/* * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved. * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. * Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include "iscsi_iser.h" #define ISCSI_ISER_MAX_CONN 8 #define ISER_MAX_RX_LEN (ISER_QP_MAX_RECV_DTOS * ISCSI_ISER_MAX_CONN) #define ISER_MAX_TX_LEN (ISER_QP_MAX_REQ_DTOS * ISCSI_ISER_MAX_CONN) #define ISER_MAX_CQ_LEN (ISER_MAX_RX_LEN + ISER_MAX_TX_LEN + \ ISCSI_ISER_MAX_CONN) static int iser_cq_poll_limit = 512; static void iser_cq_tasklet_fn(unsigned long data); static void iser_cq_callback(struct ib_cq *cq, void *cq_context); static void iser_cq_event_callback(struct ib_event *cause, void *context) { iser_err("cq event %s (%d)\n", ib_event_msg(cause->event), cause->event); } static void iser_qp_event_callback(struct ib_event *cause, void *context) { iser_err("qp event %s (%d)\n", ib_event_msg(cause->event), cause->event); } static void iser_event_handler(struct ib_event_handler *handler, struct ib_event *event) { iser_err("async event %s (%d) on device %s port %d\n", ib_event_msg(event->event), event->event, event->device->name, event->element.port_num); } /** * iser_create_device_ib_res - creates Protection Domain (PD), Completion * Queue (CQ), DMA Memory Region (DMA MR) with the device associated with * the adapator. * * returns 0 on success, -1 on failure */ static int iser_create_device_ib_res(struct iser_device *device) { struct ib_device_attr *dev_attr = &device->dev_attr; int ret, i, max_cqe; ret = ib_query_device(device->ib_device, dev_attr); if (ret) { pr_warn("Query device failed for %s\n", device->ib_device->name); return ret; } ret = iser_assign_reg_ops(device); if (ret) return ret; device->comps_used = min_t(int, num_online_cpus(), device->ib_device->num_comp_vectors); device->comps = kcalloc(device->comps_used, sizeof(*device->comps), GFP_KERNEL); if (!device->comps) goto comps_err; max_cqe = min(ISER_MAX_CQ_LEN, dev_attr->max_cqe); iser_info("using %d CQs, device %s supports %d vectors max_cqe %d\n", device->comps_used, device->ib_device->name, device->ib_device->num_comp_vectors, max_cqe); device->pd = ib_alloc_pd(device->ib_device); if (IS_ERR(device->pd)) goto pd_err; for (i = 0; i < device->comps_used; i++) { struct ib_cq_init_attr cq_attr = {}; struct iser_comp *comp = &device->comps[i]; comp->device = device; cq_attr.cqe = max_cqe; cq_attr.comp_vector = i; comp->cq = ib_create_cq(device->ib_device, iser_cq_callback, iser_cq_event_callback, (void *)comp, &cq_attr); if (IS_ERR(comp->cq)) { comp->cq = NULL; goto cq_err; } if (ib_req_notify_cq(comp->cq, IB_CQ_NEXT_COMP)) goto cq_err; tasklet_init(&comp->tasklet, iser_cq_tasklet_fn, (unsigned long)comp); } device->mr = ib_get_dma_mr(device->pd, IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_READ); if (IS_ERR(device->mr)) goto dma_mr_err; INIT_IB_EVENT_HANDLER(&device->event_handler, device->ib_device, iser_event_handler); if (ib_register_event_handler(&device->event_handler)) goto handler_err; return 0; handler_err: ib_dereg_mr(device->mr); dma_mr_err: for (i = 0; i < device->comps_used; i++) tasklet_kill(&device->comps[i].tasklet); cq_err: for (i = 0; i < device->comps_used; i++) { struct iser_comp *comp = &device->comps[i]; if (comp->cq) ib_destroy_cq(comp->cq); } ib_dealloc_pd(device->pd); pd_err: kfree(device->comps); comps_err: iser_err("failed to allocate an IB resource\n"); return -1; } /** * iser_free_device_ib_res - destroy/dealloc/dereg the DMA MR, * CQ and PD created with the device associated with the adapator. */ static void iser_free_device_ib_res(struct iser_device *device) { int i; BUG_ON(device->mr == NULL); for (i = 0; i < device->comps_used; i++) { struct iser_comp *comp = &device->comps[i]; tasklet_kill(&comp->tasklet); ib_destroy_cq(comp->cq); comp->cq = NULL; } (void)ib_unregister_event_handler(&device->event_handler); (void)ib_dereg_mr(device->mr); (void)ib_dealloc_pd(device->pd); kfree(device->comps); device->comps = NULL; device->mr = NULL; device->pd = NULL; } /** * iser_alloc_fmr_pool - Creates FMR pool and page_vector * * returns 0 on success, or errno code on failure */ int iser_alloc_fmr_pool(struct ib_conn *ib_conn, unsigned cmds_max, unsigned int size) { struct iser_device *device = ib_conn->device; struct iser_fr_pool *fr_pool = &ib_conn->fr_pool; struct iser_page_vec *page_vec; struct iser_fr_desc *desc; struct ib_fmr_pool *fmr_pool; struct ib_fmr_pool_param params; int ret; INIT_LIST_HEAD(&fr_pool->list); spin_lock_init(&fr_pool->lock); desc = kzalloc(sizeof(*desc), GFP_KERNEL); if (!desc) return -ENOMEM; page_vec = kmalloc(sizeof(*page_vec) + (sizeof(u64) * size), GFP_KERNEL); if (!page_vec) { ret = -ENOMEM; goto err_frpl; } page_vec->pages = (u64 *)(page_vec + 1); params.page_shift = SHIFT_4K; params.max_pages_per_fmr = size; /* make the pool size twice the max number of SCSI commands * * the ML is expected to queue, watermark for unmap at 50% */ params.pool_size = cmds_max * 2; params.dirty_watermark = cmds_max; params.cache = 0; params.flush_function = NULL; params.access = (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_READ); fmr_pool = ib_create_fmr_pool(device->pd, ¶ms); if (IS_ERR(fmr_pool)) { ret = PTR_ERR(fmr_pool); iser_err("FMR allocation failed, err %d\n", ret); goto err_fmr; } desc->rsc.page_vec = page_vec; desc->rsc.fmr_pool = fmr_pool; list_add(&desc->list, &fr_pool->list); return 0; err_fmr: kfree(page_vec); err_frpl: kfree(desc); return ret; } /** * iser_free_fmr_pool - releases the FMR pool and page vec */ void iser_free_fmr_pool(struct ib_conn *ib_conn) { struct iser_fr_pool *fr_pool = &ib_conn->fr_pool; struct iser_fr_desc *desc; desc = list_first_entry(&fr_pool->list, struct iser_fr_desc, list); list_del(&desc->list); iser_info("freeing conn %p fmr pool %p\n", ib_conn, desc->rsc.fmr_pool); ib_destroy_fmr_pool(desc->rsc.fmr_pool); kfree(desc->rsc.page_vec); kfree(desc); } static int iser_alloc_reg_res(struct ib_device *ib_device, struct ib_pd *pd, struct iser_reg_resources *res, unsigned int size) { int ret; res->frpl = ib_alloc_fast_reg_page_list(ib_device, size); if (IS_ERR(res->frpl)) { ret = PTR_ERR(res->frpl); iser_err("Failed to allocate ib_fast_reg_page_list err=%d\n", ret); return PTR_ERR(res->frpl); } res->mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG, size); if (IS_ERR(res->mr)) { ret = PTR_ERR(res->mr); iser_err("Failed to allocate ib_fast_reg_mr err=%d\n", ret); goto fast_reg_mr_failure; } res->mr_valid = 1; return 0; fast_reg_mr_failure: ib_free_fast_reg_page_list(res->frpl); return ret; } static void iser_free_reg_res(struct iser_reg_resources *rsc) { ib_dereg_mr(rsc->mr); ib_free_fast_reg_page_list(rsc->frpl); } static int iser_alloc_pi_ctx(struct ib_device *ib_device, struct ib_pd *pd, struct iser_fr_desc *desc, unsigned int size) { struct iser_pi_context *pi_ctx = NULL; int ret; desc->pi_ctx = kzalloc(sizeof(*desc->pi_ctx), GFP_KERNEL); if (!desc->pi_ctx) return -ENOMEM; pi_ctx = desc->pi_ctx; ret = iser_alloc_reg_res(ib_device, pd, &pi_ctx->rsc, size); if (ret) { iser_err("failed to allocate reg_resources\n"); goto alloc_reg_res_err; } pi_ctx->sig_mr = ib_alloc_mr(pd, IB_MR_TYPE_SIGNATURE, 2); if (IS_ERR(pi_ctx->sig_mr)) { ret = PTR_ERR(pi_ctx->sig_mr); goto sig_mr_failure; } pi_ctx->sig_mr_valid = 1; desc->pi_ctx->sig_protected = 0; return 0; sig_mr_failure: iser_free_reg_res(&pi_ctx->rsc); alloc_reg_res_err: kfree(desc->pi_ctx); return ret; } static void iser_free_pi_ctx(struct iser_pi_context *pi_ctx) { iser_free_reg_res(&pi_ctx->rsc); ib_dereg_mr(pi_ctx->sig_mr); kfree(pi_ctx); } static struct iser_fr_desc * iser_create_fastreg_desc(struct ib_device *ib_device, struct ib_pd *pd, bool pi_enable, unsigned int size) { struct iser_fr_desc *desc; int ret; desc = kzalloc(sizeof(*desc), GFP_KERNEL); if (!desc) return ERR_PTR(-ENOMEM); ret = iser_alloc_reg_res(ib_device, pd, &desc->rsc, size); if (ret) goto reg_res_alloc_failure; if (pi_enable) { ret = iser_alloc_pi_ctx(ib_device, pd, desc, size); if (ret) goto pi_ctx_alloc_failure; } return desc; pi_ctx_alloc_failure: iser_free_reg_res(&desc->rsc); reg_res_alloc_failure: kfree(desc); return ERR_PTR(ret); } /** * iser_alloc_fastreg_pool - Creates pool of fast_reg descriptors * for fast registration work requests. * returns 0 on success, or errno code on failure */ int iser_alloc_fastreg_pool(struct ib_conn *ib_conn, unsigned cmds_max, unsigned int size) { struct iser_device *device = ib_conn->device; struct iser_fr_pool *fr_pool = &ib_conn->fr_pool; struct iser_fr_desc *desc; int i, ret; INIT_LIST_HEAD(&fr_pool->list); spin_lock_init(&fr_pool->lock); fr_pool->size = 0; for (i = 0; i < cmds_max; i++) { desc = iser_create_fastreg_desc(device->ib_device, device->pd, ib_conn->pi_support, size); if (IS_ERR(desc)) { ret = PTR_ERR(desc); goto err; } list_add_tail(&desc->list, &fr_pool->list); fr_pool->size++; } return 0; err: iser_free_fastreg_pool(ib_conn); return ret; } /** * iser_free_fastreg_pool - releases the pool of fast_reg descriptors */ void iser_free_fastreg_pool(struct ib_conn *ib_conn) { struct iser_fr_pool *fr_pool = &ib_conn->fr_pool; struct iser_fr_desc *desc, *tmp; int i = 0; if (list_empty(&fr_pool->list)) return; iser_info("freeing conn %p fr pool\n", ib_conn); list_for_each_entry_safe(desc, tmp, &fr_pool->list, list) { list_del(&desc->list); iser_free_reg_res(&desc->rsc); if (desc->pi_ctx) iser_free_pi_ctx(desc->pi_ctx); kfree(desc); ++i; } if (i < fr_pool->size) iser_warn("pool still has %d regions registered\n", fr_pool->size - i); } /** * iser_create_ib_conn_res - Queue-Pair (QP) * * returns 0 on success, -1 on failure */ static int iser_create_ib_conn_res(struct ib_conn *ib_conn) { struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn, ib_conn); struct iser_device *device; struct ib_device_attr *dev_attr; struct ib_qp_init_attr init_attr; int ret = -ENOMEM; int index, min_index = 0; BUG_ON(ib_conn->device == NULL); device = ib_conn->device; dev_attr = &device->dev_attr; memset(&init_attr, 0, sizeof init_attr); mutex_lock(&ig.connlist_mutex); /* select the CQ with the minimal number of usages */ for (index = 0; index < device->comps_used; index++) { if (device->comps[index].active_qps < device->comps[min_index].active_qps) min_index = index; } ib_conn->comp = &device->comps[min_index]; ib_conn->comp->active_qps++; mutex_unlock(&ig.connlist_mutex); iser_info("cq index %d used for ib_conn %p\n", min_index, ib_conn); init_attr.event_handler = iser_qp_event_callback; init_attr.qp_context = (void *)ib_conn; init_attr.send_cq = ib_conn->comp->cq; init_attr.recv_cq = ib_conn->comp->cq; init_attr.cap.max_recv_wr = ISER_QP_MAX_RECV_DTOS; init_attr.cap.max_send_sge = 2; init_attr.cap.max_recv_sge = 1; init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; init_attr.qp_type = IB_QPT_RC; if (ib_conn->pi_support) { init_attr.cap.max_send_wr = ISER_QP_SIG_MAX_REQ_DTOS + 1; init_attr.create_flags |= IB_QP_CREATE_SIGNATURE_EN; iser_conn->max_cmds = ISER_GET_MAX_XMIT_CMDS(ISER_QP_SIG_MAX_REQ_DTOS); } else { if (dev_attr->max_qp_wr > ISER_QP_MAX_REQ_DTOS) { init_attr.cap.max_send_wr = ISER_QP_MAX_REQ_DTOS + 1; iser_conn->max_cmds = ISER_GET_MAX_XMIT_CMDS(ISER_QP_MAX_REQ_DTOS); } else { init_attr.cap.max_send_wr = dev_attr->max_qp_wr; iser_conn->max_cmds = ISER_GET_MAX_XMIT_CMDS(dev_attr->max_qp_wr); iser_dbg("device %s supports max_send_wr %d\n", device->ib_device->name, dev_attr->max_qp_wr); } } ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr); if (ret) goto out_err; ib_conn->qp = ib_conn->cma_id->qp; iser_info("setting conn %p cma_id %p qp %p\n", ib_conn, ib_conn->cma_id, ib_conn->cma_id->qp); return ret; out_err: mutex_lock(&ig.connlist_mutex); ib_conn->comp->active_qps--; mutex_unlock(&ig.connlist_mutex); iser_err("unable to alloc mem or create resource, err %d\n", ret); return ret; } /** * based on the resolved device node GUID see if there already allocated * device for this device. If there's no such, create one. */ static struct iser_device *iser_device_find_by_ib_device(struct rdma_cm_id *cma_id) { struct iser_device *device; mutex_lock(&ig.device_list_mutex); list_for_each_entry(device, &ig.device_list, ig_list) /* find if there's a match using the node GUID */ if (device->ib_device->node_guid == cma_id->device->node_guid) goto inc_refcnt; device = kzalloc(sizeof *device, GFP_KERNEL); if (device == NULL) goto out; /* assign this device to the device */ device->ib_device = cma_id->device; /* init the device and link it into ig device list */ if (iser_create_device_ib_res(device)) { kfree(device); device = NULL; goto out; } list_add(&device->ig_list, &ig.device_list); inc_refcnt: device->refcount++; out: mutex_unlock(&ig.device_list_mutex); return device; } /* if there's no demand for this device, release it */ static void iser_device_try_release(struct iser_device *device) { mutex_lock(&ig.device_list_mutex); device->refcount--; iser_info("device %p refcount %d\n", device, device->refcount); if (!device->refcount) { iser_free_device_ib_res(device); list_del(&device->ig_list); kfree(device); } mutex_unlock(&ig.device_list_mutex); } /** * Called with state mutex held **/ static int iser_conn_state_comp_exch(struct iser_conn *iser_conn, enum iser_conn_state comp, enum iser_conn_state exch) { int ret; ret = (iser_conn->state == comp); if (ret) iser_conn->state = exch; return ret; } void iser_release_work(struct work_struct *work) { struct iser_conn *iser_conn; iser_conn = container_of(work, struct iser_conn, release_work); /* Wait for conn_stop to complete */ wait_for_completion(&iser_conn->stop_completion); /* Wait for IB resouces cleanup to complete */ wait_for_completion(&iser_conn->ib_completion); mutex_lock(&iser_conn->state_mutex); iser_conn->state = ISER_CONN_DOWN; mutex_unlock(&iser_conn->state_mutex); iser_conn_release(iser_conn); } /** * iser_free_ib_conn_res - release IB related resources * @iser_conn: iser connection struct * @destroy: indicator if we need to try to release the * iser device and memory regoins pool (only iscsi * shutdown and DEVICE_REMOVAL will use this). * * This routine is called with the iser state mutex held * so the cm_id removal is out of here. It is Safe to * be invoked multiple times. */ static void iser_free_ib_conn_res(struct iser_conn *iser_conn, bool destroy) { struct ib_conn *ib_conn = &iser_conn->ib_conn; struct iser_device *device = ib_conn->device; iser_info("freeing conn %p cma_id %p qp %p\n", iser_conn, ib_conn->cma_id, ib_conn->qp); if (ib_conn->qp != NULL) { ib_conn->comp->active_qps--; rdma_destroy_qp(ib_conn->cma_id); ib_conn->qp = NULL; } if (destroy) { if (iser_conn->rx_descs) iser_free_rx_descriptors(iser_conn); if (device != NULL) { iser_device_try_release(device); ib_conn->device = NULL; } } } /** * Frees all conn objects and deallocs conn descriptor */ void iser_conn_release(struct iser_conn *iser_conn) { struct ib_conn *ib_conn = &iser_conn->ib_conn; mutex_lock(&ig.connlist_mutex); list_del(&iser_conn->conn_list); mutex_unlock(&ig.connlist_mutex); mutex_lock(&iser_conn->state_mutex); /* In case we endup here without ep_disconnect being invoked. */ if (iser_conn->state != ISER_CONN_DOWN) { iser_warn("iser conn %p state %d, expected state down.\n", iser_conn, iser_conn->state); iscsi_destroy_endpoint(iser_conn->ep); iser_conn->state = ISER_CONN_DOWN; } /* * In case we never got to bind stage, we still need to * release IB resources (which is safe to call more than once). */ iser_free_ib_conn_res(iser_conn, true); mutex_unlock(&iser_conn->state_mutex); if (ib_conn->cma_id != NULL) { rdma_destroy_id(ib_conn->cma_id); ib_conn->cma_id = NULL; } kfree(iser_conn); } /** * triggers start of the disconnect procedures and wait for them to be done * Called with state mutex held */ int iser_conn_terminate(struct iser_conn *iser_conn) { struct ib_conn *ib_conn = &iser_conn->ib_conn; struct ib_send_wr *bad_wr; int err = 0; /* terminate the iser conn only if the conn state is UP */ if (!iser_conn_state_comp_exch(iser_conn, ISER_CONN_UP, ISER_CONN_TERMINATING)) return 0; iser_info("iser_conn %p state %d\n", iser_conn, iser_conn->state); /* suspend queuing of new iscsi commands */ if (iser_conn->iscsi_conn) iscsi_suspend_queue(iser_conn->iscsi_conn); /* * In case we didn't already clean up the cma_id (peer initiated * a disconnection), we need to Cause the CMA to change the QP * state to ERROR. */ if (ib_conn->cma_id) { err = rdma_disconnect(ib_conn->cma_id); if (err) iser_err("Failed to disconnect, conn: 0x%p err %d\n", iser_conn, err); /* post an indication that all flush errors were consumed */ err = ib_post_send(ib_conn->qp, &ib_conn->beacon, &bad_wr); if (err) { iser_err("conn %p failed to post beacon", ib_conn); return 1; } wait_for_completion(&ib_conn->flush_comp); } return 1; } /** * Called with state mutex held **/ static void iser_connect_error(struct rdma_cm_id *cma_id) { struct iser_conn *iser_conn; iser_conn = (struct iser_conn *)cma_id->context; iser_conn->state = ISER_CONN_TERMINATING; } static void iser_calc_scsi_params(struct iser_conn *iser_conn, unsigned int max_sectors) { struct iser_device *device = iser_conn->ib_conn.device; unsigned short sg_tablesize, sup_sg_tablesize; sg_tablesize = DIV_ROUND_UP(max_sectors * 512, SIZE_4K); sup_sg_tablesize = min_t(unsigned, ISCSI_ISER_MAX_SG_TABLESIZE, device->dev_attr.max_fast_reg_page_list_len); if (sg_tablesize > sup_sg_tablesize) { sg_tablesize = sup_sg_tablesize; iser_conn->scsi_max_sectors = sg_tablesize * SIZE_4K / 512; } else { iser_conn->scsi_max_sectors = max_sectors; } iser_conn->scsi_sg_tablesize = sg_tablesize; iser_dbg("iser_conn %p, sg_tablesize %u, max_sectors %u\n", iser_conn, iser_conn->scsi_sg_tablesize, iser_conn->scsi_max_sectors); } /** * Called with state mutex held **/ static void iser_addr_handler(struct rdma_cm_id *cma_id) { struct iser_device *device; struct iser_conn *iser_conn; struct ib_conn *ib_conn; int ret; iser_conn = (struct iser_conn *)cma_id->context; if (iser_conn->state != ISER_CONN_PENDING) /* bailout */ return; ib_conn = &iser_conn->ib_conn; device = iser_device_find_by_ib_device(cma_id); if (!device) { iser_err("device lookup/creation failed\n"); iser_connect_error(cma_id); return; } ib_conn->device = device; /* connection T10-PI support */ if (iser_pi_enable) { if (!(device->dev_attr.device_cap_flags & IB_DEVICE_SIGNATURE_HANDOVER)) { iser_warn("T10-PI requested but not supported on %s, " "continue without T10-PI\n", ib_conn->device->ib_device->name); ib_conn->pi_support = false; } else { ib_conn->pi_support = true; } } iser_calc_scsi_params(iser_conn, iser_max_sectors); ret = rdma_resolve_route(cma_id, 1000); if (ret) { iser_err("resolve route failed: %d\n", ret); iser_connect_error(cma_id); return; } } /** * Called with state mutex held **/ static void iser_route_handler(struct rdma_cm_id *cma_id) { struct rdma_conn_param conn_param; int ret; struct iser_cm_hdr req_hdr; struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context; struct ib_conn *ib_conn = &iser_conn->ib_conn; struct iser_device *device = ib_conn->device; if (iser_conn->state != ISER_CONN_PENDING) /* bailout */ return; ret = iser_create_ib_conn_res(ib_conn); if (ret) goto failure; memset(&conn_param, 0, sizeof conn_param); conn_param.responder_resources = device->dev_attr.max_qp_rd_atom; conn_param.initiator_depth = 1; conn_param.retry_count = 7; conn_param.rnr_retry_count = 6; memset(&req_hdr, 0, sizeof(req_hdr)); req_hdr.flags = (ISER_ZBVA_NOT_SUPPORTED | ISER_SEND_W_INV_NOT_SUPPORTED); conn_param.private_data = (void *)&req_hdr; conn_param.private_data_len = sizeof(struct iser_cm_hdr); ret = rdma_connect(cma_id, &conn_param); if (ret) { iser_err("failure connecting: %d\n", ret); goto failure; } return; failure: iser_connect_error(cma_id); } static void iser_connected_handler(struct rdma_cm_id *cma_id) { struct iser_conn *iser_conn; struct ib_qp_attr attr; struct ib_qp_init_attr init_attr; iser_conn = (struct iser_conn *)cma_id->context; if (iser_conn->state != ISER_CONN_PENDING) /* bailout */ return; (void)ib_query_qp(cma_id->qp, &attr, ~0, &init_attr); iser_info("remote qpn:%x my qpn:%x\n", attr.dest_qp_num, cma_id->qp->qp_num); iser_conn->state = ISER_CONN_UP; complete(&iser_conn->up_completion); } static void iser_disconnected_handler(struct rdma_cm_id *cma_id) { struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context; if (iser_conn_terminate(iser_conn)) { if (iser_conn->iscsi_conn) iscsi_conn_failure(iser_conn->iscsi_conn, ISCSI_ERR_CONN_FAILED); else iser_err("iscsi_iser connection isn't bound\n"); } } static void iser_cleanup_handler(struct rdma_cm_id *cma_id, bool destroy) { struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context; /* * We are not guaranteed that we visited disconnected_handler * by now, call it here to be safe that we handle CM drep * and flush errors. */ iser_disconnected_handler(cma_id); iser_free_ib_conn_res(iser_conn, destroy); complete(&iser_conn->ib_completion); }; static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event) { struct iser_conn *iser_conn; int ret = 0; iser_conn = (struct iser_conn *)cma_id->context; iser_info("%s (%d): status %d conn %p id %p\n", rdma_event_msg(event->event), event->event, event->status, cma_id->context, cma_id); mutex_lock(&iser_conn->state_mutex); switch (event->event) { case RDMA_CM_EVENT_ADDR_RESOLVED: iser_addr_handler(cma_id); break; case RDMA_CM_EVENT_ROUTE_RESOLVED: iser_route_handler(cma_id); break; case RDMA_CM_EVENT_ESTABLISHED: iser_connected_handler(cma_id); break; case RDMA_CM_EVENT_ADDR_ERROR: case RDMA_CM_EVENT_ROUTE_ERROR: case RDMA_CM_EVENT_CONNECT_ERROR: case RDMA_CM_EVENT_UNREACHABLE: case RDMA_CM_EVENT_REJECTED: iser_connect_error(cma_id); break; case RDMA_CM_EVENT_DISCONNECTED: case RDMA_CM_EVENT_ADDR_CHANGE: case RDMA_CM_EVENT_TIMEWAIT_EXIT: iser_cleanup_handler(cma_id, false); break; case RDMA_CM_EVENT_DEVICE_REMOVAL: /* * we *must* destroy the device as we cannot rely * on iscsid to be around to initiate error handling. * also if we are not in state DOWN implicitly destroy * the cma_id. */ iser_cleanup_handler(cma_id, true); if (iser_conn->state != ISER_CONN_DOWN) { iser_conn->ib_conn.cma_id = NULL; ret = 1; } break; default: iser_err("Unexpected RDMA CM event: %s (%d)\n", rdma_event_msg(event->event), event->event); break; } mutex_unlock(&iser_conn->state_mutex); return ret; } void iser_conn_init(struct iser_conn *iser_conn) { iser_conn->state = ISER_CONN_INIT; iser_conn->ib_conn.post_recv_buf_count = 0; init_completion(&iser_conn->ib_conn.flush_comp); init_completion(&iser_conn->stop_completion); init_completion(&iser_conn->ib_completion); init_completion(&iser_conn->up_completion); INIT_LIST_HEAD(&iser_conn->conn_list); mutex_init(&iser_conn->state_mutex); } /** * starts the process of connecting to the target * sleeps until the connection is established or rejected */ int iser_connect(struct iser_conn *iser_conn, struct sockaddr *src_addr, struct sockaddr *dst_addr, int non_blocking) { struct ib_conn *ib_conn = &iser_conn->ib_conn; int err = 0; mutex_lock(&iser_conn->state_mutex); sprintf(iser_conn->name, "%pISp", dst_addr); iser_info("connecting to: %s\n", iser_conn->name); /* the device is known only --after-- address resolution */ ib_conn->device = NULL; iser_conn->state = ISER_CONN_PENDING; ib_conn->beacon.wr_id = ISER_BEACON_WRID; ib_conn->beacon.opcode = IB_WR_SEND; ib_conn->cma_id = rdma_create_id(iser_cma_handler, (void *)iser_conn, RDMA_PS_TCP, IB_QPT_RC); if (IS_ERR(ib_conn->cma_id)) { err = PTR_ERR(ib_conn->cma_id); iser_err("rdma_create_id failed: %d\n", err); goto id_failure; } err = rdma_resolve_addr(ib_conn->cma_id, src_addr, dst_addr, 1000); if (err) { iser_err("rdma_resolve_addr failed: %d\n", err); goto addr_failure; } if (!non_blocking) { wait_for_completion_interruptible(&iser_conn->up_completion); if (iser_conn->state != ISER_CONN_UP) { err = -EIO; goto connect_failure; } } mutex_unlock(&iser_conn->state_mutex); mutex_lock(&ig.connlist_mutex); list_add(&iser_conn->conn_list, &ig.connlist); mutex_unlock(&ig.connlist_mutex); return 0; id_failure: ib_conn->cma_id = NULL; addr_failure: iser_conn->state = ISER_CONN_DOWN; connect_failure: mutex_unlock(&iser_conn->state_mutex); iser_conn_release(iser_conn); return err; } int iser_post_recvl(struct iser_conn *iser_conn) { struct ib_recv_wr rx_wr, *rx_wr_failed; struct ib_conn *ib_conn = &iser_conn->ib_conn; struct ib_sge sge; int ib_ret; sge.addr = iser_conn->login_resp_dma; sge.length = ISER_RX_LOGIN_SIZE; sge.lkey = ib_conn->device->mr->lkey; rx_wr.wr_id = (uintptr_t)iser_conn->login_resp_buf; rx_wr.sg_list = &sge; rx_wr.num_sge = 1; rx_wr.next = NULL; ib_conn->post_recv_buf_count++; ib_ret = ib_post_recv(ib_conn->qp, &rx_wr, &rx_wr_failed); if (ib_ret) { iser_err("ib_post_recv failed ret=%d\n", ib_ret); ib_conn->post_recv_buf_count--; } return ib_ret; } int iser_post_recvm(struct iser_conn *iser_conn, int count) { struct ib_recv_wr *rx_wr, *rx_wr_failed; int i, ib_ret; struct ib_conn *ib_conn = &iser_conn->ib_conn; unsigned int my_rx_head = iser_conn->rx_desc_head; struct iser_rx_desc *rx_desc; for (rx_wr = ib_conn->rx_wr, i = 0; i < count; i++, rx_wr++) { rx_desc = &iser_conn->rx_descs[my_rx_head]; rx_wr->wr_id = (uintptr_t)rx_desc; rx_wr->sg_list = &rx_desc->rx_sg; rx_wr->num_sge = 1; rx_wr->next = rx_wr + 1; my_rx_head = (my_rx_head + 1) & iser_conn->qp_max_recv_dtos_mask; } rx_wr--; rx_wr->next = NULL; /* mark end of work requests list */ ib_conn->post_recv_buf_count += count; ib_ret = ib_post_recv(ib_conn->qp, ib_conn->rx_wr, &rx_wr_failed); if (ib_ret) { iser_err("ib_post_recv failed ret=%d\n", ib_ret); ib_conn->post_recv_buf_count -= count; } else iser_conn->rx_desc_head = my_rx_head; return ib_ret; } /** * iser_start_send - Initiate a Send DTO operation * * returns 0 on success, -1 on failure */ int iser_post_send(struct ib_conn *ib_conn, struct iser_tx_desc *tx_desc, bool signal) { int ib_ret; struct ib_send_wr send_wr, *send_wr_failed; ib_dma_sync_single_for_device(ib_conn->device->ib_device, tx_desc->dma_addr, ISER_HEADERS_LEN, DMA_TO_DEVICE); send_wr.next = NULL; send_wr.wr_id = (uintptr_t)tx_desc; send_wr.sg_list = tx_desc->tx_sg; send_wr.num_sge = tx_desc->num_sge; send_wr.opcode = IB_WR_SEND; send_wr.send_flags = signal ? IB_SEND_SIGNALED : 0; ib_ret = ib_post_send(ib_conn->qp, &send_wr, &send_wr_failed); if (ib_ret) iser_err("ib_post_send failed, ret:%d\n", ib_ret); return ib_ret; } /** * is_iser_tx_desc - Indicate if the completion wr_id * is a TX descriptor or not. * @iser_conn: iser connection * @wr_id: completion WR identifier * * Since we cannot rely on wc opcode in FLUSH errors * we must work around it by checking if the wr_id address * falls in the iser connection rx_descs buffer. If so * it is an RX descriptor, otherwize it is a TX. */ static inline bool is_iser_tx_desc(struct iser_conn *iser_conn, void *wr_id) { void *start = iser_conn->rx_descs; int len = iser_conn->num_rx_descs * sizeof(*iser_conn->rx_descs); if (wr_id >= start && wr_id < start + len) return false; return true; } /** * iser_handle_comp_error() - Handle error completion * @ib_conn: connection RDMA resources * @wc: work completion * * Notes: We may handle a FLUSH error completion and in this case * we only cleanup in case TX type was DATAOUT. For non-FLUSH * error completion we should also notify iscsi layer that * connection is failed (in case we passed bind stage). */ static void iser_handle_comp_error(struct ib_conn *ib_conn, struct ib_wc *wc) { void *wr_id = (void *)(uintptr_t)wc->wr_id; struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn, ib_conn); if (wc->status != IB_WC_WR_FLUSH_ERR) if (iser_conn->iscsi_conn) iscsi_conn_failure(iser_conn->iscsi_conn, ISCSI_ERR_CONN_FAILED); if (wc->wr_id == ISER_FASTREG_LI_WRID) return; if (is_iser_tx_desc(iser_conn, wr_id)) { struct iser_tx_desc *desc = wr_id; if (desc->type == ISCSI_TX_DATAOUT) kmem_cache_free(ig.desc_cache, desc); } else { ib_conn->post_recv_buf_count--; } } /** * iser_handle_wc - handle a single work completion * @wc: work completion * * Soft-IRQ context, work completion can be either * SEND or RECV, and can turn out successful or * with error (or flush error). */ static void iser_handle_wc(struct ib_wc *wc) { struct ib_conn *ib_conn; struct iser_tx_desc *tx_desc; struct iser_rx_desc *rx_desc; ib_conn = wc->qp->qp_context; if (likely(wc->status == IB_WC_SUCCESS)) { if (wc->opcode == IB_WC_RECV) { rx_desc = (struct iser_rx_desc *)(uintptr_t)wc->wr_id; iser_rcv_completion(rx_desc, wc->byte_len, ib_conn); } else if (wc->opcode == IB_WC_SEND) { tx_desc = (struct iser_tx_desc *)(uintptr_t)wc->wr_id; iser_snd_completion(tx_desc, ib_conn); } else { iser_err("Unknown wc opcode %d\n", wc->opcode); } } else { if (wc->status != IB_WC_WR_FLUSH_ERR) iser_err("%s (%d): wr id %llx vend_err %x\n", ib_wc_status_msg(wc->status), wc->status, wc->wr_id, wc->vendor_err); else iser_dbg("%s (%d): wr id %llx\n", ib_wc_status_msg(wc->status), wc->status, wc->wr_id); if (wc->wr_id == ISER_BEACON_WRID) /* all flush errors were consumed */ complete(&ib_conn->flush_comp); else iser_handle_comp_error(ib_conn, wc); } } /** * iser_cq_tasklet_fn - iSER completion polling loop * @data: iSER completion context * * Soft-IRQ context, polling connection CQ until * either CQ was empty or we exausted polling budget */ static void iser_cq_tasklet_fn(unsigned long data) { struct iser_comp *comp = (struct iser_comp *)data; struct ib_cq *cq = comp->cq; struct ib_wc *const wcs = comp->wcs; int i, n, completed = 0; while ((n = ib_poll_cq(cq, ARRAY_SIZE(comp->wcs), wcs)) > 0) { for (i = 0; i < n; i++) iser_handle_wc(&wcs[i]); completed += n; if (completed >= iser_cq_poll_limit) break; } /* * It is assumed here that arming CQ only once its empty * would not cause interrupts to be missed. */ ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); iser_dbg("got %d completions\n", completed); } static void iser_cq_callback(struct ib_cq *cq, void *cq_context) { struct iser_comp *comp = cq_context; tasklet_schedule(&comp->tasklet); } u8 iser_check_task_pi_status(struct iscsi_iser_task *iser_task, enum iser_data_dir cmd_dir, sector_t *sector) { struct iser_mem_reg *reg = &iser_task->rdma_reg[cmd_dir]; struct iser_fr_desc *desc = reg->mem_h; unsigned long sector_size = iser_task->sc->device->sector_size; struct ib_mr_status mr_status; int ret; if (desc && desc->pi_ctx->sig_protected) { desc->pi_ctx->sig_protected = 0; ret = ib_check_mr_status(desc->pi_ctx->sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status); if (ret) { pr_err("ib_check_mr_status failed, ret %d\n", ret); goto err; } if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { sector_t sector_off = mr_status.sig_err.sig_err_offset; do_div(sector_off, sector_size + 8); *sector = scsi_get_lba(iser_task->sc) + sector_off; pr_err("PI error found type %d at sector %llx " "expected %x vs actual %x\n", mr_status.sig_err.err_type, (unsigned long long)*sector, mr_status.sig_err.expected, mr_status.sig_err.actual); switch (mr_status.sig_err.err_type) { case IB_SIG_BAD_GUARD: return 0x1; case IB_SIG_BAD_REFTAG: return 0x3; case IB_SIG_BAD_APPTAG: return 0x2; } } } return 0; err: /* Not alot we can do here, return ambiguous guard error */ return 0x1; }