// SPDX-License-Identifier: GPL-2.0-only /* * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. */ #include #include #include #include #include #include #include #include #include "nd-core.h" #include "nd.h" /* * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is * irrelevant. */ #include static DEFINE_IDA(region_ida); static DEFINE_PER_CPU(int, flush_idx); static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm, struct nd_region_data *ndrd) { int i, j; dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm), nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es"); for (i = 0; i < (1 << ndrd->hints_shift); i++) { struct resource *res = &nvdimm->flush_wpq[i]; unsigned long pfn = PHYS_PFN(res->start); void __iomem *flush_page; /* check if flush hints share a page */ for (j = 0; j < i; j++) { struct resource *res_j = &nvdimm->flush_wpq[j]; unsigned long pfn_j = PHYS_PFN(res_j->start); if (pfn == pfn_j) break; } if (j < i) flush_page = (void __iomem *) ((unsigned long) ndrd_get_flush_wpq(ndrd, dimm, j) & PAGE_MASK); else flush_page = devm_nvdimm_ioremap(dev, PFN_PHYS(pfn), PAGE_SIZE); if (!flush_page) return -ENXIO; ndrd_set_flush_wpq(ndrd, dimm, i, flush_page + (res->start & ~PAGE_MASK)); } return 0; } int nd_region_activate(struct nd_region *nd_region) { int i, j, num_flush = 0; struct nd_region_data *ndrd; struct device *dev = &nd_region->dev; size_t flush_data_size = sizeof(void *); nvdimm_bus_lock(&nd_region->dev); for (i = 0; i < nd_region->ndr_mappings; i++) { struct nd_mapping *nd_mapping = &nd_region->mapping[i]; struct nvdimm *nvdimm = nd_mapping->nvdimm; if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) { nvdimm_bus_unlock(&nd_region->dev); return -EBUSY; } /* at least one null hint slot per-dimm for the "no-hint" case */ flush_data_size += sizeof(void *); num_flush = min_not_zero(num_flush, nvdimm->num_flush); if (!nvdimm->num_flush) continue; flush_data_size += nvdimm->num_flush * sizeof(void *); } nvdimm_bus_unlock(&nd_region->dev); ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL); if (!ndrd) return -ENOMEM; dev_set_drvdata(dev, ndrd); if (!num_flush) return 0; ndrd->hints_shift = ilog2(num_flush); for (i = 0; i < nd_region->ndr_mappings; i++) { struct nd_mapping *nd_mapping = &nd_region->mapping[i]; struct nvdimm *nvdimm = nd_mapping->nvdimm; int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd); if (rc) return rc; } /* * Clear out entries that are duplicates. This should prevent the * extra flushings. */ for (i = 0; i < nd_region->ndr_mappings - 1; i++) { /* ignore if NULL already */ if (!ndrd_get_flush_wpq(ndrd, i, 0)) continue; for (j = i + 1; j < nd_region->ndr_mappings; j++) if (ndrd_get_flush_wpq(ndrd, i, 0) == ndrd_get_flush_wpq(ndrd, j, 0)) ndrd_set_flush_wpq(ndrd, j, 0, NULL); } return 0; } static void nd_region_release(struct device *dev) { struct nd_region *nd_region = to_nd_region(dev); u16 i; for (i = 0; i < nd_region->ndr_mappings; i++) { struct nd_mapping *nd_mapping = &nd_region->mapping[i]; struct nvdimm *nvdimm = nd_mapping->nvdimm; put_device(&nvdimm->dev); } free_percpu(nd_region->lane); ida_simple_remove(®ion_ida, nd_region->id); if (is_nd_blk(dev)) kfree(to_nd_blk_region(dev)); else kfree(nd_region); } struct nd_region *to_nd_region(struct device *dev) { struct nd_region *nd_region = container_of(dev, struct nd_region, dev); WARN_ON(dev->type->release != nd_region_release); return nd_region; } EXPORT_SYMBOL_GPL(to_nd_region); struct device *nd_region_dev(struct nd_region *nd_region) { if (!nd_region) return NULL; return &nd_region->dev; } EXPORT_SYMBOL_GPL(nd_region_dev); struct nd_blk_region *to_nd_blk_region(struct device *dev) { struct nd_region *nd_region = to_nd_region(dev); WARN_ON(!is_nd_blk(dev)); return container_of(nd_region, struct nd_blk_region, nd_region); } EXPORT_SYMBOL_GPL(to_nd_blk_region); void *nd_region_provider_data(struct nd_region *nd_region) { return nd_region->provider_data; } EXPORT_SYMBOL_GPL(nd_region_provider_data); void *nd_blk_region_provider_data(struct nd_blk_region *ndbr) { return ndbr->blk_provider_data; } EXPORT_SYMBOL_GPL(nd_blk_region_provider_data); void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data) { ndbr->blk_provider_data = data; } EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data); /** * nd_region_to_nstype() - region to an integer namespace type * @nd_region: region-device to interrogate * * This is the 'nstype' attribute of a region as well, an input to the * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match * namespace devices with namespace drivers. */ int nd_region_to_nstype(struct nd_region *nd_region) { if (is_memory(&nd_region->dev)) { u16 i, alias; for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) { struct nd_mapping *nd_mapping = &nd_region->mapping[i]; struct nvdimm *nvdimm = nd_mapping->nvdimm; if (test_bit(NDD_ALIASING, &nvdimm->flags)) alias++; } if (alias) return ND_DEVICE_NAMESPACE_PMEM; else return ND_DEVICE_NAMESPACE_IO; } else if (is_nd_blk(&nd_region->dev)) { return ND_DEVICE_NAMESPACE_BLK; } return 0; } EXPORT_SYMBOL(nd_region_to_nstype); static ssize_t size_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nd_region *nd_region = to_nd_region(dev); unsigned long long size = 0; if (is_memory(dev)) { size = nd_region->ndr_size; } else if (nd_region->ndr_mappings == 1) { struct nd_mapping *nd_mapping = &nd_region->mapping[0]; size = nd_mapping->size; } return sprintf(buf, "%llu\n", size); } static DEVICE_ATTR_RO(size); static ssize_t deep_flush_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nd_region *nd_region = to_nd_region(dev); /* * NOTE: in the nvdimm_has_flush() error case this attribute is * not visible. */ return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region)); } static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { bool flush; int rc = strtobool(buf, &flush); struct nd_region *nd_region = to_nd_region(dev); if (rc) return rc; if (!flush) return -EINVAL; rc = nvdimm_flush(nd_region, NULL); if (rc) return rc; return len; } static DEVICE_ATTR_RW(deep_flush); static ssize_t mappings_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nd_region *nd_region = to_nd_region(dev); return sprintf(buf, "%d\n", nd_region->ndr_mappings); } static DEVICE_ATTR_RO(mappings); static ssize_t nstype_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nd_region *nd_region = to_nd_region(dev); return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region)); } static DEVICE_ATTR_RO(nstype); static ssize_t set_cookie_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nd_region *nd_region = to_nd_region(dev); struct nd_interleave_set *nd_set = nd_region->nd_set; ssize_t rc = 0; if (is_memory(dev) && nd_set) /* pass, should be precluded by region_visible */; else return -ENXIO; /* * The cookie to show depends on which specification of the * labels we are using. If there are not labels then default to * the v1.1 namespace label cookie definition. To read all this * data we need to wait for probing to settle. */ nd_device_lock(dev); nvdimm_bus_lock(dev); wait_nvdimm_bus_probe_idle(dev); if (nd_region->ndr_mappings) { struct nd_mapping *nd_mapping = &nd_region->mapping[0]; struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); if (ndd) { struct nd_namespace_index *nsindex; nsindex = to_namespace_index(ndd, ndd->ns_current); rc = sprintf(buf, "%#llx\n", nd_region_interleave_set_cookie(nd_region, nsindex)); } } nvdimm_bus_unlock(dev); nd_device_unlock(dev); if (rc) return rc; return sprintf(buf, "%#llx\n", nd_set->cookie1); } static DEVICE_ATTR_RO(set_cookie); resource_size_t nd_region_available_dpa(struct nd_region *nd_region) { resource_size_t blk_max_overlap = 0, available, overlap; int i; WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); retry: available = 0; overlap = blk_max_overlap; for (i = 0; i < nd_region->ndr_mappings; i++) { struct nd_mapping *nd_mapping = &nd_region->mapping[i]; struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); /* if a dimm is disabled the available capacity is zero */ if (!ndd) return 0; if (is_memory(&nd_region->dev)) { available += nd_pmem_available_dpa(nd_region, nd_mapping, &overlap); if (overlap > blk_max_overlap) { blk_max_overlap = overlap; goto retry; } } else if (is_nd_blk(&nd_region->dev)) available += nd_blk_available_dpa(nd_region); } return available; } resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region) { resource_size_t available = 0; int i; if (is_memory(&nd_region->dev)) available = PHYS_ADDR_MAX; WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); for (i = 0; i < nd_region->ndr_mappings; i++) { struct nd_mapping *nd_mapping = &nd_region->mapping[i]; if (is_memory(&nd_region->dev)) available = min(available, nd_pmem_max_contiguous_dpa(nd_region, nd_mapping)); else if (is_nd_blk(&nd_region->dev)) available += nd_blk_available_dpa(nd_region); } if (is_memory(&nd_region->dev)) return available * nd_region->ndr_mappings; return available; } static ssize_t available_size_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nd_region *nd_region = to_nd_region(dev); unsigned long long available = 0; /* * Flush in-flight updates and grab a snapshot of the available * size. Of course, this value is potentially invalidated the * memory nvdimm_bus_lock() is dropped, but that's userspace's * problem to not race itself. */ nd_device_lock(dev); nvdimm_bus_lock(dev); wait_nvdimm_bus_probe_idle(dev); available = nd_region_available_dpa(nd_region); nvdimm_bus_unlock(dev); nd_device_unlock(dev); return sprintf(buf, "%llu\n", available); } static DEVICE_ATTR_RO(available_size); static ssize_t max_available_extent_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nd_region *nd_region = to_nd_region(dev); unsigned long long available = 0; nd_device_lock(dev); nvdimm_bus_lock(dev); wait_nvdimm_bus_probe_idle(dev); available = nd_region_allocatable_dpa(nd_region); nvdimm_bus_unlock(dev); nd_device_unlock(dev); return sprintf(buf, "%llu\n", available); } static DEVICE_ATTR_RO(max_available_extent); static ssize_t init_namespaces_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nd_region_data *ndrd = dev_get_drvdata(dev); ssize_t rc; nvdimm_bus_lock(dev); if (ndrd) rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count); else rc = -ENXIO; nvdimm_bus_unlock(dev); return rc; } static DEVICE_ATTR_RO(init_namespaces); static ssize_t namespace_seed_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nd_region *nd_region = to_nd_region(dev); ssize_t rc; nvdimm_bus_lock(dev); if (nd_region->ns_seed) rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed)); else rc = sprintf(buf, "\n"); nvdimm_bus_unlock(dev); return rc; } static DEVICE_ATTR_RO(namespace_seed); static ssize_t btt_seed_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nd_region *nd_region = to_nd_region(dev); ssize_t rc; nvdimm_bus_lock(dev); if (nd_region->btt_seed) rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed)); else rc = sprintf(buf, "\n"); nvdimm_bus_unlock(dev); return rc; } static DEVICE_ATTR_RO(btt_seed); static ssize_t pfn_seed_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nd_region *nd_region = to_nd_region(dev); ssize_t rc; nvdimm_bus_lock(dev); if (nd_region->pfn_seed) rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed)); else rc = sprintf(buf, "\n"); nvdimm_bus_unlock(dev); return rc; } static DEVICE_ATTR_RO(pfn_seed); static ssize_t dax_seed_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nd_region *nd_region = to_nd_region(dev); ssize_t rc; nvdimm_bus_lock(dev); if (nd_region->dax_seed) rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed)); else rc = sprintf(buf, "\n"); nvdimm_bus_unlock(dev); return rc; } static DEVICE_ATTR_RO(dax_seed); static ssize_t read_only_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nd_region *nd_region = to_nd_region(dev); return sprintf(buf, "%d\n", nd_region->ro); } static ssize_t read_only_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { bool ro; int rc = strtobool(buf, &ro); struct nd_region *nd_region = to_nd_region(dev); if (rc) return rc; nd_region->ro = ro; return len; } static DEVICE_ATTR_RW(read_only); static ssize_t region_badblocks_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nd_region *nd_region = to_nd_region(dev); ssize_t rc; nd_device_lock(dev); if (dev->driver) rc = badblocks_show(&nd_region->bb, buf, 0); else rc = -ENXIO; nd_device_unlock(dev); return rc; } static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL); static ssize_t resource_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nd_region *nd_region = to_nd_region(dev); return sprintf(buf, "%#llx\n", nd_region->ndr_start); } static DEVICE_ATTR_RO(resource); static ssize_t persistence_domain_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nd_region *nd_region = to_nd_region(dev); if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags)) return sprintf(buf, "cpu_cache\n"); else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags)) return sprintf(buf, "memory_controller\n"); else return sprintf(buf, "\n"); } static DEVICE_ATTR_RO(persistence_domain); static struct attribute *nd_region_attributes[] = { &dev_attr_size.attr, &dev_attr_nstype.attr, &dev_attr_mappings.attr, &dev_attr_btt_seed.attr, &dev_attr_pfn_seed.attr, &dev_attr_dax_seed.attr, &dev_attr_deep_flush.attr, &dev_attr_read_only.attr, &dev_attr_set_cookie.attr, &dev_attr_available_size.attr, &dev_attr_max_available_extent.attr, &dev_attr_namespace_seed.attr, &dev_attr_init_namespaces.attr, &dev_attr_badblocks.attr, &dev_attr_resource.attr, &dev_attr_persistence_domain.attr, NULL, }; static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n) { struct device *dev = container_of(kobj, typeof(*dev), kobj); struct nd_region *nd_region = to_nd_region(dev); struct nd_interleave_set *nd_set = nd_region->nd_set; int type = nd_region_to_nstype(nd_region); if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr) return 0; if (!is_memory(dev) && a == &dev_attr_dax_seed.attr) return 0; if (!is_memory(dev) && a == &dev_attr_badblocks.attr) return 0; if (a == &dev_attr_resource.attr) { if (is_memory(dev)) return 0400; else return 0; } if (a == &dev_attr_deep_flush.attr) { int has_flush = nvdimm_has_flush(nd_region); if (has_flush == 1) return a->mode; else if (has_flush == 0) return 0444; else return 0; } if (a == &dev_attr_persistence_domain.attr) { if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE) | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0) return 0; return a->mode; } if (a != &dev_attr_set_cookie.attr && a != &dev_attr_available_size.attr) return a->mode; if ((type == ND_DEVICE_NAMESPACE_PMEM || type == ND_DEVICE_NAMESPACE_BLK) && a == &dev_attr_available_size.attr) return a->mode; else if (is_memory(dev) && nd_set) return a->mode; return 0; } static ssize_t mappingN(struct device *dev, char *buf, int n) { struct nd_region *nd_region = to_nd_region(dev); struct nd_mapping *nd_mapping; struct nvdimm *nvdimm; if (n >= nd_region->ndr_mappings) return -ENXIO; nd_mapping = &nd_region->mapping[n]; nvdimm = nd_mapping->nvdimm; return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev), nd_mapping->start, nd_mapping->size, nd_mapping->position); } #define REGION_MAPPING(idx) \ static ssize_t mapping##idx##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ return mappingN(dev, buf, idx); \ } \ static DEVICE_ATTR_RO(mapping##idx) /* * 32 should be enough for a while, even in the presence of socket * interleave a 32-way interleave set is a degenerate case. */ REGION_MAPPING(0); REGION_MAPPING(1); REGION_MAPPING(2); REGION_MAPPING(3); REGION_MAPPING(4); REGION_MAPPING(5); REGION_MAPPING(6); REGION_MAPPING(7); REGION_MAPPING(8); REGION_MAPPING(9); REGION_MAPPING(10); REGION_MAPPING(11); REGION_MAPPING(12); REGION_MAPPING(13); REGION_MAPPING(14); REGION_MAPPING(15); REGION_MAPPING(16); REGION_MAPPING(17); REGION_MAPPING(18); REGION_MAPPING(19); REGION_MAPPING(20); REGION_MAPPING(21); REGION_MAPPING(22); REGION_MAPPING(23); REGION_MAPPING(24); REGION_MAPPING(25); REGION_MAPPING(26); REGION_MAPPING(27); REGION_MAPPING(28); REGION_MAPPING(29); REGION_MAPPING(30); REGION_MAPPING(31); static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n) { struct device *dev = container_of(kobj, struct device, kobj); struct nd_region *nd_region = to_nd_region(dev); if (n < nd_region->ndr_mappings) return a->mode; return 0; } static struct attribute *mapping_attributes[] = { &dev_attr_mapping0.attr, &dev_attr_mapping1.attr, &dev_attr_mapping2.attr, &dev_attr_mapping3.attr, &dev_attr_mapping4.attr, &dev_attr_mapping5.attr, &dev_attr_mapping6.attr, &dev_attr_mapping7.attr, &dev_attr_mapping8.attr, &dev_attr_mapping9.attr, &dev_attr_mapping10.attr, &dev_attr_mapping11.attr, &dev_attr_mapping12.attr, &dev_attr_mapping13.attr, &dev_attr_mapping14.attr, &dev_attr_mapping15.attr, &dev_attr_mapping16.attr, &dev_attr_mapping17.attr, &dev_attr_mapping18.attr, &dev_attr_mapping19.attr, &dev_attr_mapping20.attr, &dev_attr_mapping21.attr, &dev_attr_mapping22.attr, &dev_attr_mapping23.attr, &dev_attr_mapping24.attr, &dev_attr_mapping25.attr, &dev_attr_mapping26.attr, &dev_attr_mapping27.attr, &dev_attr_mapping28.attr, &dev_attr_mapping29.attr, &dev_attr_mapping30.attr, &dev_attr_mapping31.attr, NULL, }; struct attribute_group nd_mapping_attribute_group = { .is_visible = mapping_visible, .attrs = mapping_attributes, }; EXPORT_SYMBOL_GPL(nd_mapping_attribute_group); struct attribute_group nd_region_attribute_group = { .attrs = nd_region_attributes, .is_visible = region_visible, }; EXPORT_SYMBOL_GPL(nd_region_attribute_group); static struct device_type nd_blk_device_type = { .name = "nd_blk", .release = nd_region_release, }; static struct device_type nd_pmem_device_type = { .name = "nd_pmem", .release = nd_region_release, }; static struct device_type nd_volatile_device_type = { .name = "nd_volatile", .release = nd_region_release, }; bool is_nd_pmem(struct device *dev) { return dev ? dev->type == &nd_pmem_device_type : false; } bool is_nd_blk(struct device *dev) { return dev ? dev->type == &nd_blk_device_type : false; } bool is_nd_volatile(struct device *dev) { return dev ? dev->type == &nd_volatile_device_type : false; } u64 nd_region_interleave_set_cookie(struct nd_region *nd_region, struct nd_namespace_index *nsindex) { struct nd_interleave_set *nd_set = nd_region->nd_set; if (!nd_set) return 0; if (nsindex && __le16_to_cpu(nsindex->major) == 1 && __le16_to_cpu(nsindex->minor) == 1) return nd_set->cookie1; return nd_set->cookie2; } u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region) { struct nd_interleave_set *nd_set = nd_region->nd_set; if (nd_set) return nd_set->altcookie; return 0; } void nd_mapping_free_labels(struct nd_mapping *nd_mapping) { struct nd_label_ent *label_ent, *e; lockdep_assert_held(&nd_mapping->lock); list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) { list_del(&label_ent->list); kfree(label_ent); } } /* * When a namespace is activated create new seeds for the next * namespace, or namespace-personality to be configured. */ void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev) { nvdimm_bus_lock(dev); if (nd_region->ns_seed == dev) { nd_region_create_ns_seed(nd_region); } else if (is_nd_btt(dev)) { struct nd_btt *nd_btt = to_nd_btt(dev); if (nd_region->btt_seed == dev) nd_region_create_btt_seed(nd_region); if (nd_region->ns_seed == &nd_btt->ndns->dev) nd_region_create_ns_seed(nd_region); } else if (is_nd_pfn(dev)) { struct nd_pfn *nd_pfn = to_nd_pfn(dev); if (nd_region->pfn_seed == dev) nd_region_create_pfn_seed(nd_region); if (nd_region->ns_seed == &nd_pfn->ndns->dev) nd_region_create_ns_seed(nd_region); } else if (is_nd_dax(dev)) { struct nd_dax *nd_dax = to_nd_dax(dev); if (nd_region->dax_seed == dev) nd_region_create_dax_seed(nd_region); if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev) nd_region_create_ns_seed(nd_region); } nvdimm_bus_unlock(dev); } int nd_blk_region_init(struct nd_region *nd_region) { struct device *dev = &nd_region->dev; struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); if (!is_nd_blk(dev)) return 0; if (nd_region->ndr_mappings < 1) { dev_dbg(dev, "invalid BLK region\n"); return -ENXIO; } return to_nd_blk_region(dev)->enable(nvdimm_bus, dev); } /** * nd_region_acquire_lane - allocate and lock a lane * @nd_region: region id and number of lanes possible * * A lane correlates to a BLK-data-window and/or a log slot in the BTT. * We optimize for the common case where there are 256 lanes, one * per-cpu. For larger systems we need to lock to share lanes. For now * this implementation assumes the cost of maintaining an allocator for * free lanes is on the order of the lock hold time, so it implements a * static lane = cpu % num_lanes mapping. * * In the case of a BTT instance on top of a BLK namespace a lane may be * acquired recursively. We lock on the first instance. * * In the case of a BTT instance on top of PMEM, we only acquire a lane * for the BTT metadata updates. */ unsigned int nd_region_acquire_lane(struct nd_region *nd_region) { unsigned int cpu, lane; cpu = get_cpu(); if (nd_region->num_lanes < nr_cpu_ids) { struct nd_percpu_lane *ndl_lock, *ndl_count; lane = cpu % nd_region->num_lanes; ndl_count = per_cpu_ptr(nd_region->lane, cpu); ndl_lock = per_cpu_ptr(nd_region->lane, lane); if (ndl_count->count++ == 0) spin_lock(&ndl_lock->lock); } else lane = cpu; return lane; } EXPORT_SYMBOL(nd_region_acquire_lane); void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane) { if (nd_region->num_lanes < nr_cpu_ids) { unsigned int cpu = get_cpu(); struct nd_percpu_lane *ndl_lock, *ndl_count; ndl_count = per_cpu_ptr(nd_region->lane, cpu); ndl_lock = per_cpu_ptr(nd_region->lane, lane); if (--ndl_count->count == 0) spin_unlock(&ndl_lock->lock); put_cpu(); } put_cpu(); } EXPORT_SYMBOL(nd_region_release_lane); static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus, struct nd_region_desc *ndr_desc, struct device_type *dev_type, const char *caller) { struct nd_region *nd_region; struct device *dev; void *region_buf; unsigned int i; int ro = 0; for (i = 0; i < ndr_desc->num_mappings; i++) { struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; struct nvdimm *nvdimm = mapping->nvdimm; if ((mapping->start | mapping->size) % PAGE_SIZE) { dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not %ld aligned\n", caller, dev_name(&nvdimm->dev), i, PAGE_SIZE); return NULL; } if (test_bit(NDD_UNARMED, &nvdimm->flags)) ro = 1; if (test_bit(NDD_NOBLK, &nvdimm->flags) && dev_type == &nd_blk_device_type) { dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n", caller, dev_name(&nvdimm->dev), i); return NULL; } } if (dev_type == &nd_blk_device_type) { struct nd_blk_region_desc *ndbr_desc; struct nd_blk_region *ndbr; ndbr_desc = to_blk_region_desc(ndr_desc); ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping) * ndr_desc->num_mappings, GFP_KERNEL); if (ndbr) { nd_region = &ndbr->nd_region; ndbr->enable = ndbr_desc->enable; ndbr->do_io = ndbr_desc->do_io; } region_buf = ndbr; } else { nd_region = kzalloc(struct_size(nd_region, mapping, ndr_desc->num_mappings), GFP_KERNEL); region_buf = nd_region; } if (!region_buf) return NULL; nd_region->id = ida_simple_get(®ion_ida, 0, 0, GFP_KERNEL); if (nd_region->id < 0) goto err_id; nd_region->lane = alloc_percpu(struct nd_percpu_lane); if (!nd_region->lane) goto err_percpu; for (i = 0; i < nr_cpu_ids; i++) { struct nd_percpu_lane *ndl; ndl = per_cpu_ptr(nd_region->lane, i); spin_lock_init(&ndl->lock); ndl->count = 0; } for (i = 0; i < ndr_desc->num_mappings; i++) { struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; struct nvdimm *nvdimm = mapping->nvdimm; nd_region->mapping[i].nvdimm = nvdimm; nd_region->mapping[i].start = mapping->start; nd_region->mapping[i].size = mapping->size; nd_region->mapping[i].position = mapping->position; INIT_LIST_HEAD(&nd_region->mapping[i].labels); mutex_init(&nd_region->mapping[i].lock); get_device(&nvdimm->dev); } nd_region->ndr_mappings = ndr_desc->num_mappings; nd_region->provider_data = ndr_desc->provider_data; nd_region->nd_set = ndr_desc->nd_set; nd_region->num_lanes = ndr_desc->num_lanes; nd_region->flags = ndr_desc->flags; nd_region->ro = ro; nd_region->numa_node = ndr_desc->numa_node; nd_region->target_node = ndr_desc->target_node; ida_init(&nd_region->ns_ida); ida_init(&nd_region->btt_ida); ida_init(&nd_region->pfn_ida); ida_init(&nd_region->dax_ida); dev = &nd_region->dev; dev_set_name(dev, "region%d", nd_region->id); dev->parent = &nvdimm_bus->dev; dev->type = dev_type; dev->groups = ndr_desc->attr_groups; dev->of_node = ndr_desc->of_node; nd_region->ndr_size = resource_size(ndr_desc->res); nd_region->ndr_start = ndr_desc->res->start; if (ndr_desc->flush) nd_region->flush = ndr_desc->flush; else nd_region->flush = NULL; nd_device_register(dev); return nd_region; err_percpu: ida_simple_remove(®ion_ida, nd_region->id); err_id: kfree(region_buf); return NULL; } struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus, struct nd_region_desc *ndr_desc) { ndr_desc->num_lanes = ND_MAX_LANES; return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type, __func__); } EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create); struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus, struct nd_region_desc *ndr_desc) { if (ndr_desc->num_mappings > 1) return NULL; ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES); return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type, __func__); } EXPORT_SYMBOL_GPL(nvdimm_blk_region_create); struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus, struct nd_region_desc *ndr_desc) { ndr_desc->num_lanes = ND_MAX_LANES; return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type, __func__); } EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create); int nvdimm_flush(struct nd_region *nd_region, struct bio *bio) { int rc = 0; if (!nd_region->flush) rc = generic_nvdimm_flush(nd_region); else { if (nd_region->flush(nd_region, bio)) rc = -EIO; } return rc; } /** * nvdimm_flush - flush any posted write queues between the cpu and pmem media * @nd_region: blk or interleaved pmem region */ int generic_nvdimm_flush(struct nd_region *nd_region) { struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev); int i, idx; /* * Try to encourage some diversity in flush hint addresses * across cpus assuming a limited number of flush hints. */ idx = this_cpu_read(flush_idx); idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8)); /* * The first wmb() is needed to 'sfence' all previous writes * such that they are architecturally visible for the platform * buffer flush. Note that we've already arranged for pmem * writes to avoid the cache via memcpy_flushcache(). The final * wmb() ensures ordering for the NVDIMM flush write. */ wmb(); for (i = 0; i < nd_region->ndr_mappings; i++) if (ndrd_get_flush_wpq(ndrd, i, 0)) writeq(1, ndrd_get_flush_wpq(ndrd, i, idx)); wmb(); return 0; } EXPORT_SYMBOL_GPL(nvdimm_flush); /** * nvdimm_has_flush - determine write flushing requirements * @nd_region: blk or interleaved pmem region * * Returns 1 if writes require flushing * Returns 0 if writes do not require flushing * Returns -ENXIO if flushing capability can not be determined */ int nvdimm_has_flush(struct nd_region *nd_region) { int i; /* no nvdimm or pmem api == flushing capability unknown */ if (nd_region->ndr_mappings == 0 || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API)) return -ENXIO; for (i = 0; i < nd_region->ndr_mappings; i++) { struct nd_mapping *nd_mapping = &nd_region->mapping[i]; struct nvdimm *nvdimm = nd_mapping->nvdimm; /* flush hints present / available */ if (nvdimm->num_flush) return 1; } /* * The platform defines dimm devices without hints, assume * platform persistence mechanism like ADR */ return 0; } EXPORT_SYMBOL_GPL(nvdimm_has_flush); int nvdimm_has_cache(struct nd_region *nd_region) { return is_nd_pmem(&nd_region->dev) && !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags); } EXPORT_SYMBOL_GPL(nvdimm_has_cache); bool is_nvdimm_sync(struct nd_region *nd_region) { if (is_nd_volatile(&nd_region->dev)) return true; return is_nd_pmem(&nd_region->dev) && !test_bit(ND_REGION_ASYNC, &nd_region->flags); } EXPORT_SYMBOL_GPL(is_nvdimm_sync); struct conflict_context { struct nd_region *nd_region; resource_size_t start, size; }; static int region_conflict(struct device *dev, void *data) { struct nd_region *nd_region; struct conflict_context *ctx = data; resource_size_t res_end, region_end, region_start; if (!is_memory(dev)) return 0; nd_region = to_nd_region(dev); if (nd_region == ctx->nd_region) return 0; res_end = ctx->start + ctx->size; region_start = nd_region->ndr_start; region_end = region_start + nd_region->ndr_size; if (ctx->start >= region_start && ctx->start < region_end) return -EBUSY; if (res_end > region_start && res_end <= region_end) return -EBUSY; return 0; } int nd_region_conflict(struct nd_region *nd_region, resource_size_t start, resource_size_t size) { struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev); struct conflict_context ctx = { .nd_region = nd_region, .start = start, .size = size, }; return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict); } void __exit nd_region_devs_exit(void) { ida_destroy(®ion_ida); }