/* * arch/parisc/kernel/firmware.c - safe PDC access routines * * PDC == Processor Dependent Code * * See http://www.parisc-linux.org/documentation/index.html * for documentation describing the entry points and calling * conventions defined below. * * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org) * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy) * Copyright 2003 Grant Grundler <grundler parisc-linux org> * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org> * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * */ /* I think it would be in everyone's best interest to follow this * guidelines when writing PDC wrappers: * * - the name of the pdc wrapper should match one of the macros * used for the first two arguments * - don't use caps for random parts of the name * - use the static PDC result buffers and "copyout" to structs * supplied by the caller to encapsulate alignment restrictions * - hold pdc_lock while in PDC or using static result buffers * - use __pa() to convert virtual (kernel) pointers to physical * ones. * - the name of the struct used for pdc return values should equal * one of the macros used for the first two arguments to the * corresponding PDC call * - keep the order of arguments * - don't be smart (setting trailing NUL bytes for strings, return * something useful even if the call failed) unless you are sure * it's not going to affect functionality or performance * * Example: * int pdc_cache_info(struct pdc_cache_info *cache_info ) * { * int retval; * * spin_lock_irq(&pdc_lock); * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0); * convert_to_wide(pdc_result); * memcpy(cache_info, pdc_result, sizeof(*cache_info)); * spin_unlock_irq(&pdc_lock); * * return retval; * } * prumpf 991016 */ #include <stdarg.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/string.h> #include <linux/spinlock.h> #include <asm/page.h> #include <asm/pdc.h> #include <asm/pdcpat.h> #include <asm/system.h> #include <asm/processor.h> /* for boot_cpu_data */ static DEFINE_SPINLOCK(pdc_lock); static unsigned long pdc_result[32] __attribute__ ((aligned (8))); static unsigned long pdc_result2[32] __attribute__ ((aligned (8))); #ifdef CONFIG_64BIT #define WIDE_FIRMWARE 0x1 #define NARROW_FIRMWARE 0x2 /* Firmware needs to be initially set to narrow to determine the * actual firmware width. */ int parisc_narrow_firmware __read_mostly = 1; #endif /* On most currently-supported platforms, IODC I/O calls are 32-bit calls * and MEM_PDC calls are always the same width as the OS. * Some PAT boxes may have 64-bit IODC I/O. * * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow * 64-bit kernels to run on systems with 32-bit MEM_PDC calls. * This allowed wide kernels to run on Cxxx boxes. * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode * when running a 64-bit kernel on such boxes (e.g. C200 or C360). */ #ifdef CONFIG_64BIT long real64_call(unsigned long function, ...); #endif long real32_call(unsigned long function, ...); #ifdef CONFIG_64BIT # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args) #else # define MEM_PDC (unsigned long)PAGE0->mem_pdc # define mem_pdc_call(args...) real32_call(MEM_PDC, args) #endif /** * f_extend - Convert PDC addresses to kernel addresses. * @address: Address returned from PDC. * * This function is used to convert PDC addresses into kernel addresses * when the PDC address size and kernel address size are different. */ static unsigned long f_extend(unsigned long address) { #ifdef CONFIG_64BIT if(unlikely(parisc_narrow_firmware)) { if((address & 0xff000000) == 0xf0000000) return 0xf0f0f0f000000000UL | (u32)address; if((address & 0xf0000000) == 0xf0000000) return 0xffffffff00000000UL | (u32)address; } #endif return address; } /** * convert_to_wide - Convert the return buffer addresses into kernel addresses. * @address: The return buffer from PDC. * * This function is used to convert the return buffer addresses retrieved from PDC * into kernel addresses when the PDC address size and kernel address size are * different. */ static void convert_to_wide(unsigned long *addr) { #ifdef CONFIG_64BIT int i; unsigned int *p = (unsigned int *)addr; if(unlikely(parisc_narrow_firmware)) { for(i = 31; i >= 0; --i) addr[i] = p[i]; } #endif } /** * set_firmware_width - Determine if the firmware is wide or narrow. * * This function must be called before any pdc_* function that uses the convert_to_wide * function. */ void __init set_firmware_width(void) { #ifdef CONFIG_64BIT int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0); convert_to_wide(pdc_result); if(pdc_result[0] != NARROW_FIRMWARE) parisc_narrow_firmware = 0; spin_unlock_irqrestore(&pdc_lock, flags); #endif } /** * pdc_emergency_unlock - Unlock the linux pdc lock * * This call unlocks the linux pdc lock in case we need some PDC functions * (like pdc_add_valid) during kernel stack dump. */ void pdc_emergency_unlock(void) { /* Spinlock DEBUG code freaks out if we unconditionally unlock */ if (spin_is_locked(&pdc_lock)) spin_unlock(&pdc_lock); } /** * pdc_add_valid - Verify address can be accessed without causing a HPMC. * @address: Address to be verified. * * This PDC call attempts to read from the specified address and verifies * if the address is valid. * * The return value is PDC_OK (0) in case accessing this address is valid. */ int pdc_add_valid(unsigned long address) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } EXPORT_SYMBOL(pdc_add_valid); /** * pdc_chassis_info - Return chassis information. * @result: The return buffer. * @chassis_info: The memory buffer address. * @len: The size of the memory buffer address. * * An HVERSION dependent call for returning the chassis information. */ int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); memcpy(&pdc_result, chassis_info, sizeof(*chassis_info)); memcpy(&pdc_result2, led_info, len); retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO, __pa(pdc_result), __pa(pdc_result2), len); memcpy(chassis_info, pdc_result, sizeof(*chassis_info)); memcpy(led_info, pdc_result2, len); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } /** * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message. * @retval: -1 on error, 0 on success. Other value are PDC errors * * Must be correctly formatted or expect system crash */ #ifdef CONFIG_64BIT int pdc_pat_chassis_send_log(unsigned long state, unsigned long data) { int retval = 0; unsigned long flags; if (!is_pdc_pat()) return -1; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data)); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } #endif /** * pdc_chassis_disp - Updates chassis code * @retval: -1 on error, 0 on success */ int pdc_chassis_disp(unsigned long disp) { int retval = 0; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } /** * pdc_chassis_warn - Fetches chassis warnings * @retval: -1 on error, 0 on success */ int pdc_chassis_warn(unsigned long *warn) { int retval = 0; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result)); *warn = pdc_result[0]; spin_unlock_irqrestore(&pdc_lock, flags); return retval; } /** * pdc_coproc_cfg - To identify coprocessors attached to the processor. * @pdc_coproc_info: Return buffer address. * * This PDC call returns the presence and status of all the coprocessors * attached to the processor. */ int __init pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result)); convert_to_wide(pdc_result); pdc_coproc_info->ccr_functional = pdc_result[0]; pdc_coproc_info->ccr_present = pdc_result[1]; pdc_coproc_info->revision = pdc_result[17]; pdc_coproc_info->model = pdc_result[18]; spin_unlock_irqrestore(&pdc_lock, flags); return retval; } /** * pdc_iodc_read - Read data from the modules IODC. * @actcnt: The actual number of bytes. * @hpa: The HPA of the module for the iodc read. * @index: The iodc entry point. * @iodc_data: A buffer memory for the iodc options. * @iodc_data_size: Size of the memory buffer. * * This PDC call reads from the IODC of the module specified by the hpa * argument. */ int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index, void *iodc_data, unsigned int iodc_data_size) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, index, __pa(pdc_result2), iodc_data_size); convert_to_wide(pdc_result); *actcnt = pdc_result[0]; memcpy(iodc_data, pdc_result2, iodc_data_size); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } EXPORT_SYMBOL(pdc_iodc_read); /** * pdc_system_map_find_mods - Locate unarchitected modules. * @pdc_mod_info: Return buffer address. * @mod_path: pointer to dev path structure. * @mod_index: fixed address module index. * * To locate and identify modules which reside at fixed I/O addresses, which * do not self-identify via architected bus walks. */ int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info, struct pdc_module_path *mod_path, long mod_index) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), __pa(pdc_result2), mod_index); convert_to_wide(pdc_result); memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info)); memcpy(mod_path, pdc_result2, sizeof(*mod_path)); spin_unlock_irqrestore(&pdc_lock, flags); pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr); return retval; } /** * pdc_system_map_find_addrs - Retrieve additional address ranges. * @pdc_addr_info: Return buffer address. * @mod_index: Fixed address module index. * @addr_index: Address range index. * * Retrieve additional information about subsequent address ranges for modules * with multiple address ranges. */ int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, long mod_index, long addr_index) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result), mod_index, addr_index); convert_to_wide(pdc_result); memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info)); spin_unlock_irqrestore(&pdc_lock, flags); pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr); return retval; } /** * pdc_model_info - Return model information about the processor. * @model: The return buffer. * * Returns the version numbers, identifiers, and capabilities from the processor module. */ int pdc_model_info(struct pdc_model *model) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0); convert_to_wide(pdc_result); memcpy(model, pdc_result, sizeof(*model)); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } /** * pdc_model_sysmodel - Get the system model name. * @name: A char array of at least 81 characters. * * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L). * Using OS_ID_HPUX will return the equivalent of the 'modelname' command * on HP/UX. */ int pdc_model_sysmodel(char *name) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result), OS_ID_HPUX, __pa(name)); convert_to_wide(pdc_result); if (retval == PDC_OK) { name[pdc_result[0]] = '\0'; /* add trailing '\0' */ } else { name[0] = 0; } spin_unlock_irqrestore(&pdc_lock, flags); return retval; } /** * pdc_model_versions - Identify the version number of each processor. * @cpu_id: The return buffer. * @id: The id of the processor to check. * * Returns the version number for each processor component. * * This comment was here before, but I do not know what it means :( -RB * id: 0 = cpu revision, 1 = boot-rom-version */ int pdc_model_versions(unsigned long *versions, int id) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id); convert_to_wide(pdc_result); *versions = pdc_result[0]; spin_unlock_irqrestore(&pdc_lock, flags); return retval; } /** * pdc_model_cpuid - Returns the CPU_ID. * @cpu_id: The return buffer. * * Returns the CPU_ID value which uniquely identifies the cpu portion of * the processor module. */ int pdc_model_cpuid(unsigned long *cpu_id) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0); convert_to_wide(pdc_result); *cpu_id = pdc_result[0]; spin_unlock_irqrestore(&pdc_lock, flags); return retval; } /** * pdc_model_capabilities - Returns the platform capabilities. * @capabilities: The return buffer. * * Returns information about platform support for 32- and/or 64-bit * OSes, IO-PDIR coherency, and virtual aliasing. */ int pdc_model_capabilities(unsigned long *capabilities) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); pdc_result[0] = 0; /* preset zero (call may not be implemented!) */ retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0); convert_to_wide(pdc_result); *capabilities = pdc_result[0]; spin_unlock_irqrestore(&pdc_lock, flags); return retval; } /** * pdc_cache_info - Return cache and TLB information. * @cache_info: The return buffer. * * Returns information about the processor's cache and TLB. */ int pdc_cache_info(struct pdc_cache_info *cache_info) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0); convert_to_wide(pdc_result); memcpy(cache_info, pdc_result, sizeof(*cache_info)); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } /** * pdc_spaceid_bits - Return whether Space ID hashing is turned on. * @space_bits: Should be 0, if not, bad mojo! * * Returns information about Space ID hashing. */ int pdc_spaceid_bits(unsigned long *space_bits) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); pdc_result[0] = 0; retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0); convert_to_wide(pdc_result); *space_bits = pdc_result[0]; spin_unlock_irqrestore(&pdc_lock, flags); return retval; } #ifndef CONFIG_PA20 /** * pdc_btlb_info - Return block TLB information. * @btlb: The return buffer. * * Returns information about the hardware Block TLB. */ int pdc_btlb_info(struct pdc_btlb_info *btlb) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0); memcpy(btlb, pdc_result, sizeof(*btlb)); spin_unlock_irqrestore(&pdc_lock, flags); if(retval < 0) { btlb->max_size = 0; } return retval; } /** * pdc_mem_map_hpa - Find fixed module information. * @address: The return buffer * @mod_path: pointer to dev path structure. * * This call was developed for S700 workstations to allow the kernel to find * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP * call. * * This call is supported by all existing S700 workstations (up to Gecko). */ int pdc_mem_map_hpa(struct pdc_memory_map *address, struct pdc_module_path *mod_path) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); memcpy(pdc_result2, mod_path, sizeof(*mod_path)); retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result), __pa(pdc_result2)); memcpy(address, pdc_result, sizeof(*address)); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } #endif /* !CONFIG_PA20 */ /** * pdc_lan_station_id - Get the LAN address. * @lan_addr: The return buffer. * @hpa: The network device HPA. * * Get the LAN station address when it is not directly available from the LAN hardware. */ int pdc_lan_station_id(char *lan_addr, unsigned long hpa) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ, __pa(pdc_result), hpa); if (retval < 0) { /* FIXME: else read MAC from NVRAM */ memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE); } else { memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE); } spin_unlock_irqrestore(&pdc_lock, flags); return retval; } EXPORT_SYMBOL(pdc_lan_station_id); /** * pdc_stable_read - Read data from Stable Storage. * @staddr: Stable Storage address to access. * @memaddr: The memory address where Stable Storage data shall be copied. * @count: number of bytes to transfert. count is multiple of 4. * * This PDC call reads from the Stable Storage address supplied in staddr * and copies count bytes to the memory address memaddr. * The call will fail if staddr+count > PDC_STABLE size. */ int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr, __pa(pdc_result), count); convert_to_wide(pdc_result); memcpy(memaddr, pdc_result, count); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } EXPORT_SYMBOL(pdc_stable_read); /** * pdc_stable_write - Write data to Stable Storage. * @staddr: Stable Storage address to access. * @memaddr: The memory address where Stable Storage data shall be read from. * @count: number of bytes to transfert. count is multiple of 4. * * This PDC call reads count bytes from the supplied memaddr address, * and copies count bytes to the Stable Storage address staddr. * The call will fail if staddr+count > PDC_STABLE size. */ int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); memcpy(pdc_result, memaddr, count); convert_to_wide(pdc_result); retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr, __pa(pdc_result), count); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } EXPORT_SYMBOL(pdc_stable_write); /** * pdc_stable_get_size - Get Stable Storage size in bytes. * @size: pointer where the size will be stored. * * This PDC call returns the number of bytes in the processor's Stable * Storage, which is the number of contiguous bytes implemented in Stable * Storage starting from staddr=0. size in an unsigned 64-bit integer * which is a multiple of four. */ int pdc_stable_get_size(unsigned long *size) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result)); *size = pdc_result[0]; spin_unlock_irqrestore(&pdc_lock, flags); return retval; } EXPORT_SYMBOL(pdc_stable_get_size); /** * pdc_stable_verify_contents - Checks that Stable Storage contents are valid. * * This PDC call is meant to be used to check the integrity of the current * contents of Stable Storage. */ int pdc_stable_verify_contents(void) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } EXPORT_SYMBOL(pdc_stable_verify_contents); /** * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize * the validity indicator. * * This PDC call will erase all contents of Stable Storage. Use with care! */ int pdc_stable_initialize(void) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } EXPORT_SYMBOL(pdc_stable_initialize); /** * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD) * @hwpath: fully bc.mod style path to the device. * @initiator: the array to return the result into * * Get the SCSI operational parameters from PDC. * Needed since HPUX never used BIOS or symbios card NVRAM. * Most ncr/sym cards won't have an entry and just use whatever * capabilities of the card are (eg Ultra, LVD). But there are * several cases where it's useful: * o set SCSI id for Multi-initiator clusters, * o cable too long (ie SE scsi 10Mhz won't support 6m length), * o bus width exported is less than what the interface chip supports. */ int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */ #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \ strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0) retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, __pa(pdc_result), __pa(hwpath)); if (retval < PDC_OK) goto out; if (pdc_result[0] < 16) { initiator->host_id = pdc_result[0]; } else { initiator->host_id = -1; } /* * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively */ switch (pdc_result[1]) { case 1: initiator->factor = 50; break; case 2: initiator->factor = 25; break; case 5: initiator->factor = 12; break; case 25: initiator->factor = 10; break; case 20: initiator->factor = 12; break; case 40: initiator->factor = 10; break; default: initiator->factor = -1; break; } if (IS_SPROCKETS()) { initiator->width = pdc_result[4]; initiator->mode = pdc_result[5]; } else { initiator->width = -1; initiator->mode = -1; } out: spin_unlock_irqrestore(&pdc_lock, flags); return (retval >= PDC_OK); } EXPORT_SYMBOL(pdc_get_initiator); /** * pdc_pci_irt_size - Get the number of entries in the interrupt routing table. * @num_entries: The return value. * @hpa: The HPA for the device. * * This PDC function returns the number of entries in the specified cell's * interrupt table. * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes */ int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, __pa(pdc_result), hpa); convert_to_wide(pdc_result); *num_entries = pdc_result[0]; spin_unlock_irqrestore(&pdc_lock, flags); return retval; } /** * pdc_pci_irt - Get the PCI interrupt routing table. * @num_entries: The number of entries in the table. * @hpa: The Hard Physical Address of the device. * @tbl: * * Get the PCI interrupt routing table for the device at the given HPA. * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes */ int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl) { int retval; unsigned long flags; BUG_ON((unsigned long)tbl & 0x7); spin_lock_irqsave(&pdc_lock, flags); pdc_result[0] = num_entries; retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, __pa(pdc_result), hpa, __pa(tbl)); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } #if 0 /* UNTEST CODE - left here in case someone needs it */ /** * pdc_pci_config_read - read PCI config space. * @hpa token from PDC to indicate which PCI device * @pci_addr configuration space address to read from * * Read PCI Configuration space *before* linux PCI subsystem is running. */ unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); pdc_result[0] = 0; pdc_result[1] = 0; retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL); spin_unlock_irqrestore(&pdc_lock, flags); return retval ? ~0 : (unsigned int) pdc_result[0]; } /** * pdc_pci_config_write - read PCI config space. * @hpa token from PDC to indicate which PCI device * @pci_addr configuration space address to write * @val value we want in the 32-bit register * * Write PCI Configuration space *before* linux PCI subsystem is running. */ void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); pdc_result[0] = 0; retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL, (unsigned long) val); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } #endif /* UNTESTED CODE */ /** * pdc_tod_read - Read the Time-Of-Day clock. * @tod: The return buffer: * * Read the Time-Of-Day clock */ int pdc_tod_read(struct pdc_tod *tod) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0); convert_to_wide(pdc_result); memcpy(tod, pdc_result, sizeof(*tod)); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } EXPORT_SYMBOL(pdc_tod_read); /** * pdc_tod_set - Set the Time-Of-Day clock. * @sec: The number of seconds since epoch. * @usec: The number of micro seconds. * * Set the Time-Of-Day clock. */ int pdc_tod_set(unsigned long sec, unsigned long usec) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } EXPORT_SYMBOL(pdc_tod_set); #ifdef CONFIG_64BIT int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr, struct pdc_memory_table *tbl, unsigned long entries) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries); convert_to_wide(pdc_result); memcpy(r_addr, pdc_result, sizeof(*r_addr)); memcpy(tbl, pdc_result2, entries * sizeof(*tbl)); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } #endif /* CONFIG_64BIT */ /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap * so I guessed at unsigned long. Someone who knows what this does, can fix * it later. :) */ int pdc_do_firm_test_reset(unsigned long ftc_bitmap) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET, PDC_FIRM_TEST_MAGIC, ftc_bitmap); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } /* * pdc_do_reset - Reset the system. * * Reset the system. */ int pdc_do_reset(void) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } /* * pdc_soft_power_info - Enable soft power switch. * @power_reg: address of soft power register * * Return the absolute address of the soft power switch register */ int __init pdc_soft_power_info(unsigned long *power_reg) { int retval; unsigned long flags; *power_reg = (unsigned long) (-1); spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0); if (retval == PDC_OK) { convert_to_wide(pdc_result); *power_reg = f_extend(pdc_result[0]); } spin_unlock_irqrestore(&pdc_lock, flags); return retval; } /* * pdc_soft_power_button - Control the soft power button behaviour * @sw_control: 0 for hardware control, 1 for software control * * * This PDC function places the soft power button under software or * hardware control. * Under software control the OS may control to when to allow to shut * down the system. Under hardware control pressing the power button * powers off the system immediately. */ int pdc_soft_power_button(int sw_control) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } /* * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices. * Primarily a problem on T600 (which parisc-linux doesn't support) but * who knows what other platform firmware might do with this OS "hook". */ void pdc_io_reset(void) { unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); mem_pdc_call(PDC_IO, PDC_IO_RESET, 0); spin_unlock_irqrestore(&pdc_lock, flags); } /* * pdc_io_reset_devices - Hack to Stop USB controller * * If PDC used the usb controller, the usb controller * is still running and will crash the machines during iommu * setup, because of still running DMA. This PDC call * stops the USB controller. * Normally called after calling pdc_io_reset(). */ void pdc_io_reset_devices(void) { unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0); spin_unlock_irqrestore(&pdc_lock, flags); } /** * pdc_iodc_putc - Console character print using IODC. * @c: the character to output. * * Note that only these special chars are architected for console IODC io: * BEL, BS, CR, and LF. Others are passed through. * Since the HP console requires CR+LF to perform a 'newline', we translate * "\n" to "\r\n". */ void pdc_iodc_putc(unsigned char c) { /* XXX Should we spinlock posx usage */ static int posx; /* for simple TAB-Simulation... */ static int __attribute__((aligned(8))) iodc_retbuf[32]; static char __attribute__((aligned(64))) iodc_dbuf[4096]; unsigned int n; unsigned long flags; switch (c) { case '\n': iodc_dbuf[0] = '\r'; iodc_dbuf[1] = '\n'; n = 2; posx = 0; break; case '\t': pdc_iodc_putc(' '); while (posx & 7) /* expand TAB */ pdc_iodc_putc(' '); return; /* return since IODC can't handle this */ case '\b': posx-=2; /* BS */ default: iodc_dbuf[0] = c; n = 1; posx++; break; } spin_lock_irqsave(&pdc_lock, flags); real32_call(PAGE0->mem_cons.iodc_io, (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT, PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers), __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0); spin_unlock_irqrestore(&pdc_lock, flags); } /** * pdc_iodc_outc - Console character print using IODC (without conversions). * @c: the character to output. * * Write the character directly to the IODC console. */ void pdc_iodc_outc(unsigned char c) { unsigned int n; unsigned long flags; /* fill buffer with one caracter and print it */ static int __attribute__((aligned(8))) iodc_retbuf[32]; static char __attribute__((aligned(64))) iodc_dbuf[4096]; n = 1; iodc_dbuf[0] = c; spin_lock_irqsave(&pdc_lock, flags); real32_call(PAGE0->mem_cons.iodc_io, (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT, PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers), __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0); spin_unlock_irqrestore(&pdc_lock, flags); } /** * pdc_iodc_getc - Read a character (non-blocking) from the PDC console. * * Read a character (non-blocking) from the PDC console, returns -1 if * key is not present. */ int pdc_iodc_getc(void) { unsigned long flags; static int __attribute__((aligned(8))) iodc_retbuf[32]; static char __attribute__((aligned(64))) iodc_dbuf[4096]; int ch; int status; /* Bail if no console input device. */ if (!PAGE0->mem_kbd.iodc_io) return 0; /* wait for a keyboard (rs232)-input */ spin_lock_irqsave(&pdc_lock, flags); real32_call(PAGE0->mem_kbd.iodc_io, (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN, PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0); ch = *iodc_dbuf; status = *iodc_retbuf; spin_unlock_irqrestore(&pdc_lock, flags); if (status == 0) return -1; return ch; } int pdc_sti_call(unsigned long func, unsigned long flags, unsigned long inptr, unsigned long outputr, unsigned long glob_cfg) { int retval; unsigned long irqflags; spin_lock_irqsave(&pdc_lock, irqflags); retval = real32_call(func, flags, inptr, outputr, glob_cfg); spin_unlock_irqrestore(&pdc_lock, irqflags); return retval; } EXPORT_SYMBOL(pdc_sti_call); #ifdef CONFIG_64BIT /** * pdc_pat_cell_get_number - Returns the cell number. * @cell_info: The return buffer. * * This PDC call returns the cell number of the cell from which the call * is made. */ int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result)); memcpy(cell_info, pdc_result, sizeof(*cell_info)); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } /** * pdc_pat_cell_module - Retrieve the cell's module information. * @actcnt: The number of bytes written to mem_addr. * @ploc: The physical location. * @mod: The module index. * @view_type: The view of the address type. * @mem_addr: The return buffer. * * This PDC call returns information about each module attached to the cell * at the specified location. */ int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod, unsigned long view_type, void *mem_addr) { int retval; unsigned long flags; static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8))); spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), ploc, mod, view_type, __pa(&result)); if(!retval) { *actcnt = pdc_result[0]; memcpy(mem_addr, &result, *actcnt); } spin_unlock_irqrestore(&pdc_lock, flags); return retval; } /** * pdc_pat_cpu_get_number - Retrieve the cpu number. * @cpu_info: The return buffer. * @hpa: The Hard Physical Address of the CPU. * * Retrieve the cpu number for the cpu at the specified HPA. */ int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER, __pa(&pdc_result), hpa); memcpy(cpu_info, pdc_result, sizeof(*cpu_info)); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } /** * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table. * @num_entries: The return value. * @cell_num: The target cell. * * This PDC function returns the number of entries in the specified cell's * interrupt table. */ int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE, __pa(pdc_result), cell_num); *num_entries = pdc_result[0]; spin_unlock_irqrestore(&pdc_lock, flags); return retval; } /** * pdc_pat_get_irt - Retrieve the cell's interrupt table. * @r_addr: The return buffer. * @cell_num: The target cell. * * This PDC function returns the actual interrupt table for the specified cell. */ int pdc_pat_get_irt(void *r_addr, unsigned long cell_num) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE, __pa(r_addr), cell_num); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } /** * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges. * @actlen: The return buffer. * @mem_addr: Pointer to the memory buffer. * @count: The number of bytes to read from the buffer. * @offset: The offset with respect to the beginning of the buffer. * */ int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, unsigned long count, unsigned long offset) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), __pa(pdc_result2), count, offset); *actual_len = pdc_result[0]; memcpy(mem_addr, pdc_result2, *actual_len); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } /** * pdc_pat_io_pci_cfg_read - Read PCI configuration space. * @pci_addr: PCI configuration space address for which the read request is being made. * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. * @mem_addr: Pointer to return memory buffer. * */ int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ, __pa(pdc_result), pci_addr, pci_size); switch(pci_size) { case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; } spin_unlock_irqrestore(&pdc_lock, flags); return retval; } /** * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges. * @pci_addr: PCI configuration space address for which the write request is being made. * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be * written to PCI Config space. * */ int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val) { int retval; unsigned long flags; spin_lock_irqsave(&pdc_lock, flags); retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE, pci_addr, pci_size, val); spin_unlock_irqrestore(&pdc_lock, flags); return retval; } #endif /* CONFIG_64BIT */ /***************** 32-bit real-mode calls ***********/ /* The struct below is used * to overlay real_stack (real2.S), preparing a 32-bit call frame. * real32_call_asm() then uses this stack in narrow real mode */ struct narrow_stack { /* use int, not long which is 64 bits */ unsigned int arg13; unsigned int arg12; unsigned int arg11; unsigned int arg10; unsigned int arg9; unsigned int arg8; unsigned int arg7; unsigned int arg6; unsigned int arg5; unsigned int arg4; unsigned int arg3; unsigned int arg2; unsigned int arg1; unsigned int arg0; unsigned int frame_marker[8]; unsigned int sp; /* in reality, there's nearly 8k of stack after this */ }; long real32_call(unsigned long fn, ...) { va_list args; extern struct narrow_stack real_stack; extern unsigned long real32_call_asm(unsigned int *, unsigned int *, unsigned int); va_start(args, fn); real_stack.arg0 = va_arg(args, unsigned int); real_stack.arg1 = va_arg(args, unsigned int); real_stack.arg2 = va_arg(args, unsigned int); real_stack.arg3 = va_arg(args, unsigned int); real_stack.arg4 = va_arg(args, unsigned int); real_stack.arg5 = va_arg(args, unsigned int); real_stack.arg6 = va_arg(args, unsigned int); real_stack.arg7 = va_arg(args, unsigned int); real_stack.arg8 = va_arg(args, unsigned int); real_stack.arg9 = va_arg(args, unsigned int); real_stack.arg10 = va_arg(args, unsigned int); real_stack.arg11 = va_arg(args, unsigned int); real_stack.arg12 = va_arg(args, unsigned int); real_stack.arg13 = va_arg(args, unsigned int); va_end(args); return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn); } #ifdef CONFIG_64BIT /***************** 64-bit real-mode calls ***********/ struct wide_stack { unsigned long arg0; unsigned long arg1; unsigned long arg2; unsigned long arg3; unsigned long arg4; unsigned long arg5; unsigned long arg6; unsigned long arg7; unsigned long arg8; unsigned long arg9; unsigned long arg10; unsigned long arg11; unsigned long arg12; unsigned long arg13; unsigned long frame_marker[2]; /* rp, previous sp */ unsigned long sp; /* in reality, there's nearly 8k of stack after this */ }; long real64_call(unsigned long fn, ...) { va_list args; extern struct wide_stack real64_stack; extern unsigned long real64_call_asm(unsigned long *, unsigned long *, unsigned long); va_start(args, fn); real64_stack.arg0 = va_arg(args, unsigned long); real64_stack.arg1 = va_arg(args, unsigned long); real64_stack.arg2 = va_arg(args, unsigned long); real64_stack.arg3 = va_arg(args, unsigned long); real64_stack.arg4 = va_arg(args, unsigned long); real64_stack.arg5 = va_arg(args, unsigned long); real64_stack.arg6 = va_arg(args, unsigned long); real64_stack.arg7 = va_arg(args, unsigned long); real64_stack.arg8 = va_arg(args, unsigned long); real64_stack.arg9 = va_arg(args, unsigned long); real64_stack.arg10 = va_arg(args, unsigned long); real64_stack.arg11 = va_arg(args, unsigned long); real64_stack.arg12 = va_arg(args, unsigned long); real64_stack.arg13 = va_arg(args, unsigned long); va_end(args); return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn); } #endif /* CONFIG_64BIT */