2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-06 20:53:54 +08:00
linux-next/drivers/usb/host/xhci-ring.c
Greg Kroah-Hartman 9ed64195e3 USB: host: xhci: Remove redundant license text
Now that the SPDX tag is in all USB files, that identifies the license
in a specific and legally-defined manner.  So the extra GPL text wording
can be removed as it is no longer needed at all.

This is done on a quest to remove the 700+ different ways that files in
the kernel describe the GPL license text.  And there's unneeded stuff
like the address (sometimes incorrect) for the FSF which is never
needed.

No copyright headers or other non-license-description text was removed.

Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Thierry Reding <thierry.reding@gmail.com>
Cc: Jonathan Hunter <jonathanh@nvidia.com>
Acked-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-07 15:45:02 +01:00

4082 lines
124 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* xHCI host controller driver
*
* Copyright (C) 2008 Intel Corp.
*
* Author: Sarah Sharp
* Some code borrowed from the Linux EHCI driver.
*/
/*
* Ring initialization rules:
* 1. Each segment is initialized to zero, except for link TRBs.
* 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
* Consumer Cycle State (CCS), depending on ring function.
* 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
*
* Ring behavior rules:
* 1. A ring is empty if enqueue == dequeue. This means there will always be at
* least one free TRB in the ring. This is useful if you want to turn that
* into a link TRB and expand the ring.
* 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
* link TRB, then load the pointer with the address in the link TRB. If the
* link TRB had its toggle bit set, you may need to update the ring cycle
* state (see cycle bit rules). You may have to do this multiple times
* until you reach a non-link TRB.
* 3. A ring is full if enqueue++ (for the definition of increment above)
* equals the dequeue pointer.
*
* Cycle bit rules:
* 1. When a consumer increments a dequeue pointer and encounters a toggle bit
* in a link TRB, it must toggle the ring cycle state.
* 2. When a producer increments an enqueue pointer and encounters a toggle bit
* in a link TRB, it must toggle the ring cycle state.
*
* Producer rules:
* 1. Check if ring is full before you enqueue.
* 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
* Update enqueue pointer between each write (which may update the ring
* cycle state).
* 3. Notify consumer. If SW is producer, it rings the doorbell for command
* and endpoint rings. If HC is the producer for the event ring,
* and it generates an interrupt according to interrupt modulation rules.
*
* Consumer rules:
* 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
* the TRB is owned by the consumer.
* 2. Update dequeue pointer (which may update the ring cycle state) and
* continue processing TRBs until you reach a TRB which is not owned by you.
* 3. Notify the producer. SW is the consumer for the event ring, and it
* updates event ring dequeue pointer. HC is the consumer for the command and
* endpoint rings; it generates events on the event ring for these.
*/
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/dma-mapping.h>
#include "xhci.h"
#include "xhci-trace.h"
#include "xhci-mtk.h"
/*
* Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
* address of the TRB.
*/
dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
union xhci_trb *trb)
{
unsigned long segment_offset;
if (!seg || !trb || trb < seg->trbs)
return 0;
/* offset in TRBs */
segment_offset = trb - seg->trbs;
if (segment_offset >= TRBS_PER_SEGMENT)
return 0;
return seg->dma + (segment_offset * sizeof(*trb));
}
static bool trb_is_noop(union xhci_trb *trb)
{
return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
}
static bool trb_is_link(union xhci_trb *trb)
{
return TRB_TYPE_LINK_LE32(trb->link.control);
}
static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
{
return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
}
static bool last_trb_on_ring(struct xhci_ring *ring,
struct xhci_segment *seg, union xhci_trb *trb)
{
return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
}
static bool link_trb_toggles_cycle(union xhci_trb *trb)
{
return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
}
static bool last_td_in_urb(struct xhci_td *td)
{
struct urb_priv *urb_priv = td->urb->hcpriv;
return urb_priv->num_tds_done == urb_priv->num_tds;
}
static void inc_td_cnt(struct urb *urb)
{
struct urb_priv *urb_priv = urb->hcpriv;
urb_priv->num_tds_done++;
}
static void trb_to_noop(union xhci_trb *trb, u32 noop_type)
{
if (trb_is_link(trb)) {
/* unchain chained link TRBs */
trb->link.control &= cpu_to_le32(~TRB_CHAIN);
} else {
trb->generic.field[0] = 0;
trb->generic.field[1] = 0;
trb->generic.field[2] = 0;
/* Preserve only the cycle bit of this TRB */
trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
}
}
/* Updates trb to point to the next TRB in the ring, and updates seg if the next
* TRB is in a new segment. This does not skip over link TRBs, and it does not
* effect the ring dequeue or enqueue pointers.
*/
static void next_trb(struct xhci_hcd *xhci,
struct xhci_ring *ring,
struct xhci_segment **seg,
union xhci_trb **trb)
{
if (trb_is_link(*trb)) {
*seg = (*seg)->next;
*trb = ((*seg)->trbs);
} else {
(*trb)++;
}
}
/*
* See Cycle bit rules. SW is the consumer for the event ring only.
* Don't make a ring full of link TRBs. That would be dumb and this would loop.
*/
static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
{
/* event ring doesn't have link trbs, check for last trb */
if (ring->type == TYPE_EVENT) {
if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
ring->dequeue++;
goto out;
}
if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
ring->cycle_state ^= 1;
ring->deq_seg = ring->deq_seg->next;
ring->dequeue = ring->deq_seg->trbs;
goto out;
}
/* All other rings have link trbs */
if (!trb_is_link(ring->dequeue)) {
ring->dequeue++;
ring->num_trbs_free++;
}
while (trb_is_link(ring->dequeue)) {
ring->deq_seg = ring->deq_seg->next;
ring->dequeue = ring->deq_seg->trbs;
}
out:
trace_xhci_inc_deq(ring);
return;
}
/*
* See Cycle bit rules. SW is the consumer for the event ring only.
* Don't make a ring full of link TRBs. That would be dumb and this would loop.
*
* If we've just enqueued a TRB that is in the middle of a TD (meaning the
* chain bit is set), then set the chain bit in all the following link TRBs.
* If we've enqueued the last TRB in a TD, make sure the following link TRBs
* have their chain bit cleared (so that each Link TRB is a separate TD).
*
* Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
* set, but other sections talk about dealing with the chain bit set. This was
* fixed in the 0.96 specification errata, but we have to assume that all 0.95
* xHCI hardware can't handle the chain bit being cleared on a link TRB.
*
* @more_trbs_coming: Will you enqueue more TRBs before calling
* prepare_transfer()?
*/
static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
bool more_trbs_coming)
{
u32 chain;
union xhci_trb *next;
chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
/* If this is not event ring, there is one less usable TRB */
if (!trb_is_link(ring->enqueue))
ring->num_trbs_free--;
next = ++(ring->enqueue);
/* Update the dequeue pointer further if that was a link TRB */
while (trb_is_link(next)) {
/*
* If the caller doesn't plan on enqueueing more TDs before
* ringing the doorbell, then we don't want to give the link TRB
* to the hardware just yet. We'll give the link TRB back in
* prepare_ring() just before we enqueue the TD at the top of
* the ring.
*/
if (!chain && !more_trbs_coming)
break;
/* If we're not dealing with 0.95 hardware or isoc rings on
* AMD 0.96 host, carry over the chain bit of the previous TRB
* (which may mean the chain bit is cleared).
*/
if (!(ring->type == TYPE_ISOC &&
(xhci->quirks & XHCI_AMD_0x96_HOST)) &&
!xhci_link_trb_quirk(xhci)) {
next->link.control &= cpu_to_le32(~TRB_CHAIN);
next->link.control |= cpu_to_le32(chain);
}
/* Give this link TRB to the hardware */
wmb();
next->link.control ^= cpu_to_le32(TRB_CYCLE);
/* Toggle the cycle bit after the last ring segment. */
if (link_trb_toggles_cycle(next))
ring->cycle_state ^= 1;
ring->enq_seg = ring->enq_seg->next;
ring->enqueue = ring->enq_seg->trbs;
next = ring->enqueue;
}
trace_xhci_inc_enq(ring);
}
/*
* Check to see if there's room to enqueue num_trbs on the ring and make sure
* enqueue pointer will not advance into dequeue segment. See rules above.
*/
static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
unsigned int num_trbs)
{
int num_trbs_in_deq_seg;
if (ring->num_trbs_free < num_trbs)
return 0;
if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
return 0;
}
return 1;
}
/* Ring the host controller doorbell after placing a command on the ring */
void xhci_ring_cmd_db(struct xhci_hcd *xhci)
{
if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
return;
xhci_dbg(xhci, "// Ding dong!\n");
writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
/* Flush PCI posted writes */
readl(&xhci->dba->doorbell[0]);
}
static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay)
{
return mod_delayed_work(system_wq, &xhci->cmd_timer, delay);
}
static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
{
return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
cmd_list);
}
/*
* Turn all commands on command ring with status set to "aborted" to no-op trbs.
* If there are other commands waiting then restart the ring and kick the timer.
* This must be called with command ring stopped and xhci->lock held.
*/
static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
struct xhci_command *cur_cmd)
{
struct xhci_command *i_cmd;
/* Turn all aborted commands in list to no-ops, then restart */
list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
if (i_cmd->status != COMP_COMMAND_ABORTED)
continue;
i_cmd->status = COMP_COMMAND_RING_STOPPED;
xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
i_cmd->command_trb);
trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP);
/*
* caller waiting for completion is called when command
* completion event is received for these no-op commands
*/
}
xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
/* ring command ring doorbell to restart the command ring */
if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
!(xhci->xhc_state & XHCI_STATE_DYING)) {
xhci->current_cmd = cur_cmd;
xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
xhci_ring_cmd_db(xhci);
}
}
/* Must be called with xhci->lock held, releases and aquires lock back */
static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
{
u64 temp_64;
int ret;
xhci_dbg(xhci, "Abort command ring\n");
reinit_completion(&xhci->cmd_ring_stop_completion);
temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
&xhci->op_regs->cmd_ring);
/* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the
* completion of the Command Abort operation. If CRR is not negated in 5
* seconds then driver handles it as if host died (-ENODEV).
* In the future we should distinguish between -ENODEV and -ETIMEDOUT
* and try to recover a -ETIMEDOUT with a host controller reset.
*/
ret = xhci_handshake(&xhci->op_regs->cmd_ring,
CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
if (ret < 0) {
xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret);
xhci_halt(xhci);
xhci_hc_died(xhci);
return ret;
}
/*
* Writing the CMD_RING_ABORT bit should cause a cmd completion event,
* however on some host hw the CMD_RING_RUNNING bit is correctly cleared
* but the completion event in never sent. Wait 2 secs (arbitrary
* number) to handle those cases after negation of CMD_RING_RUNNING.
*/
spin_unlock_irqrestore(&xhci->lock, flags);
ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
msecs_to_jiffies(2000));
spin_lock_irqsave(&xhci->lock, flags);
if (!ret) {
xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
xhci_cleanup_command_queue(xhci);
} else {
xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
}
return 0;
}
void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
unsigned int slot_id,
unsigned int ep_index,
unsigned int stream_id)
{
__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
unsigned int ep_state = ep->ep_state;
/* Don't ring the doorbell for this endpoint if there are pending
* cancellations because we don't want to interrupt processing.
* We don't want to restart any stream rings if there's a set dequeue
* pointer command pending because the device can choose to start any
* stream once the endpoint is on the HW schedule.
*/
if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
(ep_state & EP_HALTED))
return;
writel(DB_VALUE(ep_index, stream_id), db_addr);
/* The CPU has better things to do at this point than wait for a
* write-posting flush. It'll get there soon enough.
*/
}
/* Ring the doorbell for any rings with pending URBs */
static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
unsigned int slot_id,
unsigned int ep_index)
{
unsigned int stream_id;
struct xhci_virt_ep *ep;
ep = &xhci->devs[slot_id]->eps[ep_index];
/* A ring has pending URBs if its TD list is not empty */
if (!(ep->ep_state & EP_HAS_STREAMS)) {
if (ep->ring && !(list_empty(&ep->ring->td_list)))
xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
return;
}
for (stream_id = 1; stream_id < ep->stream_info->num_streams;
stream_id++) {
struct xhci_stream_info *stream_info = ep->stream_info;
if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
stream_id);
}
}
/* Get the right ring for the given slot_id, ep_index and stream_id.
* If the endpoint supports streams, boundary check the URB's stream ID.
* If the endpoint doesn't support streams, return the singular endpoint ring.
*/
struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
unsigned int slot_id, unsigned int ep_index,
unsigned int stream_id)
{
struct xhci_virt_ep *ep;
ep = &xhci->devs[slot_id]->eps[ep_index];
/* Common case: no streams */
if (!(ep->ep_state & EP_HAS_STREAMS))
return ep->ring;
if (stream_id == 0) {
xhci_warn(xhci,
"WARN: Slot ID %u, ep index %u has streams, "
"but URB has no stream ID.\n",
slot_id, ep_index);
return NULL;
}
if (stream_id < ep->stream_info->num_streams)
return ep->stream_info->stream_rings[stream_id];
xhci_warn(xhci,
"WARN: Slot ID %u, ep index %u has "
"stream IDs 1 to %u allocated, "
"but stream ID %u is requested.\n",
slot_id, ep_index,
ep->stream_info->num_streams - 1,
stream_id);
return NULL;
}
/*
* Get the hw dequeue pointer xHC stopped on, either directly from the
* endpoint context, or if streams are in use from the stream context.
* The returned hw_dequeue contains the lowest four bits with cycle state
* and possbile stream context type.
*/
static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev,
unsigned int ep_index, unsigned int stream_id)
{
struct xhci_ep_ctx *ep_ctx;
struct xhci_stream_ctx *st_ctx;
struct xhci_virt_ep *ep;
ep = &vdev->eps[ep_index];
if (ep->ep_state & EP_HAS_STREAMS) {
st_ctx = &ep->stream_info->stream_ctx_array[stream_id];
return le64_to_cpu(st_ctx->stream_ring);
}
ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
return le64_to_cpu(ep_ctx->deq);
}
/*
* Move the xHC's endpoint ring dequeue pointer past cur_td.
* Record the new state of the xHC's endpoint ring dequeue segment,
* dequeue pointer, stream id, and new consumer cycle state in state.
* Update our internal representation of the ring's dequeue pointer.
*
* We do this in three jumps:
* - First we update our new ring state to be the same as when the xHC stopped.
* - Then we traverse the ring to find the segment that contains
* the last TRB in the TD. We toggle the xHC's new cycle state when we pass
* any link TRBs with the toggle cycle bit set.
* - Finally we move the dequeue state one TRB further, toggling the cycle bit
* if we've moved it past a link TRB with the toggle cycle bit set.
*
* Some of the uses of xhci_generic_trb are grotty, but if they're done
* with correct __le32 accesses they should work fine. Only users of this are
* in here.
*/
void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
unsigned int slot_id, unsigned int ep_index,
unsigned int stream_id, struct xhci_td *cur_td,
struct xhci_dequeue_state *state)
{
struct xhci_virt_device *dev = xhci->devs[slot_id];
struct xhci_virt_ep *ep = &dev->eps[ep_index];
struct xhci_ring *ep_ring;
struct xhci_segment *new_seg;
union xhci_trb *new_deq;
dma_addr_t addr;
u64 hw_dequeue;
bool cycle_found = false;
bool td_last_trb_found = false;
ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
ep_index, stream_id);
if (!ep_ring) {
xhci_warn(xhci, "WARN can't find new dequeue state "
"for invalid stream ID %u.\n",
stream_id);
return;
}
/* Dig out the cycle state saved by the xHC during the stop ep cmd */
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
"Finding endpoint context");
hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id);
new_seg = ep_ring->deq_seg;
new_deq = ep_ring->dequeue;
state->new_cycle_state = hw_dequeue & 0x1;
state->stream_id = stream_id;
/*
* We want to find the pointer, segment and cycle state of the new trb
* (the one after current TD's last_trb). We know the cycle state at
* hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
* found.
*/
do {
if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
== (dma_addr_t)(hw_dequeue & ~0xf)) {
cycle_found = true;
if (td_last_trb_found)
break;
}
if (new_deq == cur_td->last_trb)
td_last_trb_found = true;
if (cycle_found && trb_is_link(new_deq) &&
link_trb_toggles_cycle(new_deq))
state->new_cycle_state ^= 0x1;
next_trb(xhci, ep_ring, &new_seg, &new_deq);
/* Search wrapped around, bail out */
if (new_deq == ep->ring->dequeue) {
xhci_err(xhci, "Error: Failed finding new dequeue state\n");
state->new_deq_seg = NULL;
state->new_deq_ptr = NULL;
return;
}
} while (!cycle_found || !td_last_trb_found);
state->new_deq_seg = new_seg;
state->new_deq_ptr = new_deq;
/* Don't update the ring cycle state for the producer (us). */
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
"Cycle state = 0x%x", state->new_cycle_state);
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
"New dequeue segment = %p (virtual)",
state->new_deq_seg);
addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
"New dequeue pointer = 0x%llx (DMA)",
(unsigned long long) addr);
}
/* flip_cycle means flip the cycle bit of all but the first and last TRB.
* (The last TRB actually points to the ring enqueue pointer, which is not part
* of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
*/
static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
struct xhci_td *td, bool flip_cycle)
{
struct xhci_segment *seg = td->start_seg;
union xhci_trb *trb = td->first_trb;
while (1) {
trb_to_noop(trb, TRB_TR_NOOP);
/* flip cycle if asked to */
if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
if (trb == td->last_trb)
break;
next_trb(xhci, ep_ring, &seg, &trb);
}
}
static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
struct xhci_virt_ep *ep)
{
ep->ep_state &= ~EP_STOP_CMD_PENDING;
/* Can't del_timer_sync in interrupt */
del_timer(&ep->stop_cmd_timer);
}
/*
* Must be called with xhci->lock held in interrupt context,
* releases and re-acquires xhci->lock
*/
static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
struct xhci_td *cur_td, int status)
{
struct urb *urb = cur_td->urb;
struct urb_priv *urb_priv = urb->hcpriv;
struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
if (xhci->quirks & XHCI_AMD_PLL_FIX)
usb_amd_quirk_pll_enable();
}
}
xhci_urb_free_priv(urb_priv);
usb_hcd_unlink_urb_from_ep(hcd, urb);
spin_unlock(&xhci->lock);
trace_xhci_urb_giveback(urb);
usb_hcd_giveback_urb(hcd, urb, status);
spin_lock(&xhci->lock);
}
static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
struct xhci_ring *ring, struct xhci_td *td)
{
struct device *dev = xhci_to_hcd(xhci)->self.controller;
struct xhci_segment *seg = td->bounce_seg;
struct urb *urb = td->urb;
if (!ring || !seg || !urb)
return;
if (usb_urb_dir_out(urb)) {
dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
DMA_TO_DEVICE);
return;
}
/* for in tranfers we need to copy the data from bounce to sg */
sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf,
seg->bounce_len, seg->bounce_offs);
dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
DMA_FROM_DEVICE);
seg->bounce_len = 0;
seg->bounce_offs = 0;
}
/*
* When we get a command completion for a Stop Endpoint Command, we need to
* unlink any cancelled TDs from the ring. There are two ways to do that:
*
* 1. If the HW was in the middle of processing the TD that needs to be
* cancelled, then we must move the ring's dequeue pointer past the last TRB
* in the TD with a Set Dequeue Pointer Command.
* 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
* bit cleared) so that the HW will skip over them.
*/
static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
union xhci_trb *trb, struct xhci_event_cmd *event)
{
unsigned int ep_index;
struct xhci_ring *ep_ring;
struct xhci_virt_ep *ep;
struct xhci_td *cur_td = NULL;
struct xhci_td *last_unlinked_td;
struct xhci_ep_ctx *ep_ctx;
struct xhci_virt_device *vdev;
u64 hw_deq;
struct xhci_dequeue_state deq_state;
if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
if (!xhci->devs[slot_id])
xhci_warn(xhci, "Stop endpoint command "
"completion for disabled slot %u\n",
slot_id);
return;
}
memset(&deq_state, 0, sizeof(deq_state));
ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
vdev = xhci->devs[slot_id];
ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
trace_xhci_handle_cmd_stop_ep(ep_ctx);
ep = &xhci->devs[slot_id]->eps[ep_index];
last_unlinked_td = list_last_entry(&ep->cancelled_td_list,
struct xhci_td, cancelled_td_list);
if (list_empty(&ep->cancelled_td_list)) {
xhci_stop_watchdog_timer_in_irq(xhci, ep);
ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
return;
}
/* Fix up the ep ring first, so HW stops executing cancelled TDs.
* We have the xHCI lock, so nothing can modify this list until we drop
* it. We're also in the event handler, so we can't get re-interrupted
* if another Stop Endpoint command completes
*/
list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) {
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
"Removing canceled TD starting at 0x%llx (dma).",
(unsigned long long)xhci_trb_virt_to_dma(
cur_td->start_seg, cur_td->first_trb));
ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
if (!ep_ring) {
/* This shouldn't happen unless a driver is mucking
* with the stream ID after submission. This will
* leave the TD on the hardware ring, and the hardware
* will try to execute it, and may access a buffer
* that has already been freed. In the best case, the
* hardware will execute it, and the event handler will
* ignore the completion event for that TD, since it was
* removed from the td_list for that endpoint. In
* short, don't muck with the stream ID after
* submission.
*/
xhci_warn(xhci, "WARN Cancelled URB %p "
"has invalid stream ID %u.\n",
cur_td->urb,
cur_td->urb->stream_id);
goto remove_finished_td;
}
/*
* If we stopped on the TD we need to cancel, then we have to
* move the xHC endpoint ring dequeue pointer past this TD.
*/
hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index,
cur_td->urb->stream_id);
hw_deq &= ~0xf;
if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb,
cur_td->last_trb, hw_deq, false)) {
xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
cur_td->urb->stream_id,
cur_td, &deq_state);
} else {
td_to_noop(xhci, ep_ring, cur_td, false);
}
remove_finished_td:
/*
* The event handler won't see a completion for this TD anymore,
* so remove it from the endpoint ring's TD list. Keep it in
* the cancelled TD list for URB completion later.
*/
list_del_init(&cur_td->td_list);
}
xhci_stop_watchdog_timer_in_irq(xhci, ep);
/* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
&deq_state);
xhci_ring_cmd_db(xhci);
} else {
/* Otherwise ring the doorbell(s) to restart queued transfers */
ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
}
/*
* Drop the lock and complete the URBs in the cancelled TD list.
* New TDs to be cancelled might be added to the end of the list before
* we can complete all the URBs for the TDs we already unlinked.
* So stop when we've completed the URB for the last TD we unlinked.
*/
do {
cur_td = list_first_entry(&ep->cancelled_td_list,
struct xhci_td, cancelled_td_list);
list_del_init(&cur_td->cancelled_td_list);
/* Clean up the cancelled URB */
/* Doesn't matter what we pass for status, since the core will
* just overwrite it (because the URB has been unlinked).
*/
ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
inc_td_cnt(cur_td->urb);
if (last_td_in_urb(cur_td))
xhci_giveback_urb_in_irq(xhci, cur_td, 0);
/* Stop processing the cancelled list if the watchdog timer is
* running.
*/
if (xhci->xhc_state & XHCI_STATE_DYING)
return;
} while (cur_td != last_unlinked_td);
/* Return to the event handler with xhci->lock re-acquired */
}
static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
{
struct xhci_td *cur_td;
struct xhci_td *tmp;
list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) {
list_del_init(&cur_td->td_list);
if (!list_empty(&cur_td->cancelled_td_list))
list_del_init(&cur_td->cancelled_td_list);
xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
inc_td_cnt(cur_td->urb);
if (last_td_in_urb(cur_td))
xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
}
}
static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
int slot_id, int ep_index)
{
struct xhci_td *cur_td;
struct xhci_td *tmp;
struct xhci_virt_ep *ep;
struct xhci_ring *ring;
ep = &xhci->devs[slot_id]->eps[ep_index];
if ((ep->ep_state & EP_HAS_STREAMS) ||
(ep->ep_state & EP_GETTING_NO_STREAMS)) {
int stream_id;
for (stream_id = 1; stream_id < ep->stream_info->num_streams;
stream_id++) {
ring = ep->stream_info->stream_rings[stream_id];
if (!ring)
continue;
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
"Killing URBs for slot ID %u, ep index %u, stream %u",
slot_id, ep_index, stream_id);
xhci_kill_ring_urbs(xhci, ring);
}
} else {
ring = ep->ring;
if (!ring)
return;
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
"Killing URBs for slot ID %u, ep index %u",
slot_id, ep_index);
xhci_kill_ring_urbs(xhci, ring);
}
list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list,
cancelled_td_list) {
list_del_init(&cur_td->cancelled_td_list);
inc_td_cnt(cur_td->urb);
if (last_td_in_urb(cur_td))
xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
}
}
/*
* host controller died, register read returns 0xffffffff
* Complete pending commands, mark them ABORTED.
* URBs need to be given back as usb core might be waiting with device locks
* held for the URBs to finish during device disconnect, blocking host remove.
*
* Call with xhci->lock held.
* lock is relased and re-acquired while giving back urb.
*/
void xhci_hc_died(struct xhci_hcd *xhci)
{
int i, j;
if (xhci->xhc_state & XHCI_STATE_DYING)
return;
xhci_err(xhci, "xHCI host controller not responding, assume dead\n");
xhci->xhc_state |= XHCI_STATE_DYING;
xhci_cleanup_command_queue(xhci);
/* return any pending urbs, remove may be waiting for them */
for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
if (!xhci->devs[i])
continue;
for (j = 0; j < 31; j++)
xhci_kill_endpoint_urbs(xhci, i, j);
}
/* inform usb core hc died if PCI remove isn't already handling it */
if (!(xhci->xhc_state & XHCI_STATE_REMOVING))
usb_hc_died(xhci_to_hcd(xhci));
}
/* Watchdog timer function for when a stop endpoint command fails to complete.
* In this case, we assume the host controller is broken or dying or dead. The
* host may still be completing some other events, so we have to be careful to
* let the event ring handler and the URB dequeueing/enqueueing functions know
* through xhci->state.
*
* The timer may also fire if the host takes a very long time to respond to the
* command, and the stop endpoint command completion handler cannot delete the
* timer before the timer function is called. Another endpoint cancellation may
* sneak in before the timer function can grab the lock, and that may queue
* another stop endpoint command and add the timer back. So we cannot use a
* simple flag to say whether there is a pending stop endpoint command for a
* particular endpoint.
*
* Instead we use a combination of that flag and checking if a new timer is
* pending.
*/
void xhci_stop_endpoint_command_watchdog(struct timer_list *t)
{
struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer);
struct xhci_hcd *xhci = ep->xhci;
unsigned long flags;
spin_lock_irqsave(&xhci->lock, flags);
/* bail out if cmd completed but raced with stop ep watchdog timer.*/
if (!(ep->ep_state & EP_STOP_CMD_PENDING) ||
timer_pending(&ep->stop_cmd_timer)) {
spin_unlock_irqrestore(&xhci->lock, flags);
xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit");
return;
}
xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
ep->ep_state &= ~EP_STOP_CMD_PENDING;
xhci_halt(xhci);
/*
* handle a stop endpoint cmd timeout as if host died (-ENODEV).
* In the future we could distinguish between -ENODEV and -ETIMEDOUT
* and try to recover a -ETIMEDOUT with a host controller reset
*/
xhci_hc_died(xhci);
spin_unlock_irqrestore(&xhci->lock, flags);
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
"xHCI host controller is dead.");
}
static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
struct xhci_virt_device *dev,
struct xhci_ring *ep_ring,
unsigned int ep_index)
{
union xhci_trb *dequeue_temp;
int num_trbs_free_temp;
bool revert = false;
num_trbs_free_temp = ep_ring->num_trbs_free;
dequeue_temp = ep_ring->dequeue;
/* If we get two back-to-back stalls, and the first stalled transfer
* ends just before a link TRB, the dequeue pointer will be left on
* the link TRB by the code in the while loop. So we have to update
* the dequeue pointer one segment further, or we'll jump off
* the segment into la-la-land.
*/
if (trb_is_link(ep_ring->dequeue)) {
ep_ring->deq_seg = ep_ring->deq_seg->next;
ep_ring->dequeue = ep_ring->deq_seg->trbs;
}
while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
/* We have more usable TRBs */
ep_ring->num_trbs_free++;
ep_ring->dequeue++;
if (trb_is_link(ep_ring->dequeue)) {
if (ep_ring->dequeue ==
dev->eps[ep_index].queued_deq_ptr)
break;
ep_ring->deq_seg = ep_ring->deq_seg->next;
ep_ring->dequeue = ep_ring->deq_seg->trbs;
}
if (ep_ring->dequeue == dequeue_temp) {
revert = true;
break;
}
}
if (revert) {
xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
ep_ring->num_trbs_free = num_trbs_free_temp;
}
}
/*
* When we get a completion for a Set Transfer Ring Dequeue Pointer command,
* we need to clear the set deq pending flag in the endpoint ring state, so that
* the TD queueing code can ring the doorbell again. We also need to ring the
* endpoint doorbell to restart the ring, but only if there aren't more
* cancellations pending.
*/
static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
union xhci_trb *trb, u32 cmd_comp_code)
{
unsigned int ep_index;
unsigned int stream_id;
struct xhci_ring *ep_ring;
struct xhci_virt_device *dev;
struct xhci_virt_ep *ep;
struct xhci_ep_ctx *ep_ctx;
struct xhci_slot_ctx *slot_ctx;
ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
dev = xhci->devs[slot_id];
ep = &dev->eps[ep_index];
ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
if (!ep_ring) {
xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
stream_id);
/* XXX: Harmless??? */
goto cleanup;
}
ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
trace_xhci_handle_cmd_set_deq(slot_ctx);
trace_xhci_handle_cmd_set_deq_ep(ep_ctx);
if (cmd_comp_code != COMP_SUCCESS) {
unsigned int ep_state;
unsigned int slot_state;
switch (cmd_comp_code) {
case COMP_TRB_ERROR:
xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
break;
case COMP_CONTEXT_STATE_ERROR:
xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
ep_state = GET_EP_CTX_STATE(ep_ctx);
slot_state = le32_to_cpu(slot_ctx->dev_state);
slot_state = GET_SLOT_STATE(slot_state);
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
"Slot state = %u, EP state = %u",
slot_state, ep_state);
break;
case COMP_SLOT_NOT_ENABLED_ERROR:
xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
slot_id);
break;
default:
xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
cmd_comp_code);
break;
}
/* OK what do we do now? The endpoint state is hosed, and we
* should never get to this point if the synchronization between
* queueing, and endpoint state are correct. This might happen
* if the device gets disconnected after we've finished
* cancelling URBs, which might not be an error...
*/
} else {
u64 deq;
/* 4.6.10 deq ptr is written to the stream ctx for streams */
if (ep->ep_state & EP_HAS_STREAMS) {
struct xhci_stream_ctx *ctx =
&ep->stream_info->stream_ctx_array[stream_id];
deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
} else {
deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
}
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
"Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
ep->queued_deq_ptr) == deq) {
/* Update the ring's dequeue segment and dequeue pointer
* to reflect the new position.
*/
update_ring_for_set_deq_completion(xhci, dev,
ep_ring, ep_index);
} else {
xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
ep->queued_deq_seg, ep->queued_deq_ptr);
}
}
cleanup:
dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
dev->eps[ep_index].queued_deq_seg = NULL;
dev->eps[ep_index].queued_deq_ptr = NULL;
/* Restart any rings with pending URBs */
ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
}
static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
union xhci_trb *trb, u32 cmd_comp_code)
{
struct xhci_virt_device *vdev;
struct xhci_ep_ctx *ep_ctx;
unsigned int ep_index;
ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
vdev = xhci->devs[slot_id];
ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
trace_xhci_handle_cmd_reset_ep(ep_ctx);
/* This command will only fail if the endpoint wasn't halted,
* but we don't care.
*/
xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
"Ignoring reset ep completion code of %u", cmd_comp_code);
/* HW with the reset endpoint quirk needs to have a configure endpoint
* command complete before the endpoint can be used. Queue that here
* because the HW can't handle two commands being queued in a row.
*/
if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
struct xhci_command *command;
command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
if (!command)
return;
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
"Queueing configure endpoint command");
xhci_queue_configure_endpoint(xhci, command,
xhci->devs[slot_id]->in_ctx->dma, slot_id,
false);
xhci_ring_cmd_db(xhci);
} else {
/* Clear our internal halted state */
xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
}
}
static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
struct xhci_command *command, u32 cmd_comp_code)
{
if (cmd_comp_code == COMP_SUCCESS)
command->slot_id = slot_id;
else
command->slot_id = 0;
}
static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
{
struct xhci_virt_device *virt_dev;
struct xhci_slot_ctx *slot_ctx;
virt_dev = xhci->devs[slot_id];
if (!virt_dev)
return;
slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
trace_xhci_handle_cmd_disable_slot(slot_ctx);
if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
/* Delete default control endpoint resources */
xhci_free_device_endpoint_resources(xhci, virt_dev, true);
xhci_free_virt_device(xhci, slot_id);
}
static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
struct xhci_event_cmd *event, u32 cmd_comp_code)
{
struct xhci_virt_device *virt_dev;
struct xhci_input_control_ctx *ctrl_ctx;
struct xhci_ep_ctx *ep_ctx;
unsigned int ep_index;
unsigned int ep_state;
u32 add_flags, drop_flags;
/*
* Configure endpoint commands can come from the USB core
* configuration or alt setting changes, or because the HW
* needed an extra configure endpoint command after a reset
* endpoint command or streams were being configured.
* If the command was for a halted endpoint, the xHCI driver
* is not waiting on the configure endpoint command.
*/
virt_dev = xhci->devs[slot_id];
ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
if (!ctrl_ctx) {
xhci_warn(xhci, "Could not get input context, bad type.\n");
return;
}
add_flags = le32_to_cpu(ctrl_ctx->add_flags);
drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
/* Input ctx add_flags are the endpoint index plus one */
ep_index = xhci_last_valid_endpoint(add_flags) - 1;
ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index);
trace_xhci_handle_cmd_config_ep(ep_ctx);
/* A usb_set_interface() call directly after clearing a halted
* condition may race on this quirky hardware. Not worth
* worrying about, since this is prototype hardware. Not sure
* if this will work for streams, but streams support was
* untested on this prototype.
*/
if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
ep_index != (unsigned int) -1 &&
add_flags - SLOT_FLAG == drop_flags) {
ep_state = virt_dev->eps[ep_index].ep_state;
if (!(ep_state & EP_HALTED))
return;
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
"Completed config ep cmd - "
"last ep index = %d, state = %d",
ep_index, ep_state);
/* Clear internal halted state and restart ring(s) */
virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
return;
}
return;
}
static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id)
{
struct xhci_virt_device *vdev;
struct xhci_slot_ctx *slot_ctx;
vdev = xhci->devs[slot_id];
slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
trace_xhci_handle_cmd_addr_dev(slot_ctx);
}
static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
struct xhci_event_cmd *event)
{
struct xhci_virt_device *vdev;
struct xhci_slot_ctx *slot_ctx;
vdev = xhci->devs[slot_id];
slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
trace_xhci_handle_cmd_reset_dev(slot_ctx);
xhci_dbg(xhci, "Completed reset device command.\n");
if (!xhci->devs[slot_id])
xhci_warn(xhci, "Reset device command completion "
"for disabled slot %u\n", slot_id);
}
static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
struct xhci_event_cmd *event)
{
if (!(xhci->quirks & XHCI_NEC_HOST)) {
xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
return;
}
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
"NEC firmware version %2x.%02x",
NEC_FW_MAJOR(le32_to_cpu(event->status)),
NEC_FW_MINOR(le32_to_cpu(event->status)));
}
static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
{
list_del(&cmd->cmd_list);
if (cmd->completion) {
cmd->status = status;
complete(cmd->completion);
} else {
kfree(cmd);
}
}
void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
{
struct xhci_command *cur_cmd, *tmp_cmd;
xhci->current_cmd = NULL;
list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
}
void xhci_handle_command_timeout(struct work_struct *work)
{
struct xhci_hcd *xhci;
unsigned long flags;
u64 hw_ring_state;
xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
spin_lock_irqsave(&xhci->lock, flags);
/*
* If timeout work is pending, or current_cmd is NULL, it means we
* raced with command completion. Command is handled so just return.
*/
if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
spin_unlock_irqrestore(&xhci->lock, flags);
return;
}
/* mark this command to be cancelled */
xhci->current_cmd->status = COMP_COMMAND_ABORTED;
/* Make sure command ring is running before aborting it */
hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
if (hw_ring_state == ~(u64)0) {
xhci_hc_died(xhci);
goto time_out_completed;
}
if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
(hw_ring_state & CMD_RING_RUNNING)) {
/* Prevent new doorbell, and start command abort */
xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
xhci_dbg(xhci, "Command timeout\n");
xhci_abort_cmd_ring(xhci, flags);
goto time_out_completed;
}
/* host removed. Bail out */
if (xhci->xhc_state & XHCI_STATE_REMOVING) {
xhci_dbg(xhci, "host removed, ring start fail?\n");
xhci_cleanup_command_queue(xhci);
goto time_out_completed;
}
/* command timeout on stopped ring, ring can't be aborted */
xhci_dbg(xhci, "Command timeout on stopped ring\n");
xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
time_out_completed:
spin_unlock_irqrestore(&xhci->lock, flags);
return;
}
static void handle_cmd_completion(struct xhci_hcd *xhci,
struct xhci_event_cmd *event)
{
int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
u64 cmd_dma;
dma_addr_t cmd_dequeue_dma;
u32 cmd_comp_code;
union xhci_trb *cmd_trb;
struct xhci_command *cmd;
u32 cmd_type;
cmd_dma = le64_to_cpu(event->cmd_trb);
cmd_trb = xhci->cmd_ring->dequeue;
trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic);
cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
cmd_trb);
/*
* Check whether the completion event is for our internal kept
* command.
*/
if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
xhci_warn(xhci,
"ERROR mismatched command completion event\n");
return;
}
cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
cancel_delayed_work(&xhci->cmd_timer);
cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
/* If CMD ring stopped we own the trbs between enqueue and dequeue */
if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) {
complete_all(&xhci->cmd_ring_stop_completion);
return;
}
if (cmd->command_trb != xhci->cmd_ring->dequeue) {
xhci_err(xhci,
"Command completion event does not match command\n");
return;
}
/*
* Host aborted the command ring, check if the current command was
* supposed to be aborted, otherwise continue normally.
* The command ring is stopped now, but the xHC will issue a Command
* Ring Stopped event which will cause us to restart it.
*/
if (cmd_comp_code == COMP_COMMAND_ABORTED) {
xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
if (cmd->status == COMP_COMMAND_ABORTED) {
if (xhci->current_cmd == cmd)
xhci->current_cmd = NULL;
goto event_handled;
}
}
cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
switch (cmd_type) {
case TRB_ENABLE_SLOT:
xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
break;
case TRB_DISABLE_SLOT:
xhci_handle_cmd_disable_slot(xhci, slot_id);
break;
case TRB_CONFIG_EP:
if (!cmd->completion)
xhci_handle_cmd_config_ep(xhci, slot_id, event,
cmd_comp_code);
break;
case TRB_EVAL_CONTEXT:
break;
case TRB_ADDR_DEV:
xhci_handle_cmd_addr_dev(xhci, slot_id);
break;
case TRB_STOP_RING:
WARN_ON(slot_id != TRB_TO_SLOT_ID(
le32_to_cpu(cmd_trb->generic.field[3])));
xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
break;
case TRB_SET_DEQ:
WARN_ON(slot_id != TRB_TO_SLOT_ID(
le32_to_cpu(cmd_trb->generic.field[3])));
xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
break;
case TRB_CMD_NOOP:
/* Is this an aborted command turned to NO-OP? */
if (cmd->status == COMP_COMMAND_RING_STOPPED)
cmd_comp_code = COMP_COMMAND_RING_STOPPED;
break;
case TRB_RESET_EP:
WARN_ON(slot_id != TRB_TO_SLOT_ID(
le32_to_cpu(cmd_trb->generic.field[3])));
xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
break;
case TRB_RESET_DEV:
/* SLOT_ID field in reset device cmd completion event TRB is 0.
* Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
*/
slot_id = TRB_TO_SLOT_ID(
le32_to_cpu(cmd_trb->generic.field[3]));
xhci_handle_cmd_reset_dev(xhci, slot_id, event);
break;
case TRB_NEC_GET_FW:
xhci_handle_cmd_nec_get_fw(xhci, event);
break;
default:
/* Skip over unknown commands on the event ring */
xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
break;
}
/* restart timer if this wasn't the last command */
if (!list_is_singular(&xhci->cmd_list)) {
xhci->current_cmd = list_first_entry(&cmd->cmd_list,
struct xhci_command, cmd_list);
xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
} else if (xhci->current_cmd == cmd) {
xhci->current_cmd = NULL;
}
event_handled:
xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
inc_deq(xhci, xhci->cmd_ring);
}
static void handle_vendor_event(struct xhci_hcd *xhci,
union xhci_trb *event)
{
u32 trb_type;
trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
handle_cmd_completion(xhci, &event->event_cmd);
}
/* @port_id: the one-based port ID from the hardware (indexed from array of all
* port registers -- USB 3.0 and USB 2.0).
*
* Returns a zero-based port number, which is suitable for indexing into each of
* the split roothubs' port arrays and bus state arrays.
* Add one to it in order to call xhci_find_slot_id_by_port.
*/
static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
struct xhci_hcd *xhci, u32 port_id)
{
unsigned int i;
unsigned int num_similar_speed_ports = 0;
/* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
* and usb2_ports are 0-based indexes. Count the number of similar
* speed ports, up to 1 port before this port.
*/
for (i = 0; i < (port_id - 1); i++) {
u8 port_speed = xhci->port_array[i];
/*
* Skip ports that don't have known speeds, or have duplicate
* Extended Capabilities port speed entries.
*/
if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
continue;
/*
* USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
* 1.1 ports are under the USB 2.0 hub. If the port speed
* matches the device speed, it's a similar speed port.
*/
if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3))
num_similar_speed_ports++;
}
return num_similar_speed_ports;
}
static void handle_device_notification(struct xhci_hcd *xhci,
union xhci_trb *event)
{
u32 slot_id;
struct usb_device *udev;
slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
if (!xhci->devs[slot_id]) {
xhci_warn(xhci, "Device Notification event for "
"unused slot %u\n", slot_id);
return;
}
xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
slot_id);
udev = xhci->devs[slot_id]->udev;
if (udev && udev->parent)
usb_wakeup_notification(udev->parent, udev->portnum);
}
static void handle_port_status(struct xhci_hcd *xhci,
union xhci_trb *event)
{
struct usb_hcd *hcd;
u32 port_id;
u32 portsc, cmd_reg;
int max_ports;
int slot_id;
unsigned int faked_port_index;
u8 major_revision;
struct xhci_bus_state *bus_state;
__le32 __iomem **port_array;
bool bogus_port_status = false;
/* Port status change events always have a successful completion code */
if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
xhci_warn(xhci,
"WARN: xHC returned failed port status event\n");
port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
if ((port_id <= 0) || (port_id > max_ports)) {
xhci_warn(xhci, "Invalid port id %d\n", port_id);
inc_deq(xhci, xhci->event_ring);
return;
}
/* Figure out which usb_hcd this port is attached to:
* is it a USB 3.0 port or a USB 2.0/1.1 port?
*/
major_revision = xhci->port_array[port_id - 1];
/* Find the right roothub. */
hcd = xhci_to_hcd(xhci);
if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3))
hcd = xhci->shared_hcd;
if (major_revision == 0) {
xhci_warn(xhci, "Event for port %u not in "
"Extended Capabilities, ignoring.\n",
port_id);
bogus_port_status = true;
goto cleanup;
}
if (major_revision == DUPLICATE_ENTRY) {
xhci_warn(xhci, "Event for port %u duplicated in"
"Extended Capabilities, ignoring.\n",
port_id);
bogus_port_status = true;
goto cleanup;
}
/*
* Hardware port IDs reported by a Port Status Change Event include USB
* 3.0 and USB 2.0 ports. We want to check if the port has reported a
* resume event, but we first need to translate the hardware port ID
* into the index into the ports on the correct split roothub, and the
* correct bus_state structure.
*/
bus_state = &xhci->bus_state[hcd_index(hcd)];
if (hcd->speed >= HCD_USB3)
port_array = xhci->usb3_ports;
else
port_array = xhci->usb2_ports;
/* Find the faked port hub number */
faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
port_id);
portsc = readl(port_array[faked_port_index]);
trace_xhci_handle_port_status(faked_port_index, portsc);
if (hcd->state == HC_STATE_SUSPENDED) {
xhci_dbg(xhci, "resume root hub\n");
usb_hcd_resume_root_hub(hcd);
}
if (hcd->speed >= HCD_USB3 && (portsc & PORT_PLS_MASK) == XDEV_INACTIVE)
bus_state->port_remote_wakeup &= ~(1 << faked_port_index);
if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) {
xhci_dbg(xhci, "port resume event for port %d\n", port_id);
cmd_reg = readl(&xhci->op_regs->command);
if (!(cmd_reg & CMD_RUN)) {
xhci_warn(xhci, "xHC is not running.\n");
goto cleanup;
}
if (DEV_SUPERSPEED_ANY(portsc)) {
xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
/* Set a flag to say the port signaled remote wakeup,
* so we can tell the difference between the end of
* device and host initiated resume.
*/
bus_state->port_remote_wakeup |= 1 << faked_port_index;
xhci_test_and_clear_bit(xhci, port_array,
faked_port_index, PORT_PLC);
xhci_set_link_state(xhci, port_array, faked_port_index,
XDEV_U0);
/* Need to wait until the next link state change
* indicates the device is actually in U0.
*/
bogus_port_status = true;
goto cleanup;
} else if (!test_bit(faked_port_index,
&bus_state->resuming_ports)) {
xhci_dbg(xhci, "resume HS port %d\n", port_id);
bus_state->resume_done[faked_port_index] = jiffies +
msecs_to_jiffies(USB_RESUME_TIMEOUT);
set_bit(faked_port_index, &bus_state->resuming_ports);
/* Do the rest in GetPortStatus after resume time delay.
* Avoid polling roothub status before that so that a
* usb device auto-resume latency around ~40ms.
*/
set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
mod_timer(&hcd->rh_timer,
bus_state->resume_done[faked_port_index]);
bogus_port_status = true;
}
}
if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_U0 &&
DEV_SUPERSPEED_ANY(portsc)) {
xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
/* We've just brought the device into U0 through either the
* Resume state after a device remote wakeup, or through the
* U3Exit state after a host-initiated resume. If it's a device
* initiated remote wake, don't pass up the link state change,
* so the roothub behavior is consistent with external
* USB 3.0 hub behavior.
*/
slot_id = xhci_find_slot_id_by_port(hcd, xhci,
faked_port_index + 1);
if (slot_id && xhci->devs[slot_id])
xhci_ring_device(xhci, slot_id);
if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
bus_state->port_remote_wakeup &=
~(1 << faked_port_index);
xhci_test_and_clear_bit(xhci, port_array,
faked_port_index, PORT_PLC);
usb_wakeup_notification(hcd->self.root_hub,
faked_port_index + 1);
bogus_port_status = true;
goto cleanup;
}
}
/*
* Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
* RExit to a disconnect state). If so, let the the driver know it's
* out of the RExit state.
*/
if (!DEV_SUPERSPEED_ANY(portsc) &&
test_and_clear_bit(faked_port_index,
&bus_state->rexit_ports)) {
complete(&bus_state->rexit_done[faked_port_index]);
bogus_port_status = true;
goto cleanup;
}
if (hcd->speed < HCD_USB3)
xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
PORT_PLC);
cleanup:
/* Update event ring dequeue pointer before dropping the lock */
inc_deq(xhci, xhci->event_ring);
/* Don't make the USB core poll the roothub if we got a bad port status
* change event. Besides, at that point we can't tell which roothub
* (USB 2.0 or USB 3.0) to kick.
*/
if (bogus_port_status)
return;
/*
* xHCI port-status-change events occur when the "or" of all the
* status-change bits in the portsc register changes from 0 to 1.
* New status changes won't cause an event if any other change
* bits are still set. When an event occurs, switch over to
* polling to avoid losing status changes.
*/
xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
spin_unlock(&xhci->lock);
/* Pass this up to the core */
usb_hcd_poll_rh_status(hcd);
spin_lock(&xhci->lock);
}
/*
* This TD is defined by the TRBs starting at start_trb in start_seg and ending
* at end_trb, which may be in another segment. If the suspect DMA address is a
* TRB in this TD, this function returns that TRB's segment. Otherwise it
* returns 0.
*/
struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
struct xhci_segment *start_seg,
union xhci_trb *start_trb,
union xhci_trb *end_trb,
dma_addr_t suspect_dma,
bool debug)
{
dma_addr_t start_dma;
dma_addr_t end_seg_dma;
dma_addr_t end_trb_dma;
struct xhci_segment *cur_seg;
start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
cur_seg = start_seg;
do {
if (start_dma == 0)
return NULL;
/* We may get an event for a Link TRB in the middle of a TD */
end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
&cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
/* If the end TRB isn't in this segment, this is set to 0 */
end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
if (debug)
xhci_warn(xhci,
"Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
(unsigned long long)suspect_dma,
(unsigned long long)start_dma,
(unsigned long long)end_trb_dma,
(unsigned long long)cur_seg->dma,
(unsigned long long)end_seg_dma);
if (end_trb_dma > 0) {
/* The end TRB is in this segment, so suspect should be here */
if (start_dma <= end_trb_dma) {
if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
return cur_seg;
} else {
/* Case for one segment with
* a TD wrapped around to the top
*/
if ((suspect_dma >= start_dma &&
suspect_dma <= end_seg_dma) ||
(suspect_dma >= cur_seg->dma &&
suspect_dma <= end_trb_dma))
return cur_seg;
}
return NULL;
} else {
/* Might still be somewhere in this segment */
if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
return cur_seg;
}
cur_seg = cur_seg->next;
start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
} while (cur_seg != start_seg);
return NULL;
}
static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
unsigned int slot_id, unsigned int ep_index,
unsigned int stream_id,
struct xhci_td *td, union xhci_trb *ep_trb,
enum xhci_ep_reset_type reset_type)
{
struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
struct xhci_command *command;
command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
if (!command)
return;
ep->ep_state |= EP_HALTED;
xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type);
if (reset_type == EP_HARD_RESET)
xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td);
xhci_ring_cmd_db(xhci);
}
/* Check if an error has halted the endpoint ring. The class driver will
* cleanup the halt for a non-default control endpoint if we indicate a stall.
* However, a babble and other errors also halt the endpoint ring, and the class
* driver won't clear the halt in that case, so we need to issue a Set Transfer
* Ring Dequeue Pointer command manually.
*/
static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
struct xhci_ep_ctx *ep_ctx,
unsigned int trb_comp_code)
{
/* TRB completion codes that may require a manual halt cleanup */
if (trb_comp_code == COMP_USB_TRANSACTION_ERROR ||
trb_comp_code == COMP_BABBLE_DETECTED_ERROR ||
trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR)
/* The 0.95 spec says a babbling control endpoint
* is not halted. The 0.96 spec says it is. Some HW
* claims to be 0.95 compliant, but it halts the control
* endpoint anyway. Check if a babble halted the
* endpoint.
*/
if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
return 1;
return 0;
}
int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
{
if (trb_comp_code >= 224 && trb_comp_code <= 255) {
/* Vendor defined "informational" completion code,
* treat as not-an-error.
*/
xhci_dbg(xhci, "Vendor defined info completion code %u\n",
trb_comp_code);
xhci_dbg(xhci, "Treating code as success.\n");
return 1;
}
return 0;
}
static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
struct xhci_ring *ep_ring, int *status)
{
struct urb_priv *urb_priv;
struct urb *urb = NULL;
/* Clean up the endpoint's TD list */
urb = td->urb;
urb_priv = urb->hcpriv;
/* if a bounce buffer was used to align this td then unmap it */
xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
/* Do one last check of the actual transfer length.
* If the host controller said we transferred more data than the buffer
* length, urb->actual_length will be a very big number (since it's
* unsigned). Play it safe and say we didn't transfer anything.
*/
if (urb->actual_length > urb->transfer_buffer_length) {
xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
urb->transfer_buffer_length, urb->actual_length);
urb->actual_length = 0;
*status = 0;
}
list_del_init(&td->td_list);
/* Was this TD slated to be cancelled but completed anyway? */
if (!list_empty(&td->cancelled_td_list))
list_del_init(&td->cancelled_td_list);
inc_td_cnt(urb);
/* Giveback the urb when all the tds are completed */
if (last_td_in_urb(td)) {
if ((urb->actual_length != urb->transfer_buffer_length &&
(urb->transfer_flags & URB_SHORT_NOT_OK)) ||
(*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
urb, urb->actual_length,
urb->transfer_buffer_length, *status);
/* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
*status = 0;
xhci_giveback_urb_in_irq(xhci, td, *status);
}
return 0;
}
static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
union xhci_trb *ep_trb, struct xhci_transfer_event *event,
struct xhci_virt_ep *ep, int *status)
{
struct xhci_virt_device *xdev;
struct xhci_ep_ctx *ep_ctx;
struct xhci_ring *ep_ring;
unsigned int slot_id;
u32 trb_comp_code;
int ep_index;
slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
xdev = xhci->devs[slot_id];
ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
trb_comp_code == COMP_STOPPED ||
trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
/* The Endpoint Stop Command completion will take care of any
* stopped TDs. A stopped TD may be restarted, so don't update
* the ring dequeue pointer or take this TD off any lists yet.
*/
return 0;
}
if (trb_comp_code == COMP_STALL_ERROR ||
xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
trb_comp_code)) {
/* Issue a reset endpoint command to clear the host side
* halt, followed by a set dequeue command to move the
* dequeue pointer past the TD.
* The class driver clears the device side halt later.
*/
xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
ep_ring->stream_id, td, ep_trb,
EP_HARD_RESET);
} else {
/* Update ring dequeue pointer */
while (ep_ring->dequeue != td->last_trb)
inc_deq(xhci, ep_ring);
inc_deq(xhci, ep_ring);
}
return xhci_td_cleanup(xhci, td, ep_ring, status);
}
/* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
union xhci_trb *stop_trb)
{
u32 sum;
union xhci_trb *trb = ring->dequeue;
struct xhci_segment *seg = ring->deq_seg;
for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
if (!trb_is_noop(trb) && !trb_is_link(trb))
sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
}
return sum;
}
/*
* Process control tds, update urb status and actual_length.
*/
static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
union xhci_trb *ep_trb, struct xhci_transfer_event *event,
struct xhci_virt_ep *ep, int *status)
{
struct xhci_virt_device *xdev;
struct xhci_ring *ep_ring;
unsigned int slot_id;
int ep_index;
struct xhci_ep_ctx *ep_ctx;
u32 trb_comp_code;
u32 remaining, requested;
u32 trb_type;
trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
xdev = xhci->devs[slot_id];
ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
requested = td->urb->transfer_buffer_length;
remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
switch (trb_comp_code) {
case COMP_SUCCESS:
if (trb_type != TRB_STATUS) {
xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
(trb_type == TRB_DATA) ? "data" : "setup");
*status = -ESHUTDOWN;
break;
}
*status = 0;
break;
case COMP_SHORT_PACKET:
*status = 0;
break;
case COMP_STOPPED_SHORT_PACKET:
if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
td->urb->actual_length = remaining;
else
xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
goto finish_td;
case COMP_STOPPED:
switch (trb_type) {
case TRB_SETUP:
td->urb->actual_length = 0;
goto finish_td;
case TRB_DATA:
case TRB_NORMAL:
td->urb->actual_length = requested - remaining;
goto finish_td;
case TRB_STATUS:
td->urb->actual_length = requested;
goto finish_td;
default:
xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
trb_type);
goto finish_td;
}
case COMP_STOPPED_LENGTH_INVALID:
goto finish_td;
default:
if (!xhci_requires_manual_halt_cleanup(xhci,
ep_ctx, trb_comp_code))
break;
xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
trb_comp_code, ep_index);
/* else fall through */
case COMP_STALL_ERROR:
/* Did we transfer part of the data (middle) phase? */
if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
td->urb->actual_length = requested - remaining;
else if (!td->urb_length_set)
td->urb->actual_length = 0;
goto finish_td;
}
/* stopped at setup stage, no data transferred */
if (trb_type == TRB_SETUP)
goto finish_td;
/*
* if on data stage then update the actual_length of the URB and flag it
* as set, so it won't be overwritten in the event for the last TRB.
*/
if (trb_type == TRB_DATA ||
trb_type == TRB_NORMAL) {
td->urb_length_set = true;
td->urb->actual_length = requested - remaining;
xhci_dbg(xhci, "Waiting for status stage event\n");
return 0;
}
/* at status stage */
if (!td->urb_length_set)
td->urb->actual_length = requested;
finish_td:
return finish_td(xhci, td, ep_trb, event, ep, status);
}
/*
* Process isochronous tds, update urb packet status and actual_length.
*/
static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
union xhci_trb *ep_trb, struct xhci_transfer_event *event,
struct xhci_virt_ep *ep, int *status)
{
struct xhci_ring *ep_ring;
struct urb_priv *urb_priv;
int idx;
struct usb_iso_packet_descriptor *frame;
u32 trb_comp_code;
bool sum_trbs_for_length = false;
u32 remaining, requested, ep_trb_len;
int short_framestatus;
ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
urb_priv = td->urb->hcpriv;
idx = urb_priv->num_tds_done;
frame = &td->urb->iso_frame_desc[idx];
requested = frame->length;
remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
-EREMOTEIO : 0;
/* handle completion code */
switch (trb_comp_code) {
case COMP_SUCCESS:
if (remaining) {
frame->status = short_framestatus;
if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
sum_trbs_for_length = true;
break;
}
frame->status = 0;
break;
case COMP_SHORT_PACKET:
frame->status = short_framestatus;
sum_trbs_for_length = true;
break;
case COMP_BANDWIDTH_OVERRUN_ERROR:
frame->status = -ECOMM;
break;
case COMP_ISOCH_BUFFER_OVERRUN:
case COMP_BABBLE_DETECTED_ERROR:
frame->status = -EOVERFLOW;
break;
case COMP_INCOMPATIBLE_DEVICE_ERROR:
case COMP_STALL_ERROR:
frame->status = -EPROTO;
break;
case COMP_USB_TRANSACTION_ERROR:
frame->status = -EPROTO;
if (ep_trb != td->last_trb)
return 0;
break;
case COMP_STOPPED:
sum_trbs_for_length = true;
break;
case COMP_STOPPED_SHORT_PACKET:
/* field normally containing residue now contains tranferred */
frame->status = short_framestatus;
requested = remaining;
break;
case COMP_STOPPED_LENGTH_INVALID:
requested = 0;
remaining = 0;
break;
default:
sum_trbs_for_length = true;
frame->status = -1;
break;
}
if (sum_trbs_for_length)
frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) +
ep_trb_len - remaining;
else
frame->actual_length = requested;
td->urb->actual_length += frame->actual_length;
return finish_td(xhci, td, ep_trb, event, ep, status);
}
static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
struct xhci_transfer_event *event,
struct xhci_virt_ep *ep, int *status)
{
struct xhci_ring *ep_ring;
struct urb_priv *urb_priv;
struct usb_iso_packet_descriptor *frame;
int idx;
ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
urb_priv = td->urb->hcpriv;
idx = urb_priv->num_tds_done;
frame = &td->urb->iso_frame_desc[idx];
/* The transfer is partly done. */
frame->status = -EXDEV;
/* calc actual length */
frame->actual_length = 0;
/* Update ring dequeue pointer */
while (ep_ring->dequeue != td->last_trb)
inc_deq(xhci, ep_ring);
inc_deq(xhci, ep_ring);
return xhci_td_cleanup(xhci, td, ep_ring, status);
}
/*
* Process bulk and interrupt tds, update urb status and actual_length.
*/
static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
union xhci_trb *ep_trb, struct xhci_transfer_event *event,
struct xhci_virt_ep *ep, int *status)
{
struct xhci_ring *ep_ring;
u32 trb_comp_code;
u32 remaining, requested, ep_trb_len;
ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
requested = td->urb->transfer_buffer_length;
switch (trb_comp_code) {
case COMP_SUCCESS:
/* handle success with untransferred data as short packet */
if (ep_trb != td->last_trb || remaining) {
xhci_warn(xhci, "WARN Successful completion on short TX\n");
xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
td->urb->ep->desc.bEndpointAddress,
requested, remaining);
}
*status = 0;
break;
case COMP_SHORT_PACKET:
xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
td->urb->ep->desc.bEndpointAddress,
requested, remaining);
*status = 0;
break;
case COMP_STOPPED_SHORT_PACKET:
td->urb->actual_length = remaining;
goto finish_td;
case COMP_STOPPED_LENGTH_INVALID:
/* stopped on ep trb with invalid length, exclude it */
ep_trb_len = 0;
remaining = 0;
break;
default:
/* do nothing */
break;
}
if (ep_trb == td->last_trb)
td->urb->actual_length = requested - remaining;
else
td->urb->actual_length =
sum_trb_lengths(xhci, ep_ring, ep_trb) +
ep_trb_len - remaining;
finish_td:
if (remaining > requested) {
xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
remaining);
td->urb->actual_length = 0;
}
return finish_td(xhci, td, ep_trb, event, ep, status);
}
/*
* If this function returns an error condition, it means it got a Transfer
* event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
* At this point, the host controller is probably hosed and should be reset.
*/
static int handle_tx_event(struct xhci_hcd *xhci,
struct xhci_transfer_event *event)
{
struct xhci_virt_device *xdev;
struct xhci_virt_ep *ep;
struct xhci_ring *ep_ring;
unsigned int slot_id;
int ep_index;
struct xhci_td *td = NULL;
dma_addr_t ep_trb_dma;
struct xhci_segment *ep_seg;
union xhci_trb *ep_trb;
int status = -EINPROGRESS;
struct xhci_ep_ctx *ep_ctx;
struct list_head *tmp;
u32 trb_comp_code;
int td_num = 0;
bool handling_skipped_tds = false;
slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
ep_trb_dma = le64_to_cpu(event->buffer);
xdev = xhci->devs[slot_id];
if (!xdev) {
xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n",
slot_id);
goto err_out;
}
ep = &xdev->eps[ep_index];
ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma);
ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
xhci_err(xhci,
"ERROR Transfer event for disabled endpoint slot %u ep %u\n",
slot_id, ep_index);
goto err_out;
}
/* Some transfer events don't always point to a trb, see xhci 4.17.4 */
if (!ep_ring) {
switch (trb_comp_code) {
case COMP_STALL_ERROR:
case COMP_USB_TRANSACTION_ERROR:
case COMP_INVALID_STREAM_TYPE_ERROR:
case COMP_INVALID_STREAM_ID_ERROR:
xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0,
NULL, NULL, EP_SOFT_RESET);
goto cleanup;
case COMP_RING_UNDERRUN:
case COMP_RING_OVERRUN:
goto cleanup;
default:
xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n",
slot_id, ep_index);
goto err_out;
}
}
/* Count current td numbers if ep->skip is set */
if (ep->skip) {
list_for_each(tmp, &ep_ring->td_list)
td_num++;
}
/* Look for common error cases */
switch (trb_comp_code) {
/* Skip codes that require special handling depending on
* transfer type
*/
case COMP_SUCCESS:
if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
break;
if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
trb_comp_code = COMP_SHORT_PACKET;
else
xhci_warn_ratelimited(xhci,
"WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n",
slot_id, ep_index);
case COMP_SHORT_PACKET:
break;
/* Completion codes for endpoint stopped state */
case COMP_STOPPED:
xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n",
slot_id, ep_index);
break;
case COMP_STOPPED_LENGTH_INVALID:
xhci_dbg(xhci,
"Stopped on No-op or Link TRB for slot %u ep %u\n",
slot_id, ep_index);
break;
case COMP_STOPPED_SHORT_PACKET:
xhci_dbg(xhci,
"Stopped with short packet transfer detected for slot %u ep %u\n",
slot_id, ep_index);
break;
/* Completion codes for endpoint halted state */
case COMP_STALL_ERROR:
xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id,
ep_index);
ep->ep_state |= EP_HALTED;
status = -EPIPE;
break;
case COMP_SPLIT_TRANSACTION_ERROR:
case COMP_USB_TRANSACTION_ERROR:
xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n",
slot_id, ep_index);
status = -EPROTO;
break;
case COMP_BABBLE_DETECTED_ERROR:
xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n",
slot_id, ep_index);
status = -EOVERFLOW;
break;
/* Completion codes for endpoint error state */
case COMP_TRB_ERROR:
xhci_warn(xhci,
"WARN: TRB error for slot %u ep %u on endpoint\n",
slot_id, ep_index);
status = -EILSEQ;
break;
/* completion codes not indicating endpoint state change */
case COMP_DATA_BUFFER_ERROR:
xhci_warn(xhci,
"WARN: HC couldn't access mem fast enough for slot %u ep %u\n",
slot_id, ep_index);
status = -ENOSR;
break;
case COMP_BANDWIDTH_OVERRUN_ERROR:
xhci_warn(xhci,
"WARN: bandwidth overrun event for slot %u ep %u on endpoint\n",
slot_id, ep_index);
break;
case COMP_ISOCH_BUFFER_OVERRUN:
xhci_warn(xhci,
"WARN: buffer overrun event for slot %u ep %u on endpoint",
slot_id, ep_index);
break;
case COMP_RING_UNDERRUN:
/*
* When the Isoch ring is empty, the xHC will generate
* a Ring Overrun Event for IN Isoch endpoint or Ring
* Underrun Event for OUT Isoch endpoint.
*/
xhci_dbg(xhci, "underrun event on endpoint\n");
if (!list_empty(&ep_ring->td_list))
xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
"still with TDs queued?\n",
TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
ep_index);
goto cleanup;
case COMP_RING_OVERRUN:
xhci_dbg(xhci, "overrun event on endpoint\n");
if (!list_empty(&ep_ring->td_list))
xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
"still with TDs queued?\n",
TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
ep_index);
goto cleanup;
case COMP_MISSED_SERVICE_ERROR:
/*
* When encounter missed service error, one or more isoc tds
* may be missed by xHC.
* Set skip flag of the ep_ring; Complete the missed tds as
* short transfer when process the ep_ring next time.
*/
ep->skip = true;
xhci_dbg(xhci,
"Miss service interval error for slot %u ep %u, set skip flag\n",
slot_id, ep_index);
goto cleanup;
case COMP_NO_PING_RESPONSE_ERROR:
ep->skip = true;
xhci_dbg(xhci,
"No Ping response error for slot %u ep %u, Skip one Isoc TD\n",
slot_id, ep_index);
goto cleanup;
case COMP_INCOMPATIBLE_DEVICE_ERROR:
/* needs disable slot command to recover */
xhci_warn(xhci,
"WARN: detect an incompatible device for slot %u ep %u",
slot_id, ep_index);
status = -EPROTO;
break;
default:
if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
status = 0;
break;
}
xhci_warn(xhci,
"ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n",
trb_comp_code, slot_id, ep_index);
goto cleanup;
}
do {
/* This TRB should be in the TD at the head of this ring's
* TD list.
*/
if (list_empty(&ep_ring->td_list)) {
/*
* A stopped endpoint may generate an extra completion
* event if the device was suspended. Don't print
* warnings.
*/
if (!(trb_comp_code == COMP_STOPPED ||
trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
ep_index);
}
if (ep->skip) {
ep->skip = false;
xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n",
slot_id, ep_index);
}
goto cleanup;
}
/* We've skipped all the TDs on the ep ring when ep->skip set */
if (ep->skip && td_num == 0) {
ep->skip = false;
xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n",
slot_id, ep_index);
goto cleanup;
}
td = list_first_entry(&ep_ring->td_list, struct xhci_td,
td_list);
if (ep->skip)
td_num--;
/* Is this a TRB in the currently executing TD? */
ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
td->last_trb, ep_trb_dma, false);
/*
* Skip the Force Stopped Event. The event_trb(event_dma) of FSE
* is not in the current TD pointed by ep_ring->dequeue because
* that the hardware dequeue pointer still at the previous TRB
* of the current TD. The previous TRB maybe a Link TD or the
* last TRB of the previous TD. The command completion handle
* will take care the rest.
*/
if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
goto cleanup;
}
if (!ep_seg) {
if (!ep->skip ||
!usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
/* Some host controllers give a spurious
* successful event after a short transfer.
* Ignore it.
*/
if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
ep_ring->last_td_was_short) {
ep_ring->last_td_was_short = false;
goto cleanup;
}
/* HC is busted, give up! */
xhci_err(xhci,
"ERROR Transfer event TRB DMA ptr not "
"part of current TD ep_index %d "
"comp_code %u\n", ep_index,
trb_comp_code);
trb_in_td(xhci, ep_ring->deq_seg,
ep_ring->dequeue, td->last_trb,
ep_trb_dma, true);
return -ESHUTDOWN;
}
skip_isoc_td(xhci, td, event, ep, &status);
goto cleanup;
}
if (trb_comp_code == COMP_SHORT_PACKET)
ep_ring->last_td_was_short = true;
else
ep_ring->last_td_was_short = false;
if (ep->skip) {
xhci_dbg(xhci,
"Found td. Clear skip flag for slot %u ep %u.\n",
slot_id, ep_index);
ep->skip = false;
}
ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
sizeof(*ep_trb)];
trace_xhci_handle_transfer(ep_ring,
(struct xhci_generic_trb *) ep_trb);
/*
* No-op TRB could trigger interrupts in a case where
* a URB was killed and a STALL_ERROR happens right
* after the endpoint ring stopped. Reset the halted
* endpoint. Otherwise, the endpoint remains stalled
* indefinitely.
*/
if (trb_is_noop(ep_trb)) {
if (trb_comp_code == COMP_STALL_ERROR ||
xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
trb_comp_code))
xhci_cleanup_halted_endpoint(xhci, slot_id,
ep_index,
ep_ring->stream_id,
td, ep_trb,
EP_HARD_RESET);
goto cleanup;
}
/* update the urb's actual_length and give back to the core */
if (usb_endpoint_xfer_control(&td->urb->ep->desc))
process_ctrl_td(xhci, td, ep_trb, event, ep, &status);
else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
process_isoc_td(xhci, td, ep_trb, event, ep, &status);
else
process_bulk_intr_td(xhci, td, ep_trb, event, ep,
&status);
cleanup:
handling_skipped_tds = ep->skip &&
trb_comp_code != COMP_MISSED_SERVICE_ERROR &&
trb_comp_code != COMP_NO_PING_RESPONSE_ERROR;
/*
* Do not update event ring dequeue pointer if we're in a loop
* processing missed tds.
*/
if (!handling_skipped_tds)
inc_deq(xhci, xhci->event_ring);
/*
* If ep->skip is set, it means there are missed tds on the
* endpoint ring need to take care of.
* Process them as short transfer until reach the td pointed by
* the event.
*/
} while (handling_skipped_tds);
return 0;
err_out:
xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
(unsigned long long) xhci_trb_virt_to_dma(
xhci->event_ring->deq_seg,
xhci->event_ring->dequeue),
lower_32_bits(le64_to_cpu(event->buffer)),
upper_32_bits(le64_to_cpu(event->buffer)),
le32_to_cpu(event->transfer_len),
le32_to_cpu(event->flags));
return -ENODEV;
}
/*
* This function handles all OS-owned events on the event ring. It may drop
* xhci->lock between event processing (e.g. to pass up port status changes).
* Returns >0 for "possibly more events to process" (caller should call again),
* otherwise 0 if done. In future, <0 returns should indicate error code.
*/
static int xhci_handle_event(struct xhci_hcd *xhci)
{
union xhci_trb *event;
int update_ptrs = 1;
int ret;
/* Event ring hasn't been allocated yet. */
if (!xhci->event_ring || !xhci->event_ring->dequeue) {
xhci_err(xhci, "ERROR event ring not ready\n");
return -ENOMEM;
}
event = xhci->event_ring->dequeue;
/* Does the HC or OS own the TRB? */
if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
xhci->event_ring->cycle_state)
return 0;
trace_xhci_handle_event(xhci->event_ring, &event->generic);
/*
* Barrier between reading the TRB_CYCLE (valid) flag above and any
* speculative reads of the event's flags/data below.
*/
rmb();
/* FIXME: Handle more event types. */
switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) {
case TRB_TYPE(TRB_COMPLETION):
handle_cmd_completion(xhci, &event->event_cmd);
break;
case TRB_TYPE(TRB_PORT_STATUS):
handle_port_status(xhci, event);
update_ptrs = 0;
break;
case TRB_TYPE(TRB_TRANSFER):
ret = handle_tx_event(xhci, &event->trans_event);
if (ret >= 0)
update_ptrs = 0;
break;
case TRB_TYPE(TRB_DEV_NOTE):
handle_device_notification(xhci, event);
break;
default:
if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
TRB_TYPE(48))
handle_vendor_event(xhci, event);
else
xhci_warn(xhci, "ERROR unknown event type %d\n",
TRB_FIELD_TO_TYPE(
le32_to_cpu(event->event_cmd.flags)));
}
/* Any of the above functions may drop and re-acquire the lock, so check
* to make sure a watchdog timer didn't mark the host as non-responsive.
*/
if (xhci->xhc_state & XHCI_STATE_DYING) {
xhci_dbg(xhci, "xHCI host dying, returning from "
"event handler.\n");
return 0;
}
if (update_ptrs)
/* Update SW event ring dequeue pointer */
inc_deq(xhci, xhci->event_ring);
/* Are there more items on the event ring? Caller will call us again to
* check.
*/
return 1;
}
/*
* xHCI spec says we can get an interrupt, and if the HC has an error condition,
* we might get bad data out of the event ring. Section 4.10.2.7 has a list of
* indicators of an event TRB error, but we check the status *first* to be safe.
*/
irqreturn_t xhci_irq(struct usb_hcd *hcd)
{
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
union xhci_trb *event_ring_deq;
irqreturn_t ret = IRQ_NONE;
unsigned long flags;
dma_addr_t deq;
u64 temp_64;
u32 status;
spin_lock_irqsave(&xhci->lock, flags);
/* Check if the xHC generated the interrupt, or the irq is shared */
status = readl(&xhci->op_regs->status);
if (status == ~(u32)0) {
xhci_hc_died(xhci);
ret = IRQ_HANDLED;
goto out;
}
if (!(status & STS_EINT))
goto out;
if (status & STS_FATAL) {
xhci_warn(xhci, "WARNING: Host System Error\n");
xhci_halt(xhci);
ret = IRQ_HANDLED;
goto out;
}
/*
* Clear the op reg interrupt status first,
* so we can receive interrupts from other MSI-X interrupters.
* Write 1 to clear the interrupt status.
*/
status |= STS_EINT;
writel(status, &xhci->op_regs->status);
if (!hcd->msi_enabled) {
u32 irq_pending;
irq_pending = readl(&xhci->ir_set->irq_pending);
irq_pending |= IMAN_IP;
writel(irq_pending, &xhci->ir_set->irq_pending);
}
if (xhci->xhc_state & XHCI_STATE_DYING ||
xhci->xhc_state & XHCI_STATE_HALTED) {
xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
"Shouldn't IRQs be disabled?\n");
/* Clear the event handler busy flag (RW1C);
* the event ring should be empty.
*/
temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
xhci_write_64(xhci, temp_64 | ERST_EHB,
&xhci->ir_set->erst_dequeue);
ret = IRQ_HANDLED;
goto out;
}
event_ring_deq = xhci->event_ring->dequeue;
/* FIXME this should be a delayed service routine
* that clears the EHB.
*/
while (xhci_handle_event(xhci) > 0) {}
temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
/* If necessary, update the HW's version of the event ring deq ptr. */
if (event_ring_deq != xhci->event_ring->dequeue) {
deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
xhci->event_ring->dequeue);
if (deq == 0)
xhci_warn(xhci, "WARN something wrong with SW event "
"ring dequeue ptr.\n");
/* Update HC event ring dequeue pointer */
temp_64 &= ERST_PTR_MASK;
temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
}
/* Clear the event handler busy flag (RW1C); event ring is empty. */
temp_64 |= ERST_EHB;
xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
ret = IRQ_HANDLED;
out:
spin_unlock_irqrestore(&xhci->lock, flags);
return ret;
}
irqreturn_t xhci_msi_irq(int irq, void *hcd)
{
return xhci_irq(hcd);
}
/**** Endpoint Ring Operations ****/
/*
* Generic function for queueing a TRB on a ring.
* The caller must have checked to make sure there's room on the ring.
*
* @more_trbs_coming: Will you enqueue more TRBs before calling
* prepare_transfer()?
*/
static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
bool more_trbs_coming,
u32 field1, u32 field2, u32 field3, u32 field4)
{
struct xhci_generic_trb *trb;
trb = &ring->enqueue->generic;
trb->field[0] = cpu_to_le32(field1);
trb->field[1] = cpu_to_le32(field2);
trb->field[2] = cpu_to_le32(field3);
trb->field[3] = cpu_to_le32(field4);
trace_xhci_queue_trb(ring, trb);
inc_enq(xhci, ring, more_trbs_coming);
}
/*
* Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
* FIXME allocate segments if the ring is full.
*/
static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
{
unsigned int num_trbs_needed;
/* Make sure the endpoint has been added to xHC schedule */
switch (ep_state) {
case EP_STATE_DISABLED:
/*
* USB core changed config/interfaces without notifying us,
* or hardware is reporting the wrong state.
*/
xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
return -ENOENT;
case EP_STATE_ERROR:
xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
/* FIXME event handling code for error needs to clear it */
/* XXX not sure if this should be -ENOENT or not */
return -EINVAL;
case EP_STATE_HALTED:
xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
case EP_STATE_STOPPED:
case EP_STATE_RUNNING:
break;
default:
xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
/*
* FIXME issue Configure Endpoint command to try to get the HC
* back into a known state.
*/
return -EINVAL;
}
while (1) {
if (room_on_ring(xhci, ep_ring, num_trbs))
break;
if (ep_ring == xhci->cmd_ring) {
xhci_err(xhci, "Do not support expand command ring\n");
return -ENOMEM;
}
xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
"ERROR no room on ep ring, try ring expansion");
num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
mem_flags)) {
xhci_err(xhci, "Ring expansion failed\n");
return -ENOMEM;
}
}
while (trb_is_link(ep_ring->enqueue)) {
/* If we're not dealing with 0.95 hardware or isoc rings
* on AMD 0.96 host, clear the chain bit.
*/
if (!xhci_link_trb_quirk(xhci) &&
!(ep_ring->type == TYPE_ISOC &&
(xhci->quirks & XHCI_AMD_0x96_HOST)))
ep_ring->enqueue->link.control &=
cpu_to_le32(~TRB_CHAIN);
else
ep_ring->enqueue->link.control |=
cpu_to_le32(TRB_CHAIN);
wmb();
ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
/* Toggle the cycle bit after the last ring segment. */
if (link_trb_toggles_cycle(ep_ring->enqueue))
ep_ring->cycle_state ^= 1;
ep_ring->enq_seg = ep_ring->enq_seg->next;
ep_ring->enqueue = ep_ring->enq_seg->trbs;
}
return 0;
}
static int prepare_transfer(struct xhci_hcd *xhci,
struct xhci_virt_device *xdev,
unsigned int ep_index,
unsigned int stream_id,
unsigned int num_trbs,
struct urb *urb,
unsigned int td_index,
gfp_t mem_flags)
{
int ret;
struct urb_priv *urb_priv;
struct xhci_td *td;
struct xhci_ring *ep_ring;
struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
if (!ep_ring) {
xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
stream_id);
return -EINVAL;
}
ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
num_trbs, mem_flags);
if (ret)
return ret;
urb_priv = urb->hcpriv;
td = &urb_priv->td[td_index];
INIT_LIST_HEAD(&td->td_list);
INIT_LIST_HEAD(&td->cancelled_td_list);
if (td_index == 0) {
ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
if (unlikely(ret))
return ret;
}
td->urb = urb;
/* Add this TD to the tail of the endpoint ring's TD list */
list_add_tail(&td->td_list, &ep_ring->td_list);
td->start_seg = ep_ring->enq_seg;
td->first_trb = ep_ring->enqueue;
return 0;
}
static unsigned int count_trbs(u64 addr, u64 len)
{
unsigned int num_trbs;
num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
TRB_MAX_BUFF_SIZE);
if (num_trbs == 0)
num_trbs++;
return num_trbs;
}
static inline unsigned int count_trbs_needed(struct urb *urb)
{
return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
}
static unsigned int count_sg_trbs_needed(struct urb *urb)
{
struct scatterlist *sg;
unsigned int i, len, full_len, num_trbs = 0;
full_len = urb->transfer_buffer_length;
for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
len = sg_dma_len(sg);
num_trbs += count_trbs(sg_dma_address(sg), len);
len = min_t(unsigned int, len, full_len);
full_len -= len;
if (full_len == 0)
break;
}
return num_trbs;
}
static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
{
u64 addr, len;
addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
len = urb->iso_frame_desc[i].length;
return count_trbs(addr, len);
}
static void check_trb_math(struct urb *urb, int running_total)
{
if (unlikely(running_total != urb->transfer_buffer_length))
dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
"queued %#x (%d), asked for %#x (%d)\n",
__func__,
urb->ep->desc.bEndpointAddress,
running_total, running_total,
urb->transfer_buffer_length,
urb->transfer_buffer_length);
}
static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
unsigned int ep_index, unsigned int stream_id, int start_cycle,
struct xhci_generic_trb *start_trb)
{
/*
* Pass all the TRBs to the hardware at once and make sure this write
* isn't reordered.
*/
wmb();
if (start_cycle)
start_trb->field[3] |= cpu_to_le32(start_cycle);
else
start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
}
static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
struct xhci_ep_ctx *ep_ctx)
{
int xhci_interval;
int ep_interval;
xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
ep_interval = urb->interval;
/* Convert to microframes */
if (urb->dev->speed == USB_SPEED_LOW ||
urb->dev->speed == USB_SPEED_FULL)
ep_interval *= 8;
/* FIXME change this to a warning and a suggestion to use the new API
* to set the polling interval (once the API is added).
*/
if (xhci_interval != ep_interval) {
dev_dbg_ratelimited(&urb->dev->dev,
"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
ep_interval, ep_interval == 1 ? "" : "s",
xhci_interval, xhci_interval == 1 ? "" : "s");
urb->interval = xhci_interval;
/* Convert back to frames for LS/FS devices */
if (urb->dev->speed == USB_SPEED_LOW ||
urb->dev->speed == USB_SPEED_FULL)
urb->interval /= 8;
}
}
/*
* xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
* endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
* (comprised of sg list entries) can take several service intervals to
* transmit.
*/
int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
struct urb *urb, int slot_id, unsigned int ep_index)
{
struct xhci_ep_ctx *ep_ctx;
ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
check_interval(xhci, urb, ep_ctx);
return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
}
/*
* For xHCI 1.0 host controllers, TD size is the number of max packet sized
* packets remaining in the TD (*not* including this TRB).
*
* Total TD packet count = total_packet_count =
* DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
*
* Packets transferred up to and including this TRB = packets_transferred =
* rounddown(total bytes transferred including this TRB / wMaxPacketSize)
*
* TD size = total_packet_count - packets_transferred
*
* For xHCI 0.96 and older, TD size field should be the remaining bytes
* including this TRB, right shifted by 10
*
* For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
* This is taken care of in the TRB_TD_SIZE() macro
*
* The last TRB in a TD must have the TD size set to zero.
*/
static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
int trb_buff_len, unsigned int td_total_len,
struct urb *urb, bool more_trbs_coming)
{
u32 maxp, total_packet_count;
/* MTK xHCI is mostly 0.97 but contains some features from 1.0 */
if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
return ((td_total_len - transferred) >> 10);
/* One TRB with a zero-length data packet. */
if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
trb_buff_len == td_total_len)
return 0;
/* for MTK xHCI, TD size doesn't include this TRB */
if (xhci->quirks & XHCI_MTK_HOST)
trb_buff_len = 0;
maxp = usb_endpoint_maxp(&urb->ep->desc);
total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
/* Queueing functions don't count the current TRB into transferred */
return (total_packet_count - ((transferred + trb_buff_len) / maxp));
}
static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
u32 *trb_buff_len, struct xhci_segment *seg)
{
struct device *dev = xhci_to_hcd(xhci)->self.controller;
unsigned int unalign;
unsigned int max_pkt;
u32 new_buff_len;
max_pkt = usb_endpoint_maxp(&urb->ep->desc);
unalign = (enqd_len + *trb_buff_len) % max_pkt;
/* we got lucky, last normal TRB data on segment is packet aligned */
if (unalign == 0)
return 0;
xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
unalign, *trb_buff_len);
/* is the last nornal TRB alignable by splitting it */
if (*trb_buff_len > unalign) {
*trb_buff_len -= unalign;
xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
return 0;
}
/*
* We want enqd_len + trb_buff_len to sum up to a number aligned to
* number which is divisible by the endpoint's wMaxPacketSize. IOW:
* (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
*/
new_buff_len = max_pkt - (enqd_len % max_pkt);
if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
new_buff_len = (urb->transfer_buffer_length - enqd_len);
/* create a max max_pkt sized bounce buffer pointed to by last trb */
if (usb_urb_dir_out(urb)) {
sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs,
seg->bounce_buf, new_buff_len, enqd_len);
seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
max_pkt, DMA_TO_DEVICE);
} else {
seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
max_pkt, DMA_FROM_DEVICE);
}
if (dma_mapping_error(dev, seg->bounce_dma)) {
/* try without aligning. Some host controllers survive */
xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
return 0;
}
*trb_buff_len = new_buff_len;
seg->bounce_len = new_buff_len;
seg->bounce_offs = enqd_len;
xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
return 1;
}
/* This is very similar to what ehci-q.c qtd_fill() does */
int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
struct urb *urb, int slot_id, unsigned int ep_index)
{
struct xhci_ring *ring;
struct urb_priv *urb_priv;
struct xhci_td *td;
struct xhci_generic_trb *start_trb;
struct scatterlist *sg = NULL;
bool more_trbs_coming = true;
bool need_zero_pkt = false;
bool first_trb = true;
unsigned int num_trbs;
unsigned int start_cycle, num_sgs = 0;
unsigned int enqd_len, block_len, trb_buff_len, full_len;
int sent_len, ret;
u32 field, length_field, remainder;
u64 addr, send_addr;
ring = xhci_urb_to_transfer_ring(xhci, urb);
if (!ring)
return -EINVAL;
full_len = urb->transfer_buffer_length;
/* If we have scatter/gather list, we use it. */
if (urb->num_sgs) {
num_sgs = urb->num_mapped_sgs;
sg = urb->sg;
addr = (u64) sg_dma_address(sg);
block_len = sg_dma_len(sg);
num_trbs = count_sg_trbs_needed(urb);
} else {
num_trbs = count_trbs_needed(urb);
addr = (u64) urb->transfer_dma;
block_len = full_len;
}
ret = prepare_transfer(xhci, xhci->devs[slot_id],
ep_index, urb->stream_id,
num_trbs, urb, 0, mem_flags);
if (unlikely(ret < 0))
return ret;
urb_priv = urb->hcpriv;
/* Deal with URB_ZERO_PACKET - need one more td/trb */
if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1)
need_zero_pkt = true;
td = &urb_priv->td[0];
/*
* Don't give the first TRB to the hardware (by toggling the cycle bit)
* until we've finished creating all the other TRBs. The ring's cycle
* state may change as we enqueue the other TRBs, so save it too.
*/
start_trb = &ring->enqueue->generic;
start_cycle = ring->cycle_state;
send_addr = addr;
/* Queue the TRBs, even if they are zero-length */
for (enqd_len = 0; first_trb || enqd_len < full_len;
enqd_len += trb_buff_len) {
field = TRB_TYPE(TRB_NORMAL);
/* TRB buffer should not cross 64KB boundaries */
trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
if (enqd_len + trb_buff_len > full_len)
trb_buff_len = full_len - enqd_len;
/* Don't change the cycle bit of the first TRB until later */
if (first_trb) {
first_trb = false;
if (start_cycle == 0)
field |= TRB_CYCLE;
} else
field |= ring->cycle_state;
/* Chain all the TRBs together; clear the chain bit in the last
* TRB to indicate it's the last TRB in the chain.
*/
if (enqd_len + trb_buff_len < full_len) {
field |= TRB_CHAIN;
if (trb_is_link(ring->enqueue + 1)) {
if (xhci_align_td(xhci, urb, enqd_len,
&trb_buff_len,
ring->enq_seg)) {
send_addr = ring->enq_seg->bounce_dma;
/* assuming TD won't span 2 segs */
td->bounce_seg = ring->enq_seg;
}
}
}
if (enqd_len + trb_buff_len >= full_len) {
field &= ~TRB_CHAIN;
field |= TRB_IOC;
more_trbs_coming = false;
td->last_trb = ring->enqueue;
}
/* Only set interrupt on short packet for IN endpoints */
if (usb_urb_dir_in(urb))
field |= TRB_ISP;
/* Set the TRB length, TD size, and interrupter fields. */
remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
full_len, urb, more_trbs_coming);
length_field = TRB_LEN(trb_buff_len) |
TRB_TD_SIZE(remainder) |
TRB_INTR_TARGET(0);
queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
lower_32_bits(send_addr),
upper_32_bits(send_addr),
length_field,
field);
addr += trb_buff_len;
sent_len = trb_buff_len;
while (sg && sent_len >= block_len) {
/* New sg entry */
--num_sgs;
sent_len -= block_len;
if (num_sgs != 0) {
sg = sg_next(sg);
block_len = sg_dma_len(sg);
addr = (u64) sg_dma_address(sg);
addr += sent_len;
}
}
block_len -= sent_len;
send_addr = addr;
}
if (need_zero_pkt) {
ret = prepare_transfer(xhci, xhci->devs[slot_id],
ep_index, urb->stream_id,
1, urb, 1, mem_flags);
urb_priv->td[1].last_trb = ring->enqueue;
field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
}
check_trb_math(urb, enqd_len);
giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
start_cycle, start_trb);
return 0;
}
/* Caller must have locked xhci->lock */
int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
struct urb *urb, int slot_id, unsigned int ep_index)
{
struct xhci_ring *ep_ring;
int num_trbs;
int ret;
struct usb_ctrlrequest *setup;
struct xhci_generic_trb *start_trb;
int start_cycle;
u32 field;
struct urb_priv *urb_priv;
struct xhci_td *td;
ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
if (!ep_ring)
return -EINVAL;
/*
* Need to copy setup packet into setup TRB, so we can't use the setup
* DMA address.
*/
if (!urb->setup_packet)
return -EINVAL;
/* 1 TRB for setup, 1 for status */
num_trbs = 2;
/*
* Don't need to check if we need additional event data and normal TRBs,
* since data in control transfers will never get bigger than 16MB
* XXX: can we get a buffer that crosses 64KB boundaries?
*/
if (urb->transfer_buffer_length > 0)
num_trbs++;
ret = prepare_transfer(xhci, xhci->devs[slot_id],
ep_index, urb->stream_id,
num_trbs, urb, 0, mem_flags);
if (ret < 0)
return ret;
urb_priv = urb->hcpriv;
td = &urb_priv->td[0];
/*
* Don't give the first TRB to the hardware (by toggling the cycle bit)
* until we've finished creating all the other TRBs. The ring's cycle
* state may change as we enqueue the other TRBs, so save it too.
*/
start_trb = &ep_ring->enqueue->generic;
start_cycle = ep_ring->cycle_state;
/* Queue setup TRB - see section 6.4.1.2.1 */
/* FIXME better way to translate setup_packet into two u32 fields? */
setup = (struct usb_ctrlrequest *) urb->setup_packet;
field = 0;
field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
if (start_cycle == 0)
field |= 0x1;
/* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
if (urb->transfer_buffer_length > 0) {
if (setup->bRequestType & USB_DIR_IN)
field |= TRB_TX_TYPE(TRB_DATA_IN);
else
field |= TRB_TX_TYPE(TRB_DATA_OUT);
}
}
queue_trb(xhci, ep_ring, true,
setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
TRB_LEN(8) | TRB_INTR_TARGET(0),
/* Immediate data in pointer */
field);
/* If there's data, queue data TRBs */
/* Only set interrupt on short packet for IN endpoints */
if (usb_urb_dir_in(urb))
field = TRB_ISP | TRB_TYPE(TRB_DATA);
else
field = TRB_TYPE(TRB_DATA);
if (urb->transfer_buffer_length > 0) {
u32 length_field, remainder;
remainder = xhci_td_remainder(xhci, 0,
urb->transfer_buffer_length,
urb->transfer_buffer_length,
urb, 1);
length_field = TRB_LEN(urb->transfer_buffer_length) |
TRB_TD_SIZE(remainder) |
TRB_INTR_TARGET(0);
if (setup->bRequestType & USB_DIR_IN)
field |= TRB_DIR_IN;
queue_trb(xhci, ep_ring, true,
lower_32_bits(urb->transfer_dma),
upper_32_bits(urb->transfer_dma),
length_field,
field | ep_ring->cycle_state);
}
/* Save the DMA address of the last TRB in the TD */
td->last_trb = ep_ring->enqueue;
/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
/* If the device sent data, the status stage is an OUT transfer */
if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
field = 0;
else
field = TRB_DIR_IN;
queue_trb(xhci, ep_ring, false,
0,
0,
TRB_INTR_TARGET(0),
/* Event on completion */
field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
giveback_first_trb(xhci, slot_id, ep_index, 0,
start_cycle, start_trb);
return 0;
}
/*
* The transfer burst count field of the isochronous TRB defines the number of
* bursts that are required to move all packets in this TD. Only SuperSpeed
* devices can burst up to bMaxBurst number of packets per service interval.
* This field is zero based, meaning a value of zero in the field means one
* burst. Basically, for everything but SuperSpeed devices, this field will be
* zero. Only xHCI 1.0 host controllers support this field.
*/
static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
struct urb *urb, unsigned int total_packet_count)
{
unsigned int max_burst;
if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
return 0;
max_burst = urb->ep->ss_ep_comp.bMaxBurst;
return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
}
/*
* Returns the number of packets in the last "burst" of packets. This field is
* valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
* the last burst packet count is equal to the total number of packets in the
* TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
* must contain (bMaxBurst + 1) number of packets, but the last burst can
* contain 1 to (bMaxBurst + 1) packets.
*/
static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
struct urb *urb, unsigned int total_packet_count)
{
unsigned int max_burst;
unsigned int residue;
if (xhci->hci_version < 0x100)
return 0;
if (urb->dev->speed >= USB_SPEED_SUPER) {
/* bMaxBurst is zero based: 0 means 1 packet per burst */
max_burst = urb->ep->ss_ep_comp.bMaxBurst;
residue = total_packet_count % (max_burst + 1);
/* If residue is zero, the last burst contains (max_burst + 1)
* number of packets, but the TLBPC field is zero-based.
*/
if (residue == 0)
return max_burst;
return residue - 1;
}
if (total_packet_count == 0)
return 0;
return total_packet_count - 1;
}
/*
* Calculates Frame ID field of the isochronous TRB identifies the
* target frame that the Interval associated with this Isochronous
* Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
*
* Returns actual frame id on success, negative value on error.
*/
static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
struct urb *urb, int index)
{
int start_frame, ist, ret = 0;
int start_frame_id, end_frame_id, current_frame_id;
if (urb->dev->speed == USB_SPEED_LOW ||
urb->dev->speed == USB_SPEED_FULL)
start_frame = urb->start_frame + index * urb->interval;
else
start_frame = (urb->start_frame + index * urb->interval) >> 3;
/* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
*
* If bit [3] of IST is cleared to '0', software can add a TRB no
* later than IST[2:0] Microframes before that TRB is scheduled to
* be executed.
* If bit [3] of IST is set to '1', software can add a TRB no later
* than IST[2:0] Frames before that TRB is scheduled to be executed.
*/
ist = HCS_IST(xhci->hcs_params2) & 0x7;
if (HCS_IST(xhci->hcs_params2) & (1 << 3))
ist <<= 3;
/* Software shall not schedule an Isoch TD with a Frame ID value that
* is less than the Start Frame ID or greater than the End Frame ID,
* where:
*
* End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
* Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
*
* Both the End Frame ID and Start Frame ID values are calculated
* in microframes. When software determines the valid Frame ID value;
* The End Frame ID value should be rounded down to the nearest Frame
* boundary, and the Start Frame ID value should be rounded up to the
* nearest Frame boundary.
*/
current_frame_id = readl(&xhci->run_regs->microframe_index);
start_frame_id = roundup(current_frame_id + ist + 1, 8);
end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
start_frame &= 0x7ff;
start_frame_id = (start_frame_id >> 3) & 0x7ff;
end_frame_id = (end_frame_id >> 3) & 0x7ff;
xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
__func__, index, readl(&xhci->run_regs->microframe_index),
start_frame_id, end_frame_id, start_frame);
if (start_frame_id < end_frame_id) {
if (start_frame > end_frame_id ||
start_frame < start_frame_id)
ret = -EINVAL;
} else if (start_frame_id > end_frame_id) {
if ((start_frame > end_frame_id &&
start_frame < start_frame_id))
ret = -EINVAL;
} else {
ret = -EINVAL;
}
if (index == 0) {
if (ret == -EINVAL || start_frame == start_frame_id) {
start_frame = start_frame_id + 1;
if (urb->dev->speed == USB_SPEED_LOW ||
urb->dev->speed == USB_SPEED_FULL)
urb->start_frame = start_frame;
else
urb->start_frame = start_frame << 3;
ret = 0;
}
}
if (ret) {
xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
start_frame, current_frame_id, index,
start_frame_id, end_frame_id);
xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
return ret;
}
return start_frame;
}
/* This is for isoc transfer */
static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
struct urb *urb, int slot_id, unsigned int ep_index)
{
struct xhci_ring *ep_ring;
struct urb_priv *urb_priv;
struct xhci_td *td;
int num_tds, trbs_per_td;
struct xhci_generic_trb *start_trb;
bool first_trb;
int start_cycle;
u32 field, length_field;
int running_total, trb_buff_len, td_len, td_remain_len, ret;
u64 start_addr, addr;
int i, j;
bool more_trbs_coming;
struct xhci_virt_ep *xep;
int frame_id;
xep = &xhci->devs[slot_id]->eps[ep_index];
ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
num_tds = urb->number_of_packets;
if (num_tds < 1) {
xhci_dbg(xhci, "Isoc URB with zero packets?\n");
return -EINVAL;
}
start_addr = (u64) urb->transfer_dma;
start_trb = &ep_ring->enqueue->generic;
start_cycle = ep_ring->cycle_state;
urb_priv = urb->hcpriv;
/* Queue the TRBs for each TD, even if they are zero-length */
for (i = 0; i < num_tds; i++) {
unsigned int total_pkt_count, max_pkt;
unsigned int burst_count, last_burst_pkt_count;
u32 sia_frame_id;
first_trb = true;
running_total = 0;
addr = start_addr + urb->iso_frame_desc[i].offset;
td_len = urb->iso_frame_desc[i].length;
td_remain_len = td_len;
max_pkt = usb_endpoint_maxp(&urb->ep->desc);
total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
/* A zero-length transfer still involves at least one packet. */
if (total_pkt_count == 0)
total_pkt_count++;
burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
urb, total_pkt_count);
trbs_per_td = count_isoc_trbs_needed(urb, i);
ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
urb->stream_id, trbs_per_td, urb, i, mem_flags);
if (ret < 0) {
if (i == 0)
return ret;
goto cleanup;
}
td = &urb_priv->td[i];
/* use SIA as default, if frame id is used overwrite it */
sia_frame_id = TRB_SIA;
if (!(urb->transfer_flags & URB_ISO_ASAP) &&
HCC_CFC(xhci->hcc_params)) {
frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
if (frame_id >= 0)
sia_frame_id = TRB_FRAME_ID(frame_id);
}
/*
* Set isoc specific data for the first TRB in a TD.
* Prevent HW from getting the TRBs by keeping the cycle state
* inverted in the first TDs isoc TRB.
*/
field = TRB_TYPE(TRB_ISOC) |
TRB_TLBPC(last_burst_pkt_count) |
sia_frame_id |
(i ? ep_ring->cycle_state : !start_cycle);
/* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
if (!xep->use_extended_tbc)
field |= TRB_TBC(burst_count);
/* fill the rest of the TRB fields, and remaining normal TRBs */
for (j = 0; j < trbs_per_td; j++) {
u32 remainder = 0;
/* only first TRB is isoc, overwrite otherwise */
if (!first_trb)
field = TRB_TYPE(TRB_NORMAL) |
ep_ring->cycle_state;
/* Only set interrupt on short packet for IN EPs */
if (usb_urb_dir_in(urb))
field |= TRB_ISP;
/* Set the chain bit for all except the last TRB */
if (j < trbs_per_td - 1) {
more_trbs_coming = true;
field |= TRB_CHAIN;
} else {
more_trbs_coming = false;
td->last_trb = ep_ring->enqueue;
field |= TRB_IOC;
/* set BEI, except for the last TD */
if (xhci->hci_version >= 0x100 &&
!(xhci->quirks & XHCI_AVOID_BEI) &&
i < num_tds - 1)
field |= TRB_BEI;
}
/* Calculate TRB length */
trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
if (trb_buff_len > td_remain_len)
trb_buff_len = td_remain_len;
/* Set the TRB length, TD size, & interrupter fields. */
remainder = xhci_td_remainder(xhci, running_total,
trb_buff_len, td_len,
urb, more_trbs_coming);
length_field = TRB_LEN(trb_buff_len) |
TRB_INTR_TARGET(0);
/* xhci 1.1 with ETE uses TD Size field for TBC */
if (first_trb && xep->use_extended_tbc)
length_field |= TRB_TD_SIZE_TBC(burst_count);
else
length_field |= TRB_TD_SIZE(remainder);
first_trb = false;
queue_trb(xhci, ep_ring, more_trbs_coming,
lower_32_bits(addr),
upper_32_bits(addr),
length_field,
field);
running_total += trb_buff_len;
addr += trb_buff_len;
td_remain_len -= trb_buff_len;
}
/* Check TD length */
if (running_total != td_len) {
xhci_err(xhci, "ISOC TD length unmatch\n");
ret = -EINVAL;
goto cleanup;
}
}
/* store the next frame id */
if (HCC_CFC(xhci->hcc_params))
xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
if (xhci->quirks & XHCI_AMD_PLL_FIX)
usb_amd_quirk_pll_disable();
}
xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
start_cycle, start_trb);
return 0;
cleanup:
/* Clean up a partially enqueued isoc transfer. */
for (i--; i >= 0; i--)
list_del_init(&urb_priv->td[i].td_list);
/* Use the first TD as a temporary variable to turn the TDs we've queued
* into No-ops with a software-owned cycle bit. That way the hardware
* won't accidentally start executing bogus TDs when we partially
* overwrite them. td->first_trb and td->start_seg are already set.
*/
urb_priv->td[0].last_trb = ep_ring->enqueue;
/* Every TRB except the first & last will have its cycle bit flipped. */
td_to_noop(xhci, ep_ring, &urb_priv->td[0], true);
/* Reset the ring enqueue back to the first TRB and its cycle bit. */
ep_ring->enqueue = urb_priv->td[0].first_trb;
ep_ring->enq_seg = urb_priv->td[0].start_seg;
ep_ring->cycle_state = start_cycle;
ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
return ret;
}
/*
* Check transfer ring to guarantee there is enough room for the urb.
* Update ISO URB start_frame and interval.
* Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
* update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
* Contiguous Frame ID is not supported by HC.
*/
int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
struct urb *urb, int slot_id, unsigned int ep_index)
{
struct xhci_virt_device *xdev;
struct xhci_ring *ep_ring;
struct xhci_ep_ctx *ep_ctx;
int start_frame;
int num_tds, num_trbs, i;
int ret;
struct xhci_virt_ep *xep;
int ist;
xdev = xhci->devs[slot_id];
xep = &xhci->devs[slot_id]->eps[ep_index];
ep_ring = xdev->eps[ep_index].ring;
ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
num_trbs = 0;
num_tds = urb->number_of_packets;
for (i = 0; i < num_tds; i++)
num_trbs += count_isoc_trbs_needed(urb, i);
/* Check the ring to guarantee there is enough room for the whole urb.
* Do not insert any td of the urb to the ring if the check failed.
*/
ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
num_trbs, mem_flags);
if (ret)
return ret;
/*
* Check interval value. This should be done before we start to
* calculate the start frame value.
*/
check_interval(xhci, urb, ep_ctx);
/* Calculate the start frame and put it in urb->start_frame. */
if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) {
urb->start_frame = xep->next_frame_id;
goto skip_start_over;
}
}
start_frame = readl(&xhci->run_regs->microframe_index);
start_frame &= 0x3fff;
/*
* Round up to the next frame and consider the time before trb really
* gets scheduled by hardare.
*/
ist = HCS_IST(xhci->hcs_params2) & 0x7;
if (HCS_IST(xhci->hcs_params2) & (1 << 3))
ist <<= 3;
start_frame += ist + XHCI_CFC_DELAY;
start_frame = roundup(start_frame, 8);
/*
* Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
* is greate than 8 microframes.
*/
if (urb->dev->speed == USB_SPEED_LOW ||
urb->dev->speed == USB_SPEED_FULL) {
start_frame = roundup(start_frame, urb->interval << 3);
urb->start_frame = start_frame >> 3;
} else {
start_frame = roundup(start_frame, urb->interval);
urb->start_frame = start_frame;
}
skip_start_over:
ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
}
/**** Command Ring Operations ****/
/* Generic function for queueing a command TRB on the command ring.
* Check to make sure there's room on the command ring for one command TRB.
* Also check that there's room reserved for commands that must not fail.
* If this is a command that must not fail, meaning command_must_succeed = TRUE,
* then only check for the number of reserved spots.
* Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
* because the command event handler may want to resubmit a failed command.
*/
static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
u32 field1, u32 field2,
u32 field3, u32 field4, bool command_must_succeed)
{
int reserved_trbs = xhci->cmd_ring_reserved_trbs;
int ret;
if ((xhci->xhc_state & XHCI_STATE_DYING) ||
(xhci->xhc_state & XHCI_STATE_HALTED)) {
xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
return -ESHUTDOWN;
}
if (!command_must_succeed)
reserved_trbs++;
ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
reserved_trbs, GFP_ATOMIC);
if (ret < 0) {
xhci_err(xhci, "ERR: No room for command on command ring\n");
if (command_must_succeed)
xhci_err(xhci, "ERR: Reserved TRB counting for "
"unfailable commands failed.\n");
return ret;
}
cmd->command_trb = xhci->cmd_ring->enqueue;
/* if there are no other commands queued we start the timeout timer */
if (list_empty(&xhci->cmd_list)) {
xhci->current_cmd = cmd;
xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
}
list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
field4 | xhci->cmd_ring->cycle_state);
return 0;
}
/* Queue a slot enable or disable request on the command ring */
int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
u32 trb_type, u32 slot_id)
{
return queue_command(xhci, cmd, 0, 0, 0,
TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
}
/* Queue an address device command TRB */
int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
{
return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
upper_32_bits(in_ctx_ptr), 0,
TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
| (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
}
int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
u32 field1, u32 field2, u32 field3, u32 field4)
{
return queue_command(xhci, cmd, field1, field2, field3, field4, false);
}
/* Queue a reset device command TRB */
int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
u32 slot_id)
{
return queue_command(xhci, cmd, 0, 0, 0,
TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
false);
}
/* Queue a configure endpoint command TRB */
int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
u32 slot_id, bool command_must_succeed)
{
return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
upper_32_bits(in_ctx_ptr), 0,
TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
command_must_succeed);
}
/* Queue an evaluate context command TRB */
int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
{
return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
upper_32_bits(in_ctx_ptr), 0,
TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
command_must_succeed);
}
/*
* Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
* activity on an endpoint that is about to be suspended.
*/
int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
int slot_id, unsigned int ep_index, int suspend)
{
u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
u32 type = TRB_TYPE(TRB_STOP_RING);
u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
return queue_command(xhci, cmd, 0, 0, 0,
trb_slot_id | trb_ep_index | type | trb_suspend, false);
}
/* Set Transfer Ring Dequeue Pointer command */
void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
unsigned int slot_id, unsigned int ep_index,
struct xhci_dequeue_state *deq_state)
{
dma_addr_t addr;
u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
u32 trb_sct = 0;
u32 type = TRB_TYPE(TRB_SET_DEQ);
struct xhci_virt_ep *ep;
struct xhci_command *cmd;
int ret;
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
"Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
deq_state->new_deq_seg,
(unsigned long long)deq_state->new_deq_seg->dma,
deq_state->new_deq_ptr,
(unsigned long long)xhci_trb_virt_to_dma(
deq_state->new_deq_seg, deq_state->new_deq_ptr),
deq_state->new_cycle_state);
addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
deq_state->new_deq_ptr);
if (addr == 0) {
xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
deq_state->new_deq_seg, deq_state->new_deq_ptr);
return;
}
ep = &xhci->devs[slot_id]->eps[ep_index];
if ((ep->ep_state & SET_DEQ_PENDING)) {
xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
return;
}
/* This function gets called from contexts where it cannot sleep */
cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
if (!cmd)
return;
ep->queued_deq_seg = deq_state->new_deq_seg;
ep->queued_deq_ptr = deq_state->new_deq_ptr;
if (deq_state->stream_id)
trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
ret = queue_command(xhci, cmd,
lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
upper_32_bits(addr), trb_stream_id,
trb_slot_id | trb_ep_index | type, false);
if (ret < 0) {
xhci_free_command(xhci, cmd);
return;
}
/* Stop the TD queueing code from ringing the doorbell until
* this command completes. The HC won't set the dequeue pointer
* if the ring is running, and ringing the doorbell starts the
* ring running.
*/
ep->ep_state |= SET_DEQ_PENDING;
}
int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
int slot_id, unsigned int ep_index,
enum xhci_ep_reset_type reset_type)
{
u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
u32 type = TRB_TYPE(TRB_RESET_EP);
if (reset_type == EP_SOFT_RESET)
type |= TRB_TSP;
return queue_command(xhci, cmd, 0, 0, 0,
trb_slot_id | trb_ep_index | type, false);
}