nr_entries;
/* TODO: Pass entries more than E820_MAX_ENTRIES_ZEROPAGE in bootparams setup data */
if (nr_e820_entries > E820_MAX_ENTRIES_ZEROPAGE)
nr_e820_entries = E820_MAX_ENTRIES_ZEROPAGE;
params->e820_entries = nr_e820_entries;
memcpy(&params->e820_table, &e820_table_kexec->entries, nr_e820_entries*sizeof(struct e820_entry));
return 0;
}
#ifdef CONFIG_EFI
static int setup_efi_info_memmap(struct boot_params *params,
unsigned long params_load_addr,
unsigned int efi_map_offset,
unsigned int efi_map_sz)
{
void *efi_map = (void *)params + efi_map_offset;
unsigned long efi_map_phys_addr = params_load_addr + efi_map_offset;
struct efi_info *ei = &params->efi_info;
if (!efi_map_sz)
return 0;
efi_runtime_map_copy(efi_map, efi_map_sz);
ei->efi_memmap = efi_map_phys_addr & 0xffffffff;
ei->efi_memmap_hi = efi_map_phys_addr >> 32;
ei->efi_memmap_size = efi_map_sz;
return 0;
}
static int
prepare_add_efi_setup_data(struct boot_params *params,
unsigned long params_load_addr,
unsigned int efi_setup_data_offset)
{
unsigned long setup_data_phys;
struct setup_data *sd = (void *)params + efi_setup_data_offset;
struct efi_setup_data *esd = (void *)sd + sizeof(struct setup_data);
esd->fw_vendor = efi.fw_vendor;
esd->runtime = efi.runtime;
esd->tables = efi.config_table;
esd->smbios = efi.smbios;
sd->type = SETUP_EFI;
sd->len = sizeof(struct efi_setup_data);
/* Add setup data */
setup_data_phys = params_load_addr + efi_setup_data_offset;
sd->next = params->hdr.setup_data;
params->hdr.setup_data = setup_data_phys;
return 0;
}
static int
setup_efi_state(struct boot_params *params, unsigned long params_load_addr,
unsigned int efi_map_offset, unsigned int efi_map_sz,
unsigned int efi_setup_data_offset)
{
struct efi_info *current_ei = &boot_params.efi_info;
struct efi_info *ei = &params->efi_info;
if (!current_ei->efi_memmap_size)
return 0;
/*
* If 1:1 mapping is not enabled, second kernel can not setup EFI
* and use EFI run time services. User space will have to pass
* acpi_rsdp=<addr> on kernel command line to make second kernel boot
* without efi.
*/
if (efi_enabled(EFI_OLD_MEMMAP))
return 0;
ei->efi_loader_signature = current_ei->efi_loader_signature;
ei->efi_systab = current_ei->efi_systab;
ei->efi_systab_hi = current_ei->efi_systab_hi;
ei->efi_memdesc_version = current_ei->efi_memdesc_version;
ei->efi_memdesc_size = efi_get_runtime_map_desc_size();
setup_efi_info_memmap(params, params_load_addr, efi_map_offset,
efi_map_sz);
prepare_add_efi_setup_data(params, params_load_addr,
efi_setup_data_offset);
return 0;
}
#endif /* CONFIG_EFI */
static int
setup_boot_parameters(struct kimage *image, struct boot_params *params,
unsigned long params_load_addr,
unsigned int efi_map_offset, unsigned int efi_map_sz,
unsigned int efi_setup_data_offset)
{
unsigned int nr_e820_entries;
unsigned long long mem_k, start, end;
int i, ret = 0;
/* Get subarch from existing bootparams */
params->hdr.hardware_subarch = boot_params.hdr.hardware_subarch;
/* Copying screen_info will do? */
memcpy(&params->screen_info, &boot_params.screen_info,
sizeof(struct screen_info));
/* Fill in memsize later */
params->screen_info.ext_mem_k = 0;
params->alt_mem_k = 0;
/* Default APM info */
memset(&params->apm_bios_info, 0, sizeof(params->apm_bios_info));
/* Default drive info */
memset(&params->hd0_info, 0, sizeof(params->hd0_info));
memset(&params->hd1_info, 0, sizeof(params->hd1_info));
if (image->type == KEXEC_TYPE_CRASH) {
ret = crash_setup_memmap_entries(image, params);
if (ret)
return ret;
} else
setup_e820_entries(params);
nr_e820_entries = params->e820_entries;
for (i = 0; i < nr_e820_entries; i++) {
if (params->e820_table[i].type != E820_TYPE_RAM)
continue;
start = params->e820_table[i].addr;
end = params->e820_table[i].addr + params->e820_table[i].size - 1;
if ((start <= 0x100000) && end > 0x100000) {
mem_k = (end >> 10) - (0x100000 >> 10);
params->screen_info.ext_mem_k = mem_k;
params->alt_mem_k = mem_k;
if (mem_k > 0xfc00)
params->screen_info.ext_mem_k = 0xfc00; /* 64M*/
if (mem_k > 0xffffffff)
params->alt_mem_k = 0xffffffff;
}
}
#ifdef CONFIG_EFI
/* Setup EFI state */
setup_efi_state(params, params_load_addr, efi_map_offset, efi_map_sz,
efi_setup_data_offset);
#endif
/* Setup EDD info */
memcpy(params->eddbuf, boot_params.eddbuf,
EDDMAXNR * sizeof(struct edd_info));
params->eddbuf_entries = boot_params.eddbuf_entries;
memcpy(params->edd_mbr_sig_buffer, boot_params.edd_mbr_sig_buffer,
EDD_MBR_SIG_MAX * sizeof(unsigned int));
return ret;
}
static int bzImage64_probe(const char *buf, unsigned long len)
{
int ret = -ENOEXEC;
struct setup_header *header;
/* kernel should be at least two sectors long */
if (len < 2 * 512) {
pr_err("File is too short to be a bzImage\n");
return ret;
}
header = (struct setup_header *)(buf + offsetof(struct boot_params, hdr));
if (memcmp((char *)&header->header, "HdrS", 4) != 0) {
pr_err("Not a bzImage\n");
return ret;
}
if (header->boot_flag != 0xAA55) {
pr_err("No x86 boot sector present\n");
return ret;
}
if (header->version < 0x020C) {
pr_err("Must be at least protocol version 2.12\n");
return ret;
}
if (!(header->loadflags & LOADED_HIGH)) {
pr_err("zImage not a bzImage\n");
return ret;
}
if (!(header->xloadflags & XLF_KERNEL_64)) {
pr_err("Not a bzImage64. XLF_KERNEL_64 is not set.\n");
return ret;
}
if (!(header->xloadflags & XLF_CAN_BE_LOADED_ABOVE_4G)) {
pr_err("XLF_CAN_BE_LOADED_ABOVE_4G is not set.\n");
return ret;
}
/*
* Can't handle 32bit EFI as it does not allow loading kernel
* above 4G. This should be handled by 32bit bzImage loader
*/
if (efi_enabled(EFI_RUNTIME_SERVICES) && !efi_enabled(EFI_64BIT)) {
pr_debug("EFI is 32 bit. Can't load kernel above 4G.\n");
return ret;
}
/* I've got a bzImage */
pr_debug("It's a relocatable bzImage64\n");
ret = 0;
return ret;
}
static void *bzImage64_load(struct kimage *image, char *kernel,
unsigned long kernel_len, char *initrd,
unsigned long initrd_len, char *cmdline,
unsigned long cmdline_len)
{
struct setup_header *header;
int setup_sects, kern16_size, ret = 0;
unsigned long setup_header_size, params_cmdline_sz;
struct boot_params *params;
unsigned long bootparam_load_addr, kernel_load_addr, initrd_load_addr;
struct bzimage64_data *ldata;
struct kexec_entry64_regs regs64;
void *stack;
unsigned int setup_hdr_offset = offsetof(struct boot_params, hdr);
unsigned int efi_map_offset, efi_map_sz, efi_setup_data_offset;
struct kexec_buf kbuf = { .image = image, .buf_max = ULONG_MAX,
.top_down = true };
struct kexec_buf pbuf = { .image = image, .buf_min = MIN_PURGATORY_ADDR,
.buf_max = ULONG_MAX, .top_down = true };
header = (struct setup_header *)(kernel + setup_hdr_offset);
setup_sects = header->setup_sects;
if (setup_sects == 0)
setup_sects = 4;
kern16_size = (setup_sects + 1) * 512;
if (kernel_len < kern16_size) {
pr_err("bzImage truncated\n");
return ERR_PTR(-ENOEXEC);
}
if (cmdline_len > header->cmdline_size) {
pr_err("Kernel command line too long\n");
return ERR_PTR(-EINVAL);
}
/*
* In case of crash dump, we will append elfcorehdr=<addr> to
* command line. Make sure it does not overflow
*/
if (cmdline_len + MAX_ELFCOREHDR_STR_LEN > header->cmdline_size) {
pr_debug("Appending elfcorehdr=<addr> to command line exceeds maximum allowed length\n");
return ERR_PTR(-EINVAL);
}
/* Allocate and load backup region */
if (image->type == KEXEC_TYPE_CRASH) {
ret = crash_load_segments(image);
if (ret)
return ERR_PTR(ret);
}
/*
* Load purgatory. For 64bit entry point, purgatory code can be
* anywhere.
*/
ret = kexec_load_purgatory(image, &pbuf);
if (ret) {
pr_err("Loading purgatory failed\n");
return ERR_PTR(ret);
}
pr_debug("Loaded purgatory at 0x%lx\n", pbuf.mem);
/*
* Load Bootparams and cmdline and space for efi stuff.
*
* Allocate memory together for multiple data structures so
* that they all can go in single area/segment and we don't
* have to create separate segment for each. Keeps things
* little bit simple
*/
efi_map_sz = efi_get_runtime_map_size();
params_cmdline_sz = sizeof(struct boot_params) + cmdline_len +
MAX_ELFCOREHDR_STR_LEN;
params_cmdline_sz = ALIGN(params_cmdline_sz, 16);
kbuf.bufsz = params_cmdline_sz + ALIGN(efi_map_sz, 16) +
sizeof(struct setup_data) +
sizeof(struct efi_setup_data);
params = kzalloc(kbuf.bufsz, GFP_KERNEL);
if (!params)
return ERR_PTR(-ENOMEM);
efi_map_offset = params_cmdline_sz;
efi_setup_data_offset = efi_map_offset + ALIGN(efi_map_sz, 16);
/* Copy setup header onto bootparams. Documentation/x86/boot.txt */
setup_header_size = 0x0202 + kernel[0x0201] - setup_hdr_offset;
/* Is there a limit on setup header size? */
memcpy(&params->hdr, (kernel + setup_hdr_offset), setup_header_size);
kbuf.buffer = params;
kbuf.memsz = kbuf.bufsz;
kbuf.buf_align = 16;
kbuf.buf_min = MIN_BOOTPARAM_ADDR;
ret = kexec_add_buffer(&kbuf);
if (ret)
goto out_free_params;
bootparam_load_addr = kbuf.mem;
pr_debug("Loaded boot_param, command line and misc at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
bootparam_load_addr, kbuf.bufsz, kbuf.bufsz);
/* Load kernel */
kbuf.buffer = kernel + kern16_size;
kbuf.bufsz = kernel_len - kern16_size;
kbuf.memsz = PAGE_ALIGN(header->init_size);
kbuf.buf_align = header->kernel_alignment;
kbuf.buf_min = MIN_KERNEL_LOAD_ADDR;
ret = kexec_add_buffer(&kbuf);
if (ret)
goto out_free_params;
kernel_load_addr = kbuf.mem;
pr_debug("Loaded 64bit kernel at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
kernel_load_addr, kbuf.bufsz, kbuf.memsz);
/* Load initrd high */
if (initrd) {
kbuf.buffer = initrd;
kbuf.bufsz = kbuf.memsz = initrd_len;
kbuf.buf_align = PAGE_SIZE;
kbuf.buf_min = MIN_INITRD_LOAD_ADDR;
ret = kexec_add_buffer(&kbuf);
if (ret)
goto out_free_params;
initrd_load_addr = kbuf.mem;
pr_debug("Loaded initrd at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
initrd_load_addr, initrd_len, initrd_len);
setup_initrd(params, initrd_load_addr, initrd_len);
}
setup_cmdline(image, params, bootparam_load_addr,
sizeof(struct boot_params), cmdline, cmdline_len);
/* bootloader info. Do we need a separate ID for kexec kernel loader? */
params->hdr.type_of_loader = 0x0D << 4;
params->hdr.loadflags = 0;
/* Setup purgatory regs for entry */
ret = kexec_purgatory_get_set_symbol(image, "entry64_regs", &regs64,
sizeof(regs64), 1);
if (ret)
goto out_free_params;
regs64.rbx = 0; /* Bootstrap Processor */
regs64.rsi = bootparam_load_addr;
regs64.rip = kernel_load_addr + 0x200;
stack = kexec_purgatory_get_symbol_addr(image, "stack_end");
if (IS_ERR(stack)) {
pr_err("Could not find address of symbol stack_end\n");
ret = -EINVAL;
goto out_free_params;
}
regs64.rsp = (unsigned long)stack;
ret = kexec_purgatory_get_set_symbol(image, "entry64_regs", &regs64,
sizeof(regs64), 0);
if (ret)
goto out_free_params;
ret = setup_boot_parameters(image, params, bootparam_load_addr,
efi_map_offset, efi_map_sz,
efi_setup_data_offset);
if (ret)
goto out_free_params;
/* Allocate loader specific data */
ldata = kzalloc(sizeof(struct bzimage64_data), GFP_KERNEL);
if (!ldata) {
ret = -ENOMEM;
goto out_free_params;
}
/*
* Store pointer to params so that it could be freed after loading
* params segment has been loaded and contents have been copied
* somewhere else.
*/
ldata->bootparams_buf = params;
return ldata;
out_free_params:
kfree(params);
return ERR_PTR(ret);
}
/* This cleanup function is called after various segments have been loaded */
static int bzImage64_cleanup(void *loader_data)
{
struct bzimage64_data *ldata = loader_data;
if (!ldata)
return 0;
kfree(ldata->bootparams_buf);
ldata->bootparams_buf = NULL;
return 0;
}
#ifdef CONFIG_KEXEC_BZIMAGE_VERIFY_SIG
static int bzImage64_verify_sig(const char *kernel, unsigned long kernel_len)
{
return verify_pefile_signature(kernel, kernel_len,
VERIFY_USE_SECONDARY_KEYRING,
VERIFYING_KEXEC_PE_SIGNATURE);
}
#endif
const struct kexec_file_ops kexec_bzImage64_ops = {
.probe = bzImage64_probe,
.load = bzImage64_load,
.cleanup = bzImage64_cleanup,
#ifdef CONFIG_KEXEC_BZIMAGE_VERIFY_SIG
.verify_sig = bzImage64_verify_sig,
#endif
};