/* * xfrm_policy.c * * Changes: * Mitsuru KANDA @USAGI * Kazunori MIYAZAWA @USAGI * Kunihiro Ishiguro * IPv6 support * Kazunori MIYAZAWA @USAGI * YOSHIFUJI Hideaki * Split up af-specific portion * Derek Atkins Add the post_input processor * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "xfrm_hash.h" DEFINE_MUTEX(xfrm_cfg_mutex); EXPORT_SYMBOL(xfrm_cfg_mutex); static DEFINE_RWLOCK(xfrm_policy_lock); unsigned int xfrm_policy_count[XFRM_POLICY_MAX*2]; EXPORT_SYMBOL(xfrm_policy_count); static DEFINE_RWLOCK(xfrm_policy_afinfo_lock); static struct xfrm_policy_afinfo *xfrm_policy_afinfo[NPROTO]; static kmem_cache_t *xfrm_dst_cache __read_mostly; static struct work_struct xfrm_policy_gc_work; static HLIST_HEAD(xfrm_policy_gc_list); static DEFINE_SPINLOCK(xfrm_policy_gc_lock); static struct xfrm_policy_afinfo *xfrm_policy_get_afinfo(unsigned short family); static void xfrm_policy_put_afinfo(struct xfrm_policy_afinfo *afinfo); static struct xfrm_policy_afinfo *xfrm_policy_lock_afinfo(unsigned int family); static void xfrm_policy_unlock_afinfo(struct xfrm_policy_afinfo *afinfo); static inline int __xfrm4_selector_match(struct xfrm_selector *sel, struct flowi *fl) { return addr_match(&fl->fl4_dst, &sel->daddr, sel->prefixlen_d) && addr_match(&fl->fl4_src, &sel->saddr, sel->prefixlen_s) && !((xfrm_flowi_dport(fl) ^ sel->dport) & sel->dport_mask) && !((xfrm_flowi_sport(fl) ^ sel->sport) & sel->sport_mask) && (fl->proto == sel->proto || !sel->proto) && (fl->oif == sel->ifindex || !sel->ifindex); } static inline int __xfrm6_selector_match(struct xfrm_selector *sel, struct flowi *fl) { return addr_match(&fl->fl6_dst, &sel->daddr, sel->prefixlen_d) && addr_match(&fl->fl6_src, &sel->saddr, sel->prefixlen_s) && !((xfrm_flowi_dport(fl) ^ sel->dport) & sel->dport_mask) && !((xfrm_flowi_sport(fl) ^ sel->sport) & sel->sport_mask) && (fl->proto == sel->proto || !sel->proto) && (fl->oif == sel->ifindex || !sel->ifindex); } int xfrm_selector_match(struct xfrm_selector *sel, struct flowi *fl, unsigned short family) { switch (family) { case AF_INET: return __xfrm4_selector_match(sel, fl); case AF_INET6: return __xfrm6_selector_match(sel, fl); } return 0; } int xfrm_register_type(struct xfrm_type *type, unsigned short family) { struct xfrm_policy_afinfo *afinfo = xfrm_policy_lock_afinfo(family); struct xfrm_type **typemap; int err = 0; if (unlikely(afinfo == NULL)) return -EAFNOSUPPORT; typemap = afinfo->type_map; if (likely(typemap[type->proto] == NULL)) typemap[type->proto] = type; else err = -EEXIST; xfrm_policy_unlock_afinfo(afinfo); return err; } EXPORT_SYMBOL(xfrm_register_type); int xfrm_unregister_type(struct xfrm_type *type, unsigned short family) { struct xfrm_policy_afinfo *afinfo = xfrm_policy_lock_afinfo(family); struct xfrm_type **typemap; int err = 0; if (unlikely(afinfo == NULL)) return -EAFNOSUPPORT; typemap = afinfo->type_map; if (unlikely(typemap[type->proto] != type)) err = -ENOENT; else typemap[type->proto] = NULL; xfrm_policy_unlock_afinfo(afinfo); return err; } EXPORT_SYMBOL(xfrm_unregister_type); struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family) { struct xfrm_policy_afinfo *afinfo; struct xfrm_type **typemap; struct xfrm_type *type; int modload_attempted = 0; retry: afinfo = xfrm_policy_get_afinfo(family); if (unlikely(afinfo == NULL)) return NULL; typemap = afinfo->type_map; type = typemap[proto]; if (unlikely(type && !try_module_get(type->owner))) type = NULL; if (!type && !modload_attempted) { xfrm_policy_put_afinfo(afinfo); request_module("xfrm-type-%d-%d", (int) family, (int) proto); modload_attempted = 1; goto retry; } xfrm_policy_put_afinfo(afinfo); return type; } int xfrm_dst_lookup(struct xfrm_dst **dst, struct flowi *fl, unsigned short family) { struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family); int err = 0; if (unlikely(afinfo == NULL)) return -EAFNOSUPPORT; if (likely(afinfo->dst_lookup != NULL)) err = afinfo->dst_lookup(dst, fl); else err = -EINVAL; xfrm_policy_put_afinfo(afinfo); return err; } EXPORT_SYMBOL(xfrm_dst_lookup); void xfrm_put_type(struct xfrm_type *type) { module_put(type->owner); } int xfrm_register_mode(struct xfrm_mode *mode, int family) { struct xfrm_policy_afinfo *afinfo; struct xfrm_mode **modemap; int err; if (unlikely(mode->encap >= XFRM_MODE_MAX)) return -EINVAL; afinfo = xfrm_policy_lock_afinfo(family); if (unlikely(afinfo == NULL)) return -EAFNOSUPPORT; err = -EEXIST; modemap = afinfo->mode_map; if (likely(modemap[mode->encap] == NULL)) { modemap[mode->encap] = mode; err = 0; } xfrm_policy_unlock_afinfo(afinfo); return err; } EXPORT_SYMBOL(xfrm_register_mode); int xfrm_unregister_mode(struct xfrm_mode *mode, int family) { struct xfrm_policy_afinfo *afinfo; struct xfrm_mode **modemap; int err; if (unlikely(mode->encap >= XFRM_MODE_MAX)) return -EINVAL; afinfo = xfrm_policy_lock_afinfo(family); if (unlikely(afinfo == NULL)) return -EAFNOSUPPORT; err = -ENOENT; modemap = afinfo->mode_map; if (likely(modemap[mode->encap] == mode)) { modemap[mode->encap] = NULL; err = 0; } xfrm_policy_unlock_afinfo(afinfo); return err; } EXPORT_SYMBOL(xfrm_unregister_mode); struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family) { struct xfrm_policy_afinfo *afinfo; struct xfrm_mode *mode; int modload_attempted = 0; if (unlikely(encap >= XFRM_MODE_MAX)) return NULL; retry: afinfo = xfrm_policy_get_afinfo(family); if (unlikely(afinfo == NULL)) return NULL; mode = afinfo->mode_map[encap]; if (unlikely(mode && !try_module_get(mode->owner))) mode = NULL; if (!mode && !modload_attempted) { xfrm_policy_put_afinfo(afinfo); request_module("xfrm-mode-%d-%d", family, encap); modload_attempted = 1; goto retry; } xfrm_policy_put_afinfo(afinfo); return mode; } void xfrm_put_mode(struct xfrm_mode *mode) { module_put(mode->owner); } static inline unsigned long make_jiffies(long secs) { if (secs >= (MAX_SCHEDULE_TIMEOUT-1)/HZ) return MAX_SCHEDULE_TIMEOUT-1; else return secs*HZ; } static void xfrm_policy_timer(unsigned long data) { struct xfrm_policy *xp = (struct xfrm_policy*)data; unsigned long now = (unsigned long)xtime.tv_sec; long next = LONG_MAX; int warn = 0; int dir; read_lock(&xp->lock); if (xp->dead) goto out; dir = xfrm_policy_id2dir(xp->index); if (xp->lft.hard_add_expires_seconds) { long tmo = xp->lft.hard_add_expires_seconds + xp->curlft.add_time - now; if (tmo <= 0) goto expired; if (tmo < next) next = tmo; } if (xp->lft.hard_use_expires_seconds) { long tmo = xp->lft.hard_use_expires_seconds + (xp->curlft.use_time ? : xp->curlft.add_time) - now; if (tmo <= 0) goto expired; if (tmo < next) next = tmo; } if (xp->lft.soft_add_expires_seconds) { long tmo = xp->lft.soft_add_expires_seconds + xp->curlft.add_time - now; if (tmo <= 0) { warn = 1; tmo = XFRM_KM_TIMEOUT; } if (tmo < next) next = tmo; } if (xp->lft.soft_use_expires_seconds) { long tmo = xp->lft.soft_use_expires_seconds + (xp->curlft.use_time ? : xp->curlft.add_time) - now; if (tmo <= 0) { warn = 1; tmo = XFRM_KM_TIMEOUT; } if (tmo < next) next = tmo; } if (warn) km_policy_expired(xp, dir, 0, 0); if (next != LONG_MAX && !mod_timer(&xp->timer, jiffies + make_jiffies(next))) xfrm_pol_hold(xp); out: read_unlock(&xp->lock); xfrm_pol_put(xp); return; expired: read_unlock(&xp->lock); if (!xfrm_policy_delete(xp, dir)) km_policy_expired(xp, dir, 1, 0); xfrm_pol_put(xp); } /* Allocate xfrm_policy. Not used here, it is supposed to be used by pfkeyv2 * SPD calls. */ struct xfrm_policy *xfrm_policy_alloc(gfp_t gfp) { struct xfrm_policy *policy; policy = kzalloc(sizeof(struct xfrm_policy), gfp); if (policy) { INIT_HLIST_NODE(&policy->bydst); INIT_HLIST_NODE(&policy->byidx); rwlock_init(&policy->lock); atomic_set(&policy->refcnt, 1); init_timer(&policy->timer); policy->timer.data = (unsigned long)policy; policy->timer.function = xfrm_policy_timer; } return policy; } EXPORT_SYMBOL(xfrm_policy_alloc); /* Destroy xfrm_policy: descendant resources must be released to this moment. */ void __xfrm_policy_destroy(struct xfrm_policy *policy) { BUG_ON(!policy->dead); BUG_ON(policy->bundles); if (del_timer(&policy->timer)) BUG(); security_xfrm_policy_free(policy); kfree(policy); } EXPORT_SYMBOL(__xfrm_policy_destroy); static void xfrm_policy_gc_kill(struct xfrm_policy *policy) { struct dst_entry *dst; while ((dst = policy->bundles) != NULL) { policy->bundles = dst->next; dst_free(dst); } if (del_timer(&policy->timer)) atomic_dec(&policy->refcnt); if (atomic_read(&policy->refcnt) > 1) flow_cache_flush(); xfrm_pol_put(policy); } static void xfrm_policy_gc_task(struct work_struct *work) { struct xfrm_policy *policy; struct hlist_node *entry, *tmp; struct hlist_head gc_list; spin_lock_bh(&xfrm_policy_gc_lock); gc_list.first = xfrm_policy_gc_list.first; INIT_HLIST_HEAD(&xfrm_policy_gc_list); spin_unlock_bh(&xfrm_policy_gc_lock); hlist_for_each_entry_safe(policy, entry, tmp, &gc_list, bydst) xfrm_policy_gc_kill(policy); } /* Rule must be locked. Release descentant resources, announce * entry dead. The rule must be unlinked from lists to the moment. */ static void xfrm_policy_kill(struct xfrm_policy *policy) { int dead; write_lock_bh(&policy->lock); dead = policy->dead; policy->dead = 1; write_unlock_bh(&policy->lock); if (unlikely(dead)) { WARN_ON(1); return; } spin_lock(&xfrm_policy_gc_lock); hlist_add_head(&policy->bydst, &xfrm_policy_gc_list); spin_unlock(&xfrm_policy_gc_lock); schedule_work(&xfrm_policy_gc_work); } struct xfrm_policy_hash { struct hlist_head *table; unsigned int hmask; }; static struct hlist_head xfrm_policy_inexact[XFRM_POLICY_MAX*2]; static struct xfrm_policy_hash xfrm_policy_bydst[XFRM_POLICY_MAX*2] __read_mostly; static struct hlist_head *xfrm_policy_byidx __read_mostly; static unsigned int xfrm_idx_hmask __read_mostly; static unsigned int xfrm_policy_hashmax __read_mostly = 1 * 1024 * 1024; static inline unsigned int idx_hash(u32 index) { return __idx_hash(index, xfrm_idx_hmask); } static struct hlist_head *policy_hash_bysel(struct xfrm_selector *sel, unsigned short family, int dir) { unsigned int hmask = xfrm_policy_bydst[dir].hmask; unsigned int hash = __sel_hash(sel, family, hmask); return (hash == hmask + 1 ? &xfrm_policy_inexact[dir] : xfrm_policy_bydst[dir].table + hash); } static struct hlist_head *policy_hash_direct(xfrm_address_t *daddr, xfrm_address_t *saddr, unsigned short family, int dir) { unsigned int hmask = xfrm_policy_bydst[dir].hmask; unsigned int hash = __addr_hash(daddr, saddr, family, hmask); return xfrm_policy_bydst[dir].table + hash; } static void xfrm_dst_hash_transfer(struct hlist_head *list, struct hlist_head *ndsttable, unsigned int nhashmask) { struct hlist_node *entry, *tmp; struct xfrm_policy *pol; hlist_for_each_entry_safe(pol, entry, tmp, list, bydst) { unsigned int h; h = __addr_hash(&pol->selector.daddr, &pol->selector.saddr, pol->family, nhashmask); hlist_add_head(&pol->bydst, ndsttable+h); } } static void xfrm_idx_hash_transfer(struct hlist_head *list, struct hlist_head *nidxtable, unsigned int nhashmask) { struct hlist_node *entry, *tmp; struct xfrm_policy *pol; hlist_for_each_entry_safe(pol, entry, tmp, list, byidx) { unsigned int h; h = __idx_hash(pol->index, nhashmask); hlist_add_head(&pol->byidx, nidxtable+h); } } static unsigned long xfrm_new_hash_mask(unsigned int old_hmask) { return ((old_hmask + 1) << 1) - 1; } static void xfrm_bydst_resize(int dir) { unsigned int hmask = xfrm_policy_bydst[dir].hmask; unsigned int nhashmask = xfrm_new_hash_mask(hmask); unsigned int nsize = (nhashmask + 1) * sizeof(struct hlist_head); struct hlist_head *odst = xfrm_policy_bydst[dir].table; struct hlist_head *ndst = xfrm_hash_alloc(nsize); int i; if (!ndst) return; write_lock_bh(&xfrm_policy_lock); for (i = hmask; i >= 0; i--) xfrm_dst_hash_transfer(odst + i, ndst, nhashmask); xfrm_policy_bydst[dir].table = ndst; xfrm_policy_bydst[dir].hmask = nhashmask; write_unlock_bh(&xfrm_policy_lock); xfrm_hash_free(odst, (hmask + 1) * sizeof(struct hlist_head)); } static void xfrm_byidx_resize(int total) { unsigned int hmask = xfrm_idx_hmask; unsigned int nhashmask = xfrm_new_hash_mask(hmask); unsigned int nsize = (nhashmask + 1) * sizeof(struct hlist_head); struct hlist_head *oidx = xfrm_policy_byidx; struct hlist_head *nidx = xfrm_hash_alloc(nsize); int i; if (!nidx) return; write_lock_bh(&xfrm_policy_lock); for (i = hmask; i >= 0; i--) xfrm_idx_hash_transfer(oidx + i, nidx, nhashmask); xfrm_policy_byidx = nidx; xfrm_idx_hmask = nhashmask; write_unlock_bh(&xfrm_policy_lock); xfrm_hash_free(oidx, (hmask + 1) * sizeof(struct hlist_head)); } static inline int xfrm_bydst_should_resize(int dir, int *total) { unsigned int cnt = xfrm_policy_count[dir]; unsigned int hmask = xfrm_policy_bydst[dir].hmask; if (total) *total += cnt; if ((hmask + 1) < xfrm_policy_hashmax && cnt > hmask) return 1; return 0; } static inline int xfrm_byidx_should_resize(int total) { unsigned int hmask = xfrm_idx_hmask; if ((hmask + 1) < xfrm_policy_hashmax && total > hmask) return 1; return 0; } static DEFINE_MUTEX(hash_resize_mutex); static void xfrm_hash_resize(struct work_struct *__unused) { int dir, total; mutex_lock(&hash_resize_mutex); total = 0; for (dir = 0; dir < XFRM_POLICY_MAX * 2; dir++) { if (xfrm_bydst_should_resize(dir, &total)) xfrm_bydst_resize(dir); } if (xfrm_byidx_should_resize(total)) xfrm_byidx_resize(total); mutex_unlock(&hash_resize_mutex); } static DECLARE_WORK(xfrm_hash_work, xfrm_hash_resize); /* Generate new index... KAME seems to generate them ordered by cost * of an absolute inpredictability of ordering of rules. This will not pass. */ static u32 xfrm_gen_index(u8 type, int dir) { static u32 idx_generator; for (;;) { struct hlist_node *entry; struct hlist_head *list; struct xfrm_policy *p; u32 idx; int found; idx = (idx_generator | dir); idx_generator += 8; if (idx == 0) idx = 8; list = xfrm_policy_byidx + idx_hash(idx); found = 0; hlist_for_each_entry(p, entry, list, byidx) { if (p->index == idx) { found = 1; break; } } if (!found) return idx; } } static inline int selector_cmp(struct xfrm_selector *s1, struct xfrm_selector *s2) { u32 *p1 = (u32 *) s1; u32 *p2 = (u32 *) s2; int len = sizeof(struct xfrm_selector) / sizeof(u32); int i; for (i = 0; i < len; i++) { if (p1[i] != p2[i]) return 1; } return 0; } int xfrm_policy_insert(int dir, struct xfrm_policy *policy, int excl) { struct xfrm_policy *pol; struct xfrm_policy *delpol; struct hlist_head *chain; struct hlist_node *entry, *newpos, *last; struct dst_entry *gc_list; write_lock_bh(&xfrm_policy_lock); chain = policy_hash_bysel(&policy->selector, policy->family, dir); delpol = NULL; newpos = NULL; last = NULL; hlist_for_each_entry(pol, entry, chain, bydst) { if (!delpol && pol->type == policy->type && !selector_cmp(&pol->selector, &policy->selector) && xfrm_sec_ctx_match(pol->security, policy->security)) { if (excl) { write_unlock_bh(&xfrm_policy_lock); return -EEXIST; } delpol = pol; if (policy->priority > pol->priority) continue; } else if (policy->priority >= pol->priority) { last = &pol->bydst; continue; } if (!newpos) newpos = &pol->bydst; if (delpol) break; last = &pol->bydst; } if (!newpos) newpos = last; if (newpos) hlist_add_after(newpos, &policy->bydst); else hlist_add_head(&policy->bydst, chain); xfrm_pol_hold(policy); xfrm_policy_count[dir]++; atomic_inc(&flow_cache_genid); if (delpol) { hlist_del(&delpol->bydst); hlist_del(&delpol->byidx); xfrm_policy_count[dir]--; } policy->index = delpol ? delpol->index : xfrm_gen_index(policy->type, dir); hlist_add_head(&policy->byidx, xfrm_policy_byidx+idx_hash(policy->index)); policy->curlft.add_time = (unsigned long)xtime.tv_sec; policy->curlft.use_time = 0; if (!mod_timer(&policy->timer, jiffies + HZ)) xfrm_pol_hold(policy); write_unlock_bh(&xfrm_policy_lock); if (delpol) xfrm_policy_kill(delpol); else if (xfrm_bydst_should_resize(dir, NULL)) schedule_work(&xfrm_hash_work); read_lock_bh(&xfrm_policy_lock); gc_list = NULL; entry = &policy->bydst; hlist_for_each_entry_continue(policy, entry, bydst) { struct dst_entry *dst; write_lock(&policy->lock); dst = policy->bundles; if (dst) { struct dst_entry *tail = dst; while (tail->next) tail = tail->next; tail->next = gc_list; gc_list = dst; policy->bundles = NULL; } write_unlock(&policy->lock); } read_unlock_bh(&xfrm_policy_lock); while (gc_list) { struct dst_entry *dst = gc_list; gc_list = dst->next; dst_free(dst); } return 0; } EXPORT_SYMBOL(xfrm_policy_insert); struct xfrm_policy *xfrm_policy_bysel_ctx(u8 type, int dir, struct xfrm_selector *sel, struct xfrm_sec_ctx *ctx, int delete) { struct xfrm_policy *pol, *ret; struct hlist_head *chain; struct hlist_node *entry; write_lock_bh(&xfrm_policy_lock); chain = policy_hash_bysel(sel, sel->family, dir); ret = NULL; hlist_for_each_entry(pol, entry, chain, bydst) { if (pol->type == type && !selector_cmp(sel, &pol->selector) && xfrm_sec_ctx_match(ctx, pol->security)) { xfrm_pol_hold(pol); if (delete) { hlist_del(&pol->bydst); hlist_del(&pol->byidx); xfrm_policy_count[dir]--; } ret = pol; break; } } write_unlock_bh(&xfrm_policy_lock); if (ret && delete) { atomic_inc(&flow_cache_genid); xfrm_policy_kill(ret); } return ret; } EXPORT_SYMBOL(xfrm_policy_bysel_ctx); struct xfrm_policy *xfrm_policy_byid(u8 type, int dir, u32 id, int delete) { struct xfrm_policy *pol, *ret; struct hlist_head *chain; struct hlist_node *entry; write_lock_bh(&xfrm_policy_lock); chain = xfrm_policy_byidx + idx_hash(id); ret = NULL; hlist_for_each_entry(pol, entry, chain, byidx) { if (pol->type == type && pol->index == id) { xfrm_pol_hold(pol); if (delete) { hlist_del(&pol->bydst); hlist_del(&pol->byidx); xfrm_policy_count[dir]--; } ret = pol; break; } } write_unlock_bh(&xfrm_policy_lock); if (ret && delete) { atomic_inc(&flow_cache_genid); xfrm_policy_kill(ret); } return ret; } EXPORT_SYMBOL(xfrm_policy_byid); void xfrm_policy_flush(u8 type, struct xfrm_audit *audit_info) { int dir; write_lock_bh(&xfrm_policy_lock); for (dir = 0; dir < XFRM_POLICY_MAX; dir++) { struct xfrm_policy *pol; struct hlist_node *entry; int i, killed; killed = 0; again1: hlist_for_each_entry(pol, entry, &xfrm_policy_inexact[dir], bydst) { if (pol->type != type) continue; hlist_del(&pol->bydst); hlist_del(&pol->byidx); write_unlock_bh(&xfrm_policy_lock); xfrm_audit_log(audit_info->loginuid, audit_info->secid, AUDIT_MAC_IPSEC_DELSPD, 1, pol, NULL); xfrm_policy_kill(pol); killed++; write_lock_bh(&xfrm_policy_lock); goto again1; } for (i = xfrm_policy_bydst[dir].hmask; i >= 0; i--) { again2: hlist_for_each_entry(pol, entry, xfrm_policy_bydst[dir].table + i, bydst) { if (pol->type != type) continue; hlist_del(&pol->bydst); hlist_del(&pol->byidx); write_unlock_bh(&xfrm_policy_lock); xfrm_audit_log(audit_info->loginuid, audit_info->secid, AUDIT_MAC_IPSEC_DELSPD, 1, pol, NULL); xfrm_policy_kill(pol); killed++; write_lock_bh(&xfrm_policy_lock); goto again2; } } xfrm_policy_count[dir] -= killed; } atomic_inc(&flow_cache_genid); write_unlock_bh(&xfrm_policy_lock); } EXPORT_SYMBOL(xfrm_policy_flush); int xfrm_policy_walk(u8 type, int (*func)(struct xfrm_policy *, int, int, void*), void *data) { struct xfrm_policy *pol, *last = NULL; struct hlist_node *entry; int dir, last_dir = 0, count, error; read_lock_bh(&xfrm_policy_lock); count = 0; for (dir = 0; dir < 2*XFRM_POLICY_MAX; dir++) { struct hlist_head *table = xfrm_policy_bydst[dir].table; int i; hlist_for_each_entry(pol, entry, &xfrm_policy_inexact[dir], bydst) { if (pol->type != type) continue; if (last) { error = func(last, last_dir % XFRM_POLICY_MAX, count, data); if (error) goto out; } last = pol; last_dir = dir; count++; } for (i = xfrm_policy_bydst[dir].hmask; i >= 0; i--) { hlist_for_each_entry(pol, entry, table + i, bydst) { if (pol->type != type) continue; if (last) { error = func(last, last_dir % XFRM_POLICY_MAX, count, data); if (error) goto out; } last = pol; last_dir = dir; count++; } } } if (count == 0) { error = -ENOENT; goto out; } error = func(last, last_dir % XFRM_POLICY_MAX, 0, data); out: read_unlock_bh(&xfrm_policy_lock); return error; } EXPORT_SYMBOL(xfrm_policy_walk); /* * Find policy to apply to this flow. * * Returns 0 if policy found, else an -errno. */ static int xfrm_policy_match(struct xfrm_policy *pol, struct flowi *fl, u8 type, u16 family, int dir) { struct xfrm_selector *sel = &pol->selector; int match, ret = -ESRCH; if (pol->family != family || pol->type != type) return ret; match = xfrm_selector_match(sel, fl, family); if (match) ret = security_xfrm_policy_lookup(pol, fl->secid, dir); return ret; } static struct xfrm_policy *xfrm_policy_lookup_bytype(u8 type, struct flowi *fl, u16 family, u8 dir) { int err; struct xfrm_policy *pol, *ret; xfrm_address_t *daddr, *saddr; struct hlist_node *entry; struct hlist_head *chain; u32 priority = ~0U; daddr = xfrm_flowi_daddr(fl, family); saddr = xfrm_flowi_saddr(fl, family); if (unlikely(!daddr || !saddr)) return NULL; read_lock_bh(&xfrm_policy_lock); chain = policy_hash_direct(daddr, saddr, family, dir); ret = NULL; hlist_for_each_entry(pol, entry, chain, bydst) { err = xfrm_policy_match(pol, fl, type, family, dir); if (err) { if (err == -ESRCH) continue; else { ret = ERR_PTR(err); goto fail; } } else { ret = pol; priority = ret->priority; break; } } chain = &xfrm_policy_inexact[dir]; hlist_for_each_entry(pol, entry, chain, bydst) { err = xfrm_policy_match(pol, fl, type, family, dir); if (err) { if (err == -ESRCH) continue; else { ret = ERR_PTR(err); goto fail; } } else if (pol->priority < priority) { ret = pol; break; } } if (ret) xfrm_pol_hold(ret); fail: read_unlock_bh(&xfrm_policy_lock); return ret; } static int xfrm_policy_lookup(struct flowi *fl, u16 family, u8 dir, void **objp, atomic_t **obj_refp) { struct xfrm_policy *pol; int err = 0; #ifdef CONFIG_XFRM_SUB_POLICY pol = xfrm_policy_lookup_bytype(XFRM_POLICY_TYPE_SUB, fl, family, dir); if (IS_ERR(pol)) { err = PTR_ERR(pol); pol = NULL; } if (pol || err) goto end; #endif pol = xfrm_policy_lookup_bytype(XFRM_POLICY_TYPE_MAIN, fl, family, dir); if (IS_ERR(pol)) { err = PTR_ERR(pol); pol = NULL; } #ifdef CONFIG_XFRM_SUB_POLICY end: #endif if ((*objp = (void *) pol) != NULL) *obj_refp = &pol->refcnt; return err; } static inline int policy_to_flow_dir(int dir) { if (XFRM_POLICY_IN == FLOW_DIR_IN && XFRM_POLICY_OUT == FLOW_DIR_OUT && XFRM_POLICY_FWD == FLOW_DIR_FWD) return dir; switch (dir) { default: case XFRM_POLICY_IN: return FLOW_DIR_IN; case XFRM_POLICY_OUT: return FLOW_DIR_OUT; case XFRM_POLICY_FWD: return FLOW_DIR_FWD; }; } static struct xfrm_policy *xfrm_sk_policy_lookup(struct sock *sk, int dir, struct flowi *fl) { struct xfrm_policy *pol; read_lock_bh(&xfrm_policy_lock); if ((pol = sk->sk_policy[dir]) != NULL) { int match = xfrm_selector_match(&pol->selector, fl, sk->sk_family); int err = 0; if (match) { err = security_xfrm_policy_lookup(pol, fl->secid, policy_to_flow_dir(dir)); if (!err) xfrm_pol_hold(pol); else if (err == -ESRCH) pol = NULL; else pol = ERR_PTR(err); } else pol = NULL; } read_unlock_bh(&xfrm_policy_lock); return pol; } static void __xfrm_policy_link(struct xfrm_policy *pol, int dir) { struct hlist_head *chain = policy_hash_bysel(&pol->selector, pol->family, dir); hlist_add_head(&pol->bydst, chain); hlist_add_head(&pol->byidx, xfrm_policy_byidx+idx_hash(pol->index)); xfrm_policy_count[dir]++; xfrm_pol_hold(pol); if (xfrm_bydst_should_resize(dir, NULL)) schedule_work(&xfrm_hash_work); } static struct xfrm_policy *__xfrm_policy_unlink(struct xfrm_policy *pol, int dir) { if (hlist_unhashed(&pol->bydst)) return NULL; hlist_del(&pol->bydst); hlist_del(&pol->byidx); xfrm_policy_count[dir]--; return pol; } int xfrm_policy_delete(struct xfrm_policy *pol, int dir) { write_lock_bh(&xfrm_policy_lock); pol = __xfrm_policy_unlink(pol, dir); write_unlock_bh(&xfrm_policy_lock); if (pol) { if (dir < XFRM_POLICY_MAX) atomic_inc(&flow_cache_genid); xfrm_policy_kill(pol); return 0; } return -ENOENT; } EXPORT_SYMBOL(xfrm_policy_delete); int xfrm_sk_policy_insert(struct sock *sk, int dir, struct xfrm_policy *pol) { struct xfrm_policy *old_pol; #ifdef CONFIG_XFRM_SUB_POLICY if (pol && pol->type != XFRM_POLICY_TYPE_MAIN) return -EINVAL; #endif write_lock_bh(&xfrm_policy_lock); old_pol = sk->sk_policy[dir]; sk->sk_policy[dir] = pol; if (pol) { pol->curlft.add_time = (unsigned long)xtime.tv_sec; pol->index = xfrm_gen_index(pol->type, XFRM_POLICY_MAX+dir); __xfrm_policy_link(pol, XFRM_POLICY_MAX+dir); } if (old_pol) __xfrm_policy_unlink(old_pol, XFRM_POLICY_MAX+dir); write_unlock_bh(&xfrm_policy_lock); if (old_pol) { xfrm_policy_kill(old_pol); } return 0; } static struct xfrm_policy *clone_policy(struct xfrm_policy *old, int dir) { struct xfrm_policy *newp = xfrm_policy_alloc(GFP_ATOMIC); if (newp) { newp->selector = old->selector; if (security_xfrm_policy_clone(old, newp)) { kfree(newp); return NULL; /* ENOMEM */ } newp->lft = old->lft; newp->curlft = old->curlft; newp->action = old->action; newp->flags = old->flags; newp->xfrm_nr = old->xfrm_nr; newp->index = old->index; newp->type = old->type; memcpy(newp->xfrm_vec, old->xfrm_vec, newp->xfrm_nr*sizeof(struct xfrm_tmpl)); write_lock_bh(&xfrm_policy_lock); __xfrm_policy_link(newp, XFRM_POLICY_MAX+dir); write_unlock_bh(&xfrm_policy_lock); xfrm_pol_put(newp); } return newp; } int __xfrm_sk_clone_policy(struct sock *sk) { struct xfrm_policy *p0 = sk->sk_policy[0], *p1 = sk->sk_policy[1]; sk->sk_policy[0] = sk->sk_policy[1] = NULL; if (p0 && (sk->sk_policy[0] = clone_policy(p0, 0)) == NULL) return -ENOMEM; if (p1 && (sk->sk_policy[1] = clone_policy(p1, 1)) == NULL) return -ENOMEM; return 0; } static int xfrm_get_saddr(xfrm_address_t *local, xfrm_address_t *remote, unsigned short family) { int err; struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family); if (unlikely(afinfo == NULL)) return -EINVAL; err = afinfo->get_saddr(local, remote); xfrm_policy_put_afinfo(afinfo); return err; } /* Resolve list of templates for the flow, given policy. */ static int xfrm_tmpl_resolve_one(struct xfrm_policy *policy, struct flowi *fl, struct xfrm_state **xfrm, unsigned short family) { int nx; int i, error; xfrm_address_t *daddr = xfrm_flowi_daddr(fl, family); xfrm_address_t *saddr = xfrm_flowi_saddr(fl, family); xfrm_address_t tmp; for (nx=0, i = 0; i < policy->xfrm_nr; i++) { struct xfrm_state *x; xfrm_address_t *remote = daddr; xfrm_address_t *local = saddr; struct xfrm_tmpl *tmpl = &policy->xfrm_vec[i]; if (tmpl->mode == XFRM_MODE_TUNNEL) { remote = &tmpl->id.daddr; local = &tmpl->saddr; family = tmpl->encap_family; if (xfrm_addr_any(local, family)) { error = xfrm_get_saddr(&tmp, remote, family); if (error) goto fail; local = &tmp; } } x = xfrm_state_find(remote, local, fl, tmpl, policy, &error, family); if (x && x->km.state == XFRM_STATE_VALID) { xfrm[nx++] = x; daddr = remote; saddr = local; continue; } if (x) { error = (x->km.state == XFRM_STATE_ERROR ? -EINVAL : -EAGAIN); xfrm_state_put(x); } if (!tmpl->optional) goto fail; } return nx; fail: for (nx--; nx>=0; nx--) xfrm_state_put(xfrm[nx]); return error; } static int xfrm_tmpl_resolve(struct xfrm_policy **pols, int npols, struct flowi *fl, struct xfrm_state **xfrm, unsigned short family) { struct xfrm_state *tp[XFRM_MAX_DEPTH]; struct xfrm_state **tpp = (npols > 1) ? tp : xfrm; int cnx = 0; int error; int ret; int i; for (i = 0; i < npols; i++) { if (cnx + pols[i]->xfrm_nr >= XFRM_MAX_DEPTH) { error = -ENOBUFS; goto fail; } ret = xfrm_tmpl_resolve_one(pols[i], fl, &tpp[cnx], family); if (ret < 0) { error = ret; goto fail; } else cnx += ret; } /* found states are sorted for outbound processing */ if (npols > 1) xfrm_state_sort(xfrm, tpp, cnx, family); return cnx; fail: for (cnx--; cnx>=0; cnx--) xfrm_state_put(tpp[cnx]); return error; } /* Check that the bundle accepts the flow and its components are * still valid. */ static struct dst_entry * xfrm_find_bundle(struct flowi *fl, struct xfrm_policy *policy, unsigned short family) { struct dst_entry *x; struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family); if (unlikely(afinfo == NULL)) return ERR_PTR(-EINVAL); x = afinfo->find_bundle(fl, policy); xfrm_policy_put_afinfo(afinfo); return x; } /* Allocate chain of dst_entry's, attach known xfrm's, calculate * all the metrics... Shortly, bundle a bundle. */ static int xfrm_bundle_create(struct xfrm_policy *policy, struct xfrm_state **xfrm, int nx, struct flowi *fl, struct dst_entry **dst_p, unsigned short family) { int err; struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family); if (unlikely(afinfo == NULL)) return -EINVAL; err = afinfo->bundle_create(policy, xfrm, nx, fl, dst_p); xfrm_policy_put_afinfo(afinfo); return err; } static int stale_bundle(struct dst_entry *dst); /* Main function: finds/creates a bundle for given flow. * * At the moment we eat a raw IP route. Mostly to speed up lookups * on interfaces with disabled IPsec. */ int xfrm_lookup(struct dst_entry **dst_p, struct flowi *fl, struct sock *sk, int flags) { struct xfrm_policy *policy; struct xfrm_policy *pols[XFRM_POLICY_TYPE_MAX]; int npols; int pol_dead; int xfrm_nr; int pi; struct xfrm_state *xfrm[XFRM_MAX_DEPTH]; struct dst_entry *dst, *dst_orig = *dst_p; int nx = 0; int err; u32 genid; u16 family; u8 dir = policy_to_flow_dir(XFRM_POLICY_OUT); restart: genid = atomic_read(&flow_cache_genid); policy = NULL; for (pi = 0; pi < ARRAY_SIZE(pols); pi++) pols[pi] = NULL; npols = 0; pol_dead = 0; xfrm_nr = 0; if (sk && sk->sk_policy[1]) { policy = xfrm_sk_policy_lookup(sk, XFRM_POLICY_OUT, fl); if (IS_ERR(policy)) return PTR_ERR(policy); } if (!policy) { /* To accelerate a bit... */ if ((dst_orig->flags & DST_NOXFRM) || !xfrm_policy_count[XFRM_POLICY_OUT]) return 0; policy = flow_cache_lookup(fl, dst_orig->ops->family, dir, xfrm_policy_lookup); if (IS_ERR(policy)) return PTR_ERR(policy); } if (!policy) return 0; family = dst_orig->ops->family; policy->curlft.use_time = (unsigned long)xtime.tv_sec; pols[0] = policy; npols ++; xfrm_nr += pols[0]->xfrm_nr; switch (policy->action) { case XFRM_POLICY_BLOCK: /* Prohibit the flow */ err = -EPERM; goto error; case XFRM_POLICY_ALLOW: #ifndef CONFIG_XFRM_SUB_POLICY if (policy->xfrm_nr == 0) { /* Flow passes not transformed. */ xfrm_pol_put(policy); return 0; } #endif /* Try to find matching bundle. * * LATER: help from flow cache. It is optional, this * is required only for output policy. */ dst = xfrm_find_bundle(fl, policy, family); if (IS_ERR(dst)) { err = PTR_ERR(dst); goto error; } if (dst) break; #ifdef CONFIG_XFRM_SUB_POLICY if (pols[0]->type != XFRM_POLICY_TYPE_MAIN) { pols[1] = xfrm_policy_lookup_bytype(XFRM_POLICY_TYPE_MAIN, fl, family, XFRM_POLICY_OUT); if (pols[1]) { if (IS_ERR(pols[1])) { err = PTR_ERR(pols[1]); goto error; } if (pols[1]->action == XFRM_POLICY_BLOCK) { err = -EPERM; goto error; } npols ++; xfrm_nr += pols[1]->xfrm_nr; } } /* * Because neither flowi nor bundle information knows about * transformation template size. On more than one policy usage * we can realize whether all of them is bypass or not after * they are searched. See above not-transformed bypass * is surrounded by non-sub policy configuration, too. */ if (xfrm_nr == 0) { /* Flow passes not transformed. */ xfrm_pols_put(pols, npols); return 0; } #endif nx = xfrm_tmpl_resolve(pols, npols, fl, xfrm, family); if (unlikely(nx<0)) { err = nx; if (err == -EAGAIN && flags) { DECLARE_WAITQUEUE(wait, current); add_wait_queue(&km_waitq, &wait); set_current_state(TASK_INTERRUPTIBLE); schedule(); set_current_state(TASK_RUNNING); remove_wait_queue(&km_waitq, &wait); nx = xfrm_tmpl_resolve(pols, npols, fl, xfrm, family); if (nx == -EAGAIN && signal_pending(current)) { err = -ERESTART; goto error; } if (nx == -EAGAIN || genid != atomic_read(&flow_cache_genid)) { xfrm_pols_put(pols, npols); goto restart; } err = nx; } if (err < 0) goto error; } if (nx == 0) { /* Flow passes not transformed. */ xfrm_pols_put(pols, npols); return 0; } dst = dst_orig; err = xfrm_bundle_create(policy, xfrm, nx, fl, &dst, family); if (unlikely(err)) { int i; for (i=0; ilock); pol_dead |= pols[pi]->dead; read_unlock_bh(&pols[pi]->lock); } write_lock_bh(&policy->lock); if (unlikely(pol_dead || stale_bundle(dst))) { /* Wow! While we worked on resolving, this * policy has gone. Retry. It is not paranoia, * we just cannot enlist new bundle to dead object. * We can't enlist stable bundles either. */ write_unlock_bh(&policy->lock); if (dst) dst_free(dst); err = -EHOSTUNREACH; goto error; } dst->next = policy->bundles; policy->bundles = dst; dst_hold(dst); write_unlock_bh(&policy->lock); } *dst_p = dst; dst_release(dst_orig); xfrm_pols_put(pols, npols); return 0; error: dst_release(dst_orig); xfrm_pols_put(pols, npols); *dst_p = NULL; return err; } EXPORT_SYMBOL(xfrm_lookup); static inline int xfrm_secpath_reject(int idx, struct sk_buff *skb, struct flowi *fl) { struct xfrm_state *x; int err; if (!skb->sp || idx < 0 || idx >= skb->sp->len) return 0; x = skb->sp->xvec[idx]; if (!x->type->reject) return 0; xfrm_state_hold(x); err = x->type->reject(x, skb, fl); xfrm_state_put(x); return err; } /* When skb is transformed back to its "native" form, we have to * check policy restrictions. At the moment we make this in maximally * stupid way. Shame on me. :-) Of course, connected sockets must * have policy cached at them. */ static inline int xfrm_state_ok(struct xfrm_tmpl *tmpl, struct xfrm_state *x, unsigned short family) { if (xfrm_state_kern(x)) return tmpl->optional && !xfrm_state_addr_cmp(tmpl, x, family); return x->id.proto == tmpl->id.proto && (x->id.spi == tmpl->id.spi || !tmpl->id.spi) && (x->props.reqid == tmpl->reqid || !tmpl->reqid) && x->props.mode == tmpl->mode && ((tmpl->aalgos & (1<props.aalgo)) || !(xfrm_id_proto_match(tmpl->id.proto, IPSEC_PROTO_ANY))) && !(x->props.mode != XFRM_MODE_TRANSPORT && xfrm_state_addr_cmp(tmpl, x, family)); } /* * 0 or more than 0 is returned when validation is succeeded (either bypass * because of optional transport mode, or next index of the mathced secpath * state with the template. * -1 is returned when no matching template is found. * Otherwise "-2 - errored_index" is returned. */ static inline int xfrm_policy_ok(struct xfrm_tmpl *tmpl, struct sec_path *sp, int start, unsigned short family) { int idx = start; if (tmpl->optional) { if (tmpl->mode == XFRM_MODE_TRANSPORT) return start; } else start = -1; for (; idx < sp->len; idx++) { if (xfrm_state_ok(tmpl, sp->xvec[idx], family)) return ++idx; if (sp->xvec[idx]->props.mode != XFRM_MODE_TRANSPORT) { if (start == -1) start = -2-idx; break; } } return start; } int xfrm_decode_session(struct sk_buff *skb, struct flowi *fl, unsigned short family) { struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family); int err; if (unlikely(afinfo == NULL)) return -EAFNOSUPPORT; afinfo->decode_session(skb, fl); err = security_xfrm_decode_session(skb, &fl->secid); xfrm_policy_put_afinfo(afinfo); return err; } EXPORT_SYMBOL(xfrm_decode_session); static inline int secpath_has_nontransport(struct sec_path *sp, int k, int *idxp) { for (; k < sp->len; k++) { if (sp->xvec[k]->props.mode != XFRM_MODE_TRANSPORT) { *idxp = k; return 1; } } return 0; } int __xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb, unsigned short family) { struct xfrm_policy *pol; struct xfrm_policy *pols[XFRM_POLICY_TYPE_MAX]; int npols = 0; int xfrm_nr; int pi; struct flowi fl; u8 fl_dir = policy_to_flow_dir(dir); int xerr_idx = -1; if (xfrm_decode_session(skb, &fl, family) < 0) return 0; nf_nat_decode_session(skb, &fl, family); /* First, check used SA against their selectors. */ if (skb->sp) { int i; for (i=skb->sp->len-1; i>=0; i--) { struct xfrm_state *x = skb->sp->xvec[i]; if (!xfrm_selector_match(&x->sel, &fl, family)) return 0; } } pol = NULL; if (sk && sk->sk_policy[dir]) { pol = xfrm_sk_policy_lookup(sk, dir, &fl); if (IS_ERR(pol)) return 0; } if (!pol) pol = flow_cache_lookup(&fl, family, fl_dir, xfrm_policy_lookup); if (IS_ERR(pol)) return 0; if (!pol) { if (skb->sp && secpath_has_nontransport(skb->sp, 0, &xerr_idx)) { xfrm_secpath_reject(xerr_idx, skb, &fl); return 0; } return 1; } pol->curlft.use_time = (unsigned long)xtime.tv_sec; pols[0] = pol; npols ++; #ifdef CONFIG_XFRM_SUB_POLICY if (pols[0]->type != XFRM_POLICY_TYPE_MAIN) { pols[1] = xfrm_policy_lookup_bytype(XFRM_POLICY_TYPE_MAIN, &fl, family, XFRM_POLICY_IN); if (pols[1]) { if (IS_ERR(pols[1])) return 0; pols[1]->curlft.use_time = (unsigned long)xtime.tv_sec; npols ++; } } #endif if (pol->action == XFRM_POLICY_ALLOW) { struct sec_path *sp; static struct sec_path dummy; struct xfrm_tmpl *tp[XFRM_MAX_DEPTH]; struct xfrm_tmpl *stp[XFRM_MAX_DEPTH]; struct xfrm_tmpl **tpp = tp; int ti = 0; int i, k; if ((sp = skb->sp) == NULL) sp = &dummy; for (pi = 0; pi < npols; pi++) { if (pols[pi] != pol && pols[pi]->action != XFRM_POLICY_ALLOW) goto reject; if (ti + pols[pi]->xfrm_nr >= XFRM_MAX_DEPTH) goto reject_error; for (i = 0; i < pols[pi]->xfrm_nr; i++) tpp[ti++] = &pols[pi]->xfrm_vec[i]; } xfrm_nr = ti; if (npols > 1) { xfrm_tmpl_sort(stp, tpp, xfrm_nr, family); tpp = stp; } /* For each tunnel xfrm, find the first matching tmpl. * For each tmpl before that, find corresponding xfrm. * Order is _important_. Later we will implement * some barriers, but at the moment barriers * are implied between each two transformations. */ for (i = xfrm_nr-1, k = 0; i >= 0; i--) { k = xfrm_policy_ok(tpp[i], sp, k, family); if (k < 0) { if (k < -1) /* "-2 - errored_index" returned */ xerr_idx = -(2+k); goto reject; } } if (secpath_has_nontransport(sp, k, &xerr_idx)) goto reject; xfrm_pols_put(pols, npols); return 1; } reject: xfrm_secpath_reject(xerr_idx, skb, &fl); reject_error: xfrm_pols_put(pols, npols); return 0; } EXPORT_SYMBOL(__xfrm_policy_check); int __xfrm_route_forward(struct sk_buff *skb, unsigned short family) { struct flowi fl; if (xfrm_decode_session(skb, &fl, family) < 0) return 0; return xfrm_lookup(&skb->dst, &fl, NULL, 0) == 0; } EXPORT_SYMBOL(__xfrm_route_forward); /* Optimize later using cookies and generation ids. */ static struct dst_entry *xfrm_dst_check(struct dst_entry *dst, u32 cookie) { /* Code (such as __xfrm4_bundle_create()) sets dst->obsolete * to "-1" to force all XFRM destinations to get validated by * dst_ops->check on every use. We do this because when a * normal route referenced by an XFRM dst is obsoleted we do * not go looking around for all parent referencing XFRM dsts * so that we can invalidate them. It is just too much work. * Instead we make the checks here on every use. For example: * * XFRM dst A --> IPv4 dst X * * X is the "xdst->route" of A (X is also the "dst->path" of A * in this example). If X is marked obsolete, "A" will not * notice. That's what we are validating here via the * stale_bundle() check. * * When a policy's bundle is pruned, we dst_free() the XFRM * dst which causes it's ->obsolete field to be set to a * positive non-zero integer. If an XFRM dst has been pruned * like this, we want to force a new route lookup. */ if (dst->obsolete < 0 && !stale_bundle(dst)) return dst; return NULL; } static int stale_bundle(struct dst_entry *dst) { return !xfrm_bundle_ok(NULL, (struct xfrm_dst *)dst, NULL, AF_UNSPEC, 0); } void xfrm_dst_ifdown(struct dst_entry *dst, struct net_device *dev) { while ((dst = dst->child) && dst->xfrm && dst->dev == dev) { dst->dev = &loopback_dev; dev_hold(&loopback_dev); dev_put(dev); } } EXPORT_SYMBOL(xfrm_dst_ifdown); static void xfrm_link_failure(struct sk_buff *skb) { /* Impossible. Such dst must be popped before reaches point of failure. */ return; } static struct dst_entry *xfrm_negative_advice(struct dst_entry *dst) { if (dst) { if (dst->obsolete) { dst_release(dst); dst = NULL; } } return dst; } static void prune_one_bundle(struct xfrm_policy *pol, int (*func)(struct dst_entry *), struct dst_entry **gc_list_p) { struct dst_entry *dst, **dstp; write_lock(&pol->lock); dstp = &pol->bundles; while ((dst=*dstp) != NULL) { if (func(dst)) { *dstp = dst->next; dst->next = *gc_list_p; *gc_list_p = dst; } else { dstp = &dst->next; } } write_unlock(&pol->lock); } static void xfrm_prune_bundles(int (*func)(struct dst_entry *)) { struct dst_entry *gc_list = NULL; int dir; read_lock_bh(&xfrm_policy_lock); for (dir = 0; dir < XFRM_POLICY_MAX * 2; dir++) { struct xfrm_policy *pol; struct hlist_node *entry; struct hlist_head *table; int i; hlist_for_each_entry(pol, entry, &xfrm_policy_inexact[dir], bydst) prune_one_bundle(pol, func, &gc_list); table = xfrm_policy_bydst[dir].table; for (i = xfrm_policy_bydst[dir].hmask; i >= 0; i--) { hlist_for_each_entry(pol, entry, table + i, bydst) prune_one_bundle(pol, func, &gc_list); } } read_unlock_bh(&xfrm_policy_lock); while (gc_list) { struct dst_entry *dst = gc_list; gc_list = dst->next; dst_free(dst); } } static int unused_bundle(struct dst_entry *dst) { return !atomic_read(&dst->__refcnt); } static void __xfrm_garbage_collect(void) { xfrm_prune_bundles(unused_bundle); } static int xfrm_flush_bundles(void) { xfrm_prune_bundles(stale_bundle); return 0; } void xfrm_init_pmtu(struct dst_entry *dst) { do { struct xfrm_dst *xdst = (struct xfrm_dst *)dst; u32 pmtu, route_mtu_cached; pmtu = dst_mtu(dst->child); xdst->child_mtu_cached = pmtu; pmtu = xfrm_state_mtu(dst->xfrm, pmtu); route_mtu_cached = dst_mtu(xdst->route); xdst->route_mtu_cached = route_mtu_cached; if (pmtu > route_mtu_cached) pmtu = route_mtu_cached; dst->metrics[RTAX_MTU-1] = pmtu; } while ((dst = dst->next)); } EXPORT_SYMBOL(xfrm_init_pmtu); /* Check that the bundle accepts the flow and its components are * still valid. */ int xfrm_bundle_ok(struct xfrm_policy *pol, struct xfrm_dst *first, struct flowi *fl, int family, int strict) { struct dst_entry *dst = &first->u.dst; struct xfrm_dst *last; u32 mtu; if (!dst_check(dst->path, ((struct xfrm_dst *)dst)->path_cookie) || (dst->dev && !netif_running(dst->dev))) return 0; last = NULL; do { struct xfrm_dst *xdst = (struct xfrm_dst *)dst; if (fl && !xfrm_selector_match(&dst->xfrm->sel, fl, family)) return 0; if (fl && pol && !security_xfrm_state_pol_flow_match(dst->xfrm, pol, fl)) return 0; if (dst->xfrm->km.state != XFRM_STATE_VALID) return 0; if (xdst->genid != dst->xfrm->genid) return 0; if (strict && fl && dst->xfrm->props.mode != XFRM_MODE_TUNNEL && !xfrm_state_addr_flow_check(dst->xfrm, fl, family)) return 0; mtu = dst_mtu(dst->child); if (xdst->child_mtu_cached != mtu) { last = xdst; xdst->child_mtu_cached = mtu; } if (!dst_check(xdst->route, xdst->route_cookie)) return 0; mtu = dst_mtu(xdst->route); if (xdst->route_mtu_cached != mtu) { last = xdst; xdst->route_mtu_cached = mtu; } dst = dst->child; } while (dst->xfrm); if (likely(!last)) return 1; mtu = last->child_mtu_cached; for (;;) { dst = &last->u.dst; mtu = xfrm_state_mtu(dst->xfrm, mtu); if (mtu > last->route_mtu_cached) mtu = last->route_mtu_cached; dst->metrics[RTAX_MTU-1] = mtu; if (last == first) break; last = last->u.next; last->child_mtu_cached = mtu; } return 1; } EXPORT_SYMBOL(xfrm_bundle_ok); #ifdef CONFIG_AUDITSYSCALL /* Audit addition and deletion of SAs and ipsec policy */ void xfrm_audit_log(uid_t auid, u32 sid, int type, int result, struct xfrm_policy *xp, struct xfrm_state *x) { char *secctx; u32 secctx_len; struct xfrm_sec_ctx *sctx = NULL; struct audit_buffer *audit_buf; int family; extern int audit_enabled; if (audit_enabled == 0) return; audit_buf = audit_log_start(current->audit_context, GFP_ATOMIC, type); if (audit_buf == NULL) return; switch(type) { case AUDIT_MAC_IPSEC_ADDSA: audit_log_format(audit_buf, "SAD add: auid=%u", auid); break; case AUDIT_MAC_IPSEC_DELSA: audit_log_format(audit_buf, "SAD delete: auid=%u", auid); break; case AUDIT_MAC_IPSEC_ADDSPD: audit_log_format(audit_buf, "SPD add: auid=%u", auid); break; case AUDIT_MAC_IPSEC_DELSPD: audit_log_format(audit_buf, "SPD delete: auid=%u", auid); break; default: return; } if (sid != 0 && security_secid_to_secctx(sid, &secctx, &secctx_len) == 0) audit_log_format(audit_buf, " subj=%s", secctx); else audit_log_task_context(audit_buf); if (xp) { family = xp->selector.family; if (xp->security) sctx = xp->security; } else { family = x->props.family; if (x->security) sctx = x->security; } if (sctx) audit_log_format(audit_buf, " sec_alg=%u sec_doi=%u sec_obj=%s", sctx->ctx_alg, sctx->ctx_doi, sctx->ctx_str); switch(family) { case AF_INET: { struct in_addr saddr, daddr; if (xp) { saddr.s_addr = xp->selector.saddr.a4; daddr.s_addr = xp->selector.daddr.a4; } else { saddr.s_addr = x->props.saddr.a4; daddr.s_addr = x->id.daddr.a4; } audit_log_format(audit_buf, " src=%u.%u.%u.%u dst=%u.%u.%u.%u", NIPQUAD(saddr), NIPQUAD(daddr)); } break; case AF_INET6: { struct in6_addr saddr6, daddr6; if (xp) { memcpy(&saddr6, xp->selector.saddr.a6, sizeof(struct in6_addr)); memcpy(&daddr6, xp->selector.daddr.a6, sizeof(struct in6_addr)); } else { memcpy(&saddr6, x->props.saddr.a6, sizeof(struct in6_addr)); memcpy(&daddr6, x->id.daddr.a6, sizeof(struct in6_addr)); } audit_log_format(audit_buf, " src=" NIP6_FMT "dst=" NIP6_FMT, NIP6(saddr6), NIP6(daddr6)); } break; } if (x) audit_log_format(audit_buf, " spi=%lu(0x%lx) protocol=%s", (unsigned long)ntohl(x->id.spi), (unsigned long)ntohl(x->id.spi), x->id.proto == IPPROTO_AH ? "AH" : (x->id.proto == IPPROTO_ESP ? "ESP" : "IPCOMP")); audit_log_format(audit_buf, " res=%u", result); audit_log_end(audit_buf); } EXPORT_SYMBOL(xfrm_audit_log); #endif /* CONFIG_AUDITSYSCALL */ int xfrm_policy_register_afinfo(struct xfrm_policy_afinfo *afinfo) { int err = 0; if (unlikely(afinfo == NULL)) return -EINVAL; if (unlikely(afinfo->family >= NPROTO)) return -EAFNOSUPPORT; write_lock_bh(&xfrm_policy_afinfo_lock); if (unlikely(xfrm_policy_afinfo[afinfo->family] != NULL)) err = -ENOBUFS; else { struct dst_ops *dst_ops = afinfo->dst_ops; if (likely(dst_ops->kmem_cachep == NULL)) dst_ops->kmem_cachep = xfrm_dst_cache; if (likely(dst_ops->check == NULL)) dst_ops->check = xfrm_dst_check; if (likely(dst_ops->negative_advice == NULL)) dst_ops->negative_advice = xfrm_negative_advice; if (likely(dst_ops->link_failure == NULL)) dst_ops->link_failure = xfrm_link_failure; if (likely(afinfo->garbage_collect == NULL)) afinfo->garbage_collect = __xfrm_garbage_collect; xfrm_policy_afinfo[afinfo->family] = afinfo; } write_unlock_bh(&xfrm_policy_afinfo_lock); return err; } EXPORT_SYMBOL(xfrm_policy_register_afinfo); int xfrm_policy_unregister_afinfo(struct xfrm_policy_afinfo *afinfo) { int err = 0; if (unlikely(afinfo == NULL)) return -EINVAL; if (unlikely(afinfo->family >= NPROTO)) return -EAFNOSUPPORT; write_lock_bh(&xfrm_policy_afinfo_lock); if (likely(xfrm_policy_afinfo[afinfo->family] != NULL)) { if (unlikely(xfrm_policy_afinfo[afinfo->family] != afinfo)) err = -EINVAL; else { struct dst_ops *dst_ops = afinfo->dst_ops; xfrm_policy_afinfo[afinfo->family] = NULL; dst_ops->kmem_cachep = NULL; dst_ops->check = NULL; dst_ops->negative_advice = NULL; dst_ops->link_failure = NULL; afinfo->garbage_collect = NULL; } } write_unlock_bh(&xfrm_policy_afinfo_lock); return err; } EXPORT_SYMBOL(xfrm_policy_unregister_afinfo); static struct xfrm_policy_afinfo *xfrm_policy_get_afinfo(unsigned short family) { struct xfrm_policy_afinfo *afinfo; if (unlikely(family >= NPROTO)) return NULL; read_lock(&xfrm_policy_afinfo_lock); afinfo = xfrm_policy_afinfo[family]; if (unlikely(!afinfo)) read_unlock(&xfrm_policy_afinfo_lock); return afinfo; } static void xfrm_policy_put_afinfo(struct xfrm_policy_afinfo *afinfo) { read_unlock(&xfrm_policy_afinfo_lock); } static struct xfrm_policy_afinfo *xfrm_policy_lock_afinfo(unsigned int family) { struct xfrm_policy_afinfo *afinfo; if (unlikely(family >= NPROTO)) return NULL; write_lock_bh(&xfrm_policy_afinfo_lock); afinfo = xfrm_policy_afinfo[family]; if (unlikely(!afinfo)) write_unlock_bh(&xfrm_policy_afinfo_lock); return afinfo; } static void xfrm_policy_unlock_afinfo(struct xfrm_policy_afinfo *afinfo) { write_unlock_bh(&xfrm_policy_afinfo_lock); } static int xfrm_dev_event(struct notifier_block *this, unsigned long event, void *ptr) { switch (event) { case NETDEV_DOWN: xfrm_flush_bundles(); } return NOTIFY_DONE; } static struct notifier_block xfrm_dev_notifier = { xfrm_dev_event, NULL, 0 }; static void __init xfrm_policy_init(void) { unsigned int hmask, sz; int dir; xfrm_dst_cache = kmem_cache_create("xfrm_dst_cache", sizeof(struct xfrm_dst), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); hmask = 8 - 1; sz = (hmask+1) * sizeof(struct hlist_head); xfrm_policy_byidx = xfrm_hash_alloc(sz); xfrm_idx_hmask = hmask; if (!xfrm_policy_byidx) panic("XFRM: failed to allocate byidx hash\n"); for (dir = 0; dir < XFRM_POLICY_MAX * 2; dir++) { struct xfrm_policy_hash *htab; INIT_HLIST_HEAD(&xfrm_policy_inexact[dir]); htab = &xfrm_policy_bydst[dir]; htab->table = xfrm_hash_alloc(sz); htab->hmask = hmask; if (!htab->table) panic("XFRM: failed to allocate bydst hash\n"); } INIT_WORK(&xfrm_policy_gc_work, xfrm_policy_gc_task); register_netdevice_notifier(&xfrm_dev_notifier); } void __init xfrm_init(void) { xfrm_state_init(); xfrm_policy_init(); xfrm_input_init(); }